438 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Energy-efficient MAC protocols for wireless sensor networks: a survey

    Get PDF
    MAC Protocols enables sensor nodes of the same WSN to access a common shared communication channel. Many researchers have proposed different solutions explaining how to design and implement these protocols. The main goal of most MACs protocols is how to prolong lifetime of the WSN as long as possible by reducing energy consumption since it is often impossible to change or to recharge sensors’ batteries. The majority of these protocols designed for WSN are based on “duty-cycle” technique. Every node of the WSN operates on two periods: active period and sleep period to save energy. Until now (to our knowledge) there is no ideal protocol for this purpose. The main reason relies on the lack of standardization at lower layers (physical layer) and (physical) sensor hardware.  Therefore, the MAC protocol choice remains application-dependent. A useful MAC protocol should be able to adapt to network changes (topology, nodes density and network size). This paper surveys MAC protocols for WSNs and discusses the main characteristics, advantages and disadvantages of currently popular protocols

    LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic lowpower wireless networks

    Get PDF
    Current Medium Access Control (MAC) protocols for data collection scenarios with a large number of nodes that generate bursty traffic are based on Low-Power Listening (LPL) for network synchronization and Frame Slotted ALOHA (FSA) as the channel access mechanism. However, FSA has an efficiency bounded to 36.8% due to contention effects, which reduces packet throughput and increases energy consumption. In this paper, we target such scenarios by presenting Low-Power Distributed Queuing (LPDQ), a highly efficient and low-power MAC protocol. LPDQ is able to self-schedule data transmissions, acting as a FSA MAC under light traffic and seamlessly converging to a Time Division Multiple Access (TDMA) MAC under congestion. The paper presents the design principles and the implementation details of LPDQ using low-power commercial radio transceivers. Experiments demonstrate an efficiency close to 99% that is independent of the number of nodes and is fair in terms of resource allocation.Peer ReviewedPostprint (author’s final draft

    Distributed Time Division Multiple Access (DTDMA) Medium Access Control Protocol For Wireless Sensor Networks [TK7872.D48 W872 2008 f rb].

    Get PDF
    Rangkaian sensor tanpa wayar menerima perhatian yang memberangsangkan sejak beberapa tahun yang lalu disebabkan oleh peningkatan permintaan terhadap perisian kadar rendah, murah dan menjimatkan tenaga seperti operasi perkilangan, ketenteraan, kesihatan, pengawasan alam sekitar, sekuriti, operasi penyelamatan dan komunikasi tanpa wayar. Wireless Sensor Networks (WSNs) received tremendous attention over the last few years due to increasing demand for low data rate, low-cost and low power applications in industries like factory automation, military, health and hospitality,environment monitoring, security, search and rescue, and wireless communications

    Collision-free beacon scheduling mechanisms for IEEE 802.15.4/Zigbee cluster-tree wireless sensor networks

    Get PDF
    The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks
    corecore