219 research outputs found

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    An Optimized Multi-Layer Resource Management in Mobile Edge Computing Networks: A Joint Computation Offloading and Caching Solution

    Full text link
    Nowadays, data caching is being used as a high-speed data storage layer in mobile edge computing networks employing flow control methodologies at an exponential rate. This study shows how to discover the best architecture for backhaul networks with caching capability using a distributed offloading technique. This article used a continuous power flow analysis to achieve the optimum load constraints, wherein the power of macro base stations with various caching capacities is supplied by either an intelligent grid network or renewable energy systems. This work proposes ubiquitous connectivity between users at the cell edge and offloading the macro cells so as to provide features the macro cell itself cannot cope with, such as extreme changes in the required user data rate and energy efficiency. The offloading framework is then reformed into a neural weighted framework that considers convergence and Lyapunov instability requirements of mobile-edge computing under Karush Kuhn Tucker optimization restrictions in order to get accurate solutions. The cell-layer performance is analyzed in the boundary and in the center point of the cells. The analytical and simulation results show that the suggested method outperforms other energy-saving techniques. Also, compared to other solutions studied in the literature, the proposed approach shows a two to three times increase in both the throughput of the cell edge users and the aggregate throughput per cluster

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Task-Oriented Delay-Aware Multi-Tier Computing in Cell-free Massive MIMO Systems

    Get PDF
    Multi-tier computing can enhance the task computation by multi-tier computing nodes. In this paper, we propose a cell-free massive multiple-input multiple-output (MIMO) aided computing system by deploying multi-tier computing nodes to improve the computation performance. At first, we investigate the computational latency and the total energy consumption for task computation, regarded as total cost. Then, we formulate a total cost minimization problem to design the bandwidth allocation and task allocation, while considering realistic heterogenous delay requirements of the computational tasks. Due to the binary task allocation variable, the formulated optimization problem is non-convex. Therefore, we solve the bandwidth allocation and task allocation problem by decoupling the original optimization problem into bandwidth allocation and task allocation subproblems. As the bandwidth allocation problem is a convex optimization problem, we first determine the bandwidth allocation for given task allocation strategy, followed by conceiving the traditional convex optimization strategy to obtain the bandwidth allocation solution. Based on the asymptotic property of received signal-to-interference-plus-noise ratio (SINR) under the cell-free massive MIMO setting and bandwidth allocation solution, we formulate a dual problem to solve the task allocation subproblem by relaxing the binary constraint with Lagrange partial relaxation for heterogenous task delay requirements. At last, simulation results are provided to demonstrate that our proposed task offloading scheme performs better than the benchmark schemes, where the minimum-cost optimal offloading strategy for heterogeneous delay requirements of the computational tasks may be controlled by the asymptotic property of the received SINR in our proposed cell-free massive MIMO-aided multi-tier computing systems.This work was supported by the National Key Project under Grant 2020YFB1807700

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Evolution of NOMA Toward Next Generation Multiple Access (NGMA) for 6G

    Full text link
    Due to the explosive growth in the number of wireless devices and diverse wireless services, such as virtual/augmented reality and Internet-of-Everything, next generation wireless networks face unprecedented challenges caused by heterogeneous data traffic, massive connectivity, and ultra-high bandwidth efficiency and ultra-low latency requirements. To address these challenges, advanced multiple access schemes are expected to be developed, namely next generation multiple access (NGMA), which are capable of supporting massive numbers of users in a more resource- and complexity-efficient manner than existing multiple access schemes. As the research on NGMA is in a very early stage, in this paper, we explore the evolution of NGMA with a particular focus on non-orthogonal multiple access (NOMA), i.e., the transition from NOMA to NGMA. In particular, we first review the fundamental capacity limits of NOMA, elaborate on the new requirements for NGMA, and discuss several possible candidate techniques. Moreover, given the high compatibility and flexibility of NOMA, we provide an overview of current research efforts on multi-antenna techniques for NOMA, promising future application scenarios of NOMA, and the interplay between NOMA and other emerging physical layer techniques. Furthermore, we discuss advanced mathematical tools for facilitating the design of NOMA communication systems, including conventional optimization approaches and new machine learning techniques. Next, we propose a unified framework for NGMA based on multiple antennas and NOMA, where both downlink and uplink transmissions are considered, thus setting the foundation for this emerging research area. Finally, several practical implementation challenges for NGMA are highlighted as motivation for future work.Comment: 34 pages, 10 figures, a survey paper accepted by the IEEE JSAC special issue on Next Generation Multiple Acces
    • …
    corecore