
1

Task-Oriented Delay-Aware Multi-Tier Computing
in Cell-free Massive MIMO Systems

Kunlun Wang, Dusit Niyato, Wen Chen, and Arumugam Nallanathan

Abstract—Multi-tier computing can enhance the task compu-
tation by multi-tier computing nodes. In this paper, we propose
a cell-free massive multiple-input multiple-output (MIMO) aided
computing system by deploying multi-tier computing nodes to
improve the computation performance. At first, we investigate the
computational latency and the total energy consumption for task
computation, regarded as total cost. Then, we formulate a total
cost minimization problem to design the bandwidth allocation
and task allocation, while considering realistic heterogenous delay
requirements of the computational tasks. Due to the binary task
allocation variable, the formulated optimization problem is non-
convex. Therefore, we solve the bandwidth allocation and task
allocation problem by decoupling the original optimization prob-
lem into bandwidth allocation and task allocation subproblems.
As the bandwidth allocation problem is a convex optimization
problem, we first determine the bandwidth allocation for given
task allocation strategy, followed by conceiving the traditional
convex optimization strategy to obtain the bandwidth allocation
solution. Based on the asymptotic property of received signal-to-
interference-plus-noise ratio (SINR) under the cell-free massive
MIMO setting and bandwidth allocation solution, we formulate
a dual problem to solve the task allocation subproblem by re-
laxing the binary constraint with Lagrange partial relaxation for
heterogenous task delay requirements. At last, simulation results
are provided to demonstrate that our proposed task offloading
scheme performs better than the benchmark schemes, where
the minimum-cost optimal offloading strategy for heterogeneous
delay requirements of the computational tasks may be controlled
by the asymptotic property of the received SINR in our proposed
cell-free massive MIMO-aided multi-tier computing systems.

Index Terms—Multi-tier computing systems, cell-free massive
MIMO systems, energy and delay tradeoff, delay requirements,
task offloading

I. INTRODUCTION

S INCE there are exponential growth of mobile devices inthe networks, wireless traffic is growing tremendously

recently. It is expected that and the increasing amount of

traffic will continue to grow steadily in the coming years.

With the proliferation of wireless traffic, delay and energy

consumption have emerged as key design metrics for wireless

communication systems [1], [2]. Additionally, more and more

K. Wang is with the Shanghai Key Laboratory of Multidimensional
Information Processing, East China Normal University, Shanghai 200241,
China, and also with the School of Communication and Electronic Engi-
neering, East China Normal University, Shanghai 200241, China (e-mail:
klwang@cee.ecnu.edu.cn).
D. Niyato is with School of Computer Science and Engineering, Nanyang

Technological University, Singapore (e-mail: dniyato@ntu.edu.sg).
W. Chen is with the Department of Electronic Engineering, Shanghai Jiao

Tong University, Shanghai 200240, China (e-mail: wenchen@sjtu.edu.cn).
A. Nallanathan is with the School of Electronic Engineering and

Computer Science at Queen Mary University of London, UK. (email:
a.nallanathan@qmul.ac.uk).

smart devices are connected to the wireless network with

the development of intelligent Internet of Things (IoT), it is

estimated that in excess of 24.6 billion connected devices by
2025 [3]. Meanwhile, the significant growth of novel intelli-
gent applications with intensive tasks (e.g., AR/VR) typically

require ultra-reliable and low-latency communications (URLL-

C) and demand efficient power management for realtime task

processing and high energy efficiency (EE) [4], [5]. However,

mobile hand-held devices have limited computation, energy

and storage resources, as well as limited battery capacity due

to their compact form-factor. These defects pose critical chal-

lenges for the realtime intelligent applications. By enabling

flexible computation, storage and communication resource

coordination, multi-tier computing is a novel and efficient

computing architecture, which can schedule intensive tasks to

multi-tier computing servers at heterogeneous base stations

(BSs) in the edge/fog or cloud of wireless communication

systems [6], [7].

From the perspective of EE, the energy consumption model

adopted in most of related works is over-simplified, which

only models the transmission energy or task computational

energy [7], [8]. However, a more general energy model is

not negligible in a multi-tier computing system considering

various computation and communication energy consumptions

at the multi-tier nodes. From the perspective of task compu-

tation delay, the computation delay model proposed in most

of related works fails to capture the effects of heterogeneous

delay requirements. There are diversified applications in multi-

tier computing systems, some tasks are delay tolerant, while

some tasks are delay sensitive. However, most of these works

fail to consider joint influence of the heterogeneous delay

requirements and the total energy consumption, which can be

also regarded one of the key task computation metrics in next

generation wireless networks.

Regarded as one of the key technologies for next genera-

tion wireless communication systems, massive multiple-input

multiple-output (MIMO) is capable of significantly improving

the task offloading rate so as to improve the task compuation

efficiency [9]–[11]. In order to make full use of the benefits

of massive MIMO in a multi-tier computing system, the cell-

free massive MIMO based multi-tier computing is consid-

ered. Cell-free massive MIMO is the network-centric massive

MIMO, which is distributed across the network [12], [13].

Thus, a cell-free massive MIMO system supports multiple

number of antennas distributed over a large number of access

points (APs) in a network, where each AP can serve a small

number of devices. These APs are coordinated by the central

processing unit (CPU) through a high-transmission data rate
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and ultra-reliable backhaul link. For implementing multi-tier

computing, we assume that each AP and the CPU are respec-

tively equipped with an independent computing server, while

the computing server for CPU has much larger computation

capacity compared to that of AP. Each AP serves all devices

in its coverage area. Thus, each device is capable of utilizing

the abundant computational resources on the CPU or one of

its connected APs (i.e., multi-tier computing framework). In

this context, our proposed computing framework focuses on

multi-tier computing nodes (CNs) in cell-free massive MIMO

systems, e.g., fog access nodes (FANs), cloud access nodes

(CANs) and CPU, realizing collaborative task computing.

These CNs are able to help to execute the computational tasks

offloaded from task nodes (TNs) according to their computing

capabilities, task delay requirements and total cost.

A. Related Work

In order to address the inefficient task computation issues,

multi-tier computing is capable of offloading the intensive

tasks to multi-tier nearby CNs with the powerful computing

capability realizing remote task execution [14]. Therefore,

task offloading has received more and more research attention

in different edge/fog computing scenarios [6], [7], [9]–[11],

[15]–[17]. In particular, Wang et al. [9] proposed a massive
MIMO-aided task offloading system, where multiple TNs can

schedule their tasks to nearby computing nodes (CNs) by a

massive MIMO-based FAN. As an extension of this work,

Wang et al. [10] proposed a relay assisted multi-tier computing
system equipped with massive antennas to improve the task

computation performance, they investigated the design of the

task allocation, service caching and power allocation jointly

to minimize the total task computation latency. Additionally,

Wang et al. [6] investigated a non-orthogonal multiple access
(NOMA)-assisted task offloading system for industrial Internet

of things (IIoT), where TNs offload their intensive tasks to

nearby CNs via NOMA technique for task computation. Also

Wang et al. [11] proposed a task offloading framework in a
intelligent reflecting surface (IRS) and massive MIMO relay

assisted multi-tier computing system, where multiple TNs

can offload their intensive tasks to nearby massive MIMO

relay node (MRN) and FAN via the IRS technique for task

execution in CNs. Liu et al. [18], [19] proposed a mapping
framework for task offloading by mapping multiple tasks or

TNs into multiple HNs, where they studied a generalized Nash

equilibrium problem to minimize task’s offloading delay in a

distributed manner.

By equipping with a very large number of distributed APs in

a network, cell-free massive MIMO is capable of significantly

improving network-throughput as well as EE [20]. Given the

benefits of cell-free massive MIMO, the integration of multi-

tier computing and cell-free massive MIMO can improve

the task offloading performance in a multi-tier computing

system [20]–[22]. There are some works on resource man-

agement of task offloading in a cell-free massive MIMO

system in recent years. Mukherjee et al. [21] proposed an
edge computing-assisted cell-free massive MIMO architecture,

where the edge servers and cloud are located at each AP

and the central server of this system, respectively, and the

authors analysis the task offloading performance by devising

suitable communication resource allocation and task allocation

strategies. Ke et al. [22] introduced a grant-free massive access
IoT system, where multiple cooperative APs serve massive

devices in the network via cell-free massive MIMO technique,

they studied two computation strategies at the CNs for massive

devices access, i.e., cloud task computation and edge task

computation. Wang et al. [10] investigated the joint strategy
of task offloading, computational task caching and power

allocation in edge computing systems to minimize the total

task offloading latency.
Although the above works have revealed the benefits of

cell-free massive MIMO-assisted edge computing [9]–[11], the

energy-delay tradeoff in resource management and multi-tier

task computation have not been considered. By considering

task computation energy and latency costs in a multi-tier

task offloading framework, scheduling tasks to multi-tier CNs

can reduce the congestion of task computation as well as

reducing the computation energy consumption of each user. To

exploit the benefits of energy-delay tradeoff in edge computing

framework, there are some works being invested into online

dynamic tasks allocation with energy harvesting [23], task of-

floading of mobile devices formulated as a constrained multi-

objective optimization problem on minimizing both the task

computation energy consumption and task computation latency

[24], and jointly task offloading and resource management

optimization [25], as well as minimizing task response time

and packet losses to improve the realtime performance and

reliability of task processing [26]. However, the influence

of heterogeneous delay requirements of computational tasks

has not been studied, which represents the different delay

requirements of diverse novel applications. Additionally, the

influence of heterogeneous delay requirements of the tasks

for task allocation in multi-tier computing nodes has not been

studied either. Furthermore, all the existing works consider the

uncoordinated distributed edge computing scenario. Thanks to

the rapid development of cell-free massive MIMO [27], the

task offloading via cell-free massive MIMO will be increas-

ingly adopted in multi-tier computing framework.

B. Main Contributions
Although the above contributions have revealed the benefits

of task offloading in a cell-free massive MIMO framework,

the multi-tier collaborative task computation minimizing the

total energy consumption and latency in cell-free massive

MIMO frameworks has not been considered to the best of

our knowledge. The influence of delay and energy weight has

not been well studied either, which can be regarded as the het-

erogeneous delay requirements of the tasks and will be a key

performance metric for multi-tier computing systems [6], [30]–

[32], and the heterogeneous delay requirements is particularly

important for battery-limited mobile devices running diverse

novel applications. The proposed cell-free massive MIMO-

aided multi-tier computing framework includes heterogeneous

CNs, e.g., mobile devices, fog/cloud access points, and cloud.

The total energy consumption consist of both the task trans-

mission energy and task computation energy, and the total
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TABLE I
NOVELTY COMPARISON

[8]-
2016

[15]-
2019

[28]-
2017

[29]-
2019

[6]-
2020

[9]-
2020

[10]-
2022

[11]-
2022

Our
work

Joint task allocation and communication
resource allocation

� � � � � � � �
Massive MIMO � � � � �
Minimizing task computation time � �
Multi-tier computing � � � � �
Cell-free massive MIMO �
Energy-delay tradeoff �
Heterogeneous delay requirements �

latency cost includes both the task transmission delay and task

computation delay. The task computation energy includes the

energy consumed by both the local devices and the remote

CN. Furthermore, to characterize the effects of different delay

requirements for the tasks in multi-tier computing systems,

we employ the delay and energy weight for determining the

task allocation policy. That is, delay sensitive and tolerant

tasks are classified into different categories by the weights.

Based on the requirements of delay sensitive and tolerant tasks,

we aim for studying how cell-free massive MIMO systems

tackle the challenge of task allocation. In the expressions

for the task computation latency and energy consumption,

we obtain that the bandwidth allocation variable and task

offloading variable are separated. Then, the task allocation and

the bandwidth allocation constraints are separable. Therefore,

we decouple the original task offloading Problem into two

sub-problems: bandwidth allocation optimization and task

allocation optimization. Specifically, we first exploit the op-

timal bandwidth allocation strategy to minimize the total cost

of our proposed cell-free massive MIMO-assisted multi-tier

computing systems. Secondly, we characterize the relationship

between cell-free massive MIMO and task allocation strategy

based on the asymptotic property of the signal-to-interference-

plus-noise ratio (SINR) with very large number of APs.

Finally, we optimize the task allocation for heterogeneous

delay requirements of the tasks. We have explicitly compared

our unique contributions with the state-of-the-art, which are

shown in Table I and further summarized as follows:

• In terms of multi-tier task offloading system model, a
novel cell-free massive MIMO assisted multi-tier com-

puting framework is proposed for task offloading, which

consists of a group of a large number of distributed APs

with sharable computing resources to execute the tasks.

Furthermore, a problem minimizing the total energy con-

sumption and latency cost is formulation, which offers a

new approach to task offloading in a multi-tier computing

system.

• In terms of task offloading optimization and resource
management analysis, an adaptive bandwidth allocation

strategy is proposed for minimizing the total energy

and delay cost, where the most efficient bandwidth for

each task offloading link can be determined according to

the dynamic channels. As far as we know, considering

the bandwidth allocation in a cell-free massive MIMO-

assisted task offloading system has not been studied

recently.

• Furthermore, we optimize the task allocation strategy
based on the bandwidth allocation result. Given the

delay sensitive and tolerant tasks, we study how cell-

free massive MIMO systems tackle the challenge of task

allocation with heterogeneous delay requirements. Then,

we employ the delay and energy weight to determine the

optimal task allocation policy.

• Finally, the performances of the proposed bandwidth al-
location and task offloading strategy have been evaluated

through simulations relying on diverse system parameters.

The simulation results demonstrate that our task offload-

ing strategy achieves significantly performance improve-

ment in total cost compared to the benchmark schemes

subject to realistic communication and computation con-

straints.

C. Paper Organization

Our paper is organized as follows. The system model

is introduced in Section II, while the problem formulation

and analysis are presented in Section III. In Section IV,

we optimize the bandwidth and task allocations in terms of

heterogeneous delay requirements by the asymptotic property

of the massive MIMO to minimize the total energy and delay

cost in cell-free massive MIMO-assisted multi-tier computing

systems. our simulation results are shown in Section V. Finally,

conclusions are provided in Section VI. Table II lists the

notations.

II. SYSTEM MODEL

A. Multi-tier Computing Network

A cell-free massive MIMO-aided multi-tier computing net-

work is shown in Fig. 1, which consists of K TNs with

computational tasks (e.g., artificial intelligence model train-

ing), K FANs and M CANs, where the active TNs rely on

node to node (N2N) communications for task offloading to

FANs. The FANs are connected to the CNs by backhaul links

using high-rate ultra-reliable optical fiber transmission. The

TNs are communicated with the FAN by wireless links, and

the FANs offload the tasks to the CANs, while the CANs are

connected to the CPU by backhaul links using high-rate optical

fiber. As the next generation wireless network is expected to

satisfy the extensive quality of service (QoS) requirements
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TABLE II
NOTATIONS

Definition Notation Definition Notation
Bandwidth B Task size of task k lk
Bandwidth allocation variable for TN k ηk Task offloading decision variable of task node k αk

Transmit power of TN k pb Variance of AWGN σ2k
Transmit symbol of task node k sk Received SINR of symbol xk γk
Task offloading time of first hop tTNk Offloading energy of first hop ETN

k
Task offloading time of second hop tk Offloading energy of first hop EFAN

k
Computational latency at CN tFk,comp Computational latency at CPU tCk,comp
Computational energy consumption at CN Ere,k Total energy consumption of TN k Etotal,k

Total task offloading latency of task node k Ttotal,k Transmitted symbol from the kth FAN xk
Weights of delay and energy consumption μk Weighted sum cost of task node k Ωk

Total cost Ωtotal Number of CAN M

Fig. 1. Illustration of a cell-free massive MIMO-assisted multi-tier computing
system consisting ofK TNs,K fog access nodes (FANs) andM cloud access
nodes (CANs), where TNs offload the tasks to the FANs or CANs for multi-
tier computing.

for wireless communications, a cell-free massive MIMO-

based multi-tier computing architecture is proposed. Multi-

tier computing organizes and manages the task computation

and transmission from multiple heterogeneous CNs. Under this

circumstance, the tasks can be offloaded to the FAN and CPU

with the help of CANs, which can improve the performance

of the overall computation efficiency.

B. Transmission Model

We consider independent and identically distributed (i.i.d.)

quasi-static Rayleigh fading. In particular, each inter-node

channel remains invariant within one time slot, but varies

independently across different time slots and links. To make

full use of the spectrum, we consider that each TN occupies a

part of the bandwidth to facilitate task offloading by frequency

division multiple access (FDMA), which can avoid the TNs

co-channel interference. Let B and ηk ∈ [0, 1] be the total
available bandwidth for the links between TNs and FANs and

the bandwidth allocation variable for TN k, respectively, recall
that the bandwidth allocated to the ith TN is ηkB. We denote
η as the bandwidth allocation vector, which can be shown as
η = [η1, η2, · · · , ηK ].

We denote αk ∈ {0, 1} and a = [α1, · · · , αK ] as the
offloading variable of TN k and the offloading vector, respec-
tively. As we consider binary task offloading, we have αk = 0
if TN k executes its task locally by FAN computing, and
αk = 1 if TN k executes its task by remote CPU computing.
Let pb be the transmit power of each TN, which is selected
prior to the subcarrier allocation. Denote zk as the additive
white Gaussian noise (AWGN) with variance σ2k at the kth
FAN. Hence, the received task signal at the kth FAN is shown
as

yk =
√
pb
√
dkhkxk + zk, ∀k ∈ K, (1)

where dk and hk ∼ CN (0, 1) represent the channel path loss
and small scale fading of the link between the kth TN and the
kth FAN. Let xk be the transmit symbol of TN k. In addition,
xk satisfies E[|xk|2] = 1.
Based on (1), the signal-to-noise ratio (SNR) of symbol xk

observed by the kth FAN can be expressed as

γFAN,k =
pbdk|hk|2

σ2k
. (2)

Then, based on the bandwidth allocation and received SNR in

(2), the achievable task offloading rate of the first hop from

the kth TN to the kth FAN is given by

rk = ηkB log2

(
1 +

pbdk|hk|2
σ2k

)
. (3)

Then, the task offloading time of the first hop is given by

tTNk =
lk

ηkB log2

(
1 + pbdk|hk|2

σ2k

) . (4)

The corresponding energy consumption is given by

ETN
k =

pblk

ηkB log2

(
1 + pbdk|hk|2

σ2k

) . (5)

For the second hop, FAN k offloads its task to the CAN.
By the cell-free transmissions, CAN receives all the tasks from

the FANs. Then, the task offloading time and task offloading

energy consumption of the second hop are respectively given

by

tk =
αklk

B log2 (1 + γk)
, (6)

EFAN
k =

qkαklk
B log2 (1 + γk)

, (7)

where γk represents the received SINR for the TN k at CANs.
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C. Computational Model

1) Local Computing: Consider that each TN has a compu-
tational task for the requested service, and hence we denote

ks as the task of TN k, which can be specified by the task
size with lk bits. For simplicity of analysis, we assume that
the task for each TN is generated instantly, and the task

offloading latency is from the arrival in the TN. Regrading

task computation in TN, we assume that each TN does not

have enough computation capacity to execute the task, the task

needs to be offloaded to execute on nearby FAN. If the task

is still computed locally, the execution delay could be largely

due to the limited computing resources at the TN [33].

In our proposed multi-tier computing system, the total

number of computing cycles of processing core is considered

to be linearly proportional with the task size of each task

to be processed [6], [9]. Let Ck represent the number of

computing cycles required for executing 1-bit of input task at
CN, and hence the total number of computing cycles required

for executing the task from TN k is Cklk, which depends both
on the type of processing core and on the task to be executed.

Therefore, the task computational latency for ks at CN is given
by

tFk,comp =
Ck(1− αk)lk

fFk
, (8)

where fFk represents the core computing frequency at the CN.
2) Task Offloading: In terms of task offloading, where the

task is offloaded to be processed by remote CPU. In this

case, the TN transmits the task to the CPU through two hops

wireless links, i.e, TNs to FANs link and FANs to CANs link.

For the sake of simplicity, we assume that the CPU has multi-

core, and each particular offloaded task can be independently

assigned to a core Furthermore, each core is assumed to have

the same maximum computing frequency fmax
0 (in cycles per

second). Therefore, we have computational latency of the task

ks at CPU, which is given by

tCk,comp =
Ckαklk
fCk

, (9)

where fCk , k ∈ K represents the each core computing

frequency in the CPU. Benefit from dynamic voltage and

frequency scaling techniques (DVFS) [34], we assume that

fCk is adjustable.

III. PROBLEM FORMULATION AND ANALYSIS

A. Energy Consumption and Delay Analysis

Following the model in [8], let PCN denote the computing
energy consumption for each cycle at CN for local task

computing. Then, CkPCN represents the computing energy
consumption per bit of each task. According to the task

allocation decision, there are (1−αk)lk-bits input task required
to be processed at kth CN. Thus, the computational energy
consumption of the task ks at the k-th CN for local task
computing is given by

Ere,k = Ck(1− αk)lkPCN. (10)

Specifically, the computational energy consumption of the task

ks at CPU is not considered, as the energy capacity of CPU is

very large. Then, the total computational energy consumption

for task ks is given by

Ecom,k = Ere,k = C0(1− αk)lkPCN. (11)

In all, the total task computation energy consumption for task

ks is composed of total task transmission energy and total task
computation energy, which is given by

Etotal,k =ETN
k + Ere,k + EFAN

k

=
pblk

ηkB log2

(
1 +

pb,mdb,m|hb,m|2
σ2m

)+
C0(1− αk)lkPCN +

qkαklk
B log2 (1 + γk)

.

(12)

The total task offloading latency consists of the task com-

putation delay plus the task transmission delay, and it is from

the arrival in the TN. According to (4), (6), (8), and (9), the

total task offloading latency of task ks is given by

Ttotal,k =tTNk + tFk,comp + tk + tCk,comp

=
lk

ηkB log2

(
1 +

pbdb,m|hb,m|2
σ2m

) +
Ck(1− αk)lk

fFk

+
αklk

B log2 (1 + γk)
+
Ckαklk
fCk

.

(13)

B. Problem Formulation

In this section, the bandwidth and task allocations frame-

work is discussed for heterogeneous delay requirements of

the tasks under the cell-free massive MIMO setting, and the

related optimization problem is formulated. Specifically, the

total task computation cost in terms of latency cost and energy

consumption minimization is formulated to improve the task

execution efficiency of multi-tier task computation.

According to (12) and (13), the weighted sum cost for each

TN k in terms of latency cost and energy consumption can be
obtained, which is given by

Ωk = μkEtotal,k + (1− μk)Ttotal,k, (14)

where μk and (1 − μk) represent the weight of latency cost
and energy consumption, respectively, and 0 ≤ μk ≤ 1. μk

reflects the priority of different task requirements, under the

condition of delay sensitive task, μk is small. On the other

hand, if the task is delay tolerant, μk is large, which means

total energy consumption is more important than delay cost for

task computation. For simplicity of analysis, we set μk = 0
for delay sensitive services, and we set μk = 1 for delay
tolerant services. Then, the total cost consists of computational

energy consumption and computational delay, which can be

formulated as

Ωtotal =

K∑
k=1

wkΩk

=

K∑
k=1

wk {μkEtotal,k + (1− μk)Ttotal,k} ,
(15)

where wk is the weighting factor for TN k.
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Hence, the total cost minimization optimized problem of the

proposed cell-free massive MIMO asisted multi-tier computing

systems is expressed as

min
η,α

Ωtotal, (16a)

s.t. 0 < ηk < 1, ∀k, (16b)

K∑
k=1

ηk = 1, ∀k, (16c)

αk ∈ {0, 1}, ∀k. (16d)

C. Problem Analysis

Using the above described problem formulation, we need

to analyze Problem (16). Note that αk is a binary variable,

and hence Problem (16) has an non-convex feasible set. As

binary variables has product-based relationship, the objective

function of Problem (16) is also non-convex. As we know that

it is challenging to find global optimum for a mixed discrete

and non-convex optimization problem [35]. Since the feasible

set and objective function are both non-convex, this problem

is NP hard. Thus, we have to simplify Problem (16).

From (12) and (13), it can be observed that in the expres-

sions for the task computation latency and energy consump-

tion, the bandwidth allocation variable η and task offloading
variable α are separated. In this case, the task allocation and
the bandwidth allocation constraints are separable. Therefore,

we are capable of decoupling the original task offloading

Problem (16) into two sub-problems: bandwidth allocation

optimization (i.e., η) and task allocation optimization (i.e.,
α). Note that the bandwidth allocation is based on the first
hop task transmission from the TNs to the FANs, and the task

allocation is based on the second hop task offloading from the

FANs to CANs with the aid of cell-free massive MIMO.

IV. COST MINIMIZATION SCHEMES

In this section, the bandwidth allocation and task offloading

is optimized for heterogeneous delay requirements of the

tasks by the asymptotic property of the massive MIMO to

minimize the total task computation cost in our proposed cell-

free massive MIMO-aided multi-tier computing systems.

A. Uplink Task Transmission

Consider that task transmissions from FANs to CANs are

regarded as uplink task offloading, where all FANs send their

received tasks to the CANs. We denote the channel fading

coefficient between the FAN k and the CANm as gm,k, which

can be expressed as [36]

gm,k =
√
βm,khm,k, (17)

where βm,k denotes the large-scale fading and hm,k ∼
CN (0, 1) denotes the small-scale channel fading between the
link from the kth TN and the FAN m. Upon receiving the
signal, all the FANs delivered their symbols simultaneously to

the CAN, which can be expressed as

x =
√
ρqks, (18)

where s = [s1, · · · , sK ]T denotes the transmission

information-bearing signal vector with E(ss†) = IK , and sk
(E[|sk|2] = 1) denotes the signal transmitted from the kth TN
to its paired FAN, and qk denotes the task transmission power
from the FAN k. Additionally, ρ represents the normalized
uplink signal-to-noise ratio (SNR). The delivered symbol from

FAN k can be expressed as

xk =
√
ρqksk. (19)

Note that each CAN receives aggregated signal from all

the FANs, and the received symbol at the mth CAN can be
expressed as

ym =
√
ρ

K∑
k=1

gm,k
√
qksk + nm,ym = gm,k

√
ρqks+ nm,

(20)

where nm ∼ CN (0, 1) denotes the noise at CANm. Addition-
ally, we employ a matched filtering strategy at the CANs. In

this case, the received symbol can be weighted appropriately.

To be more precisely, the received symbol ym at the mth
CAN need to be first multiplied by ĝ∗m,k. Let ĝm denote the
estimated channel state information (CSI) of all FANs to mth
CAN. Under this circumstance, the actual channel coefficient

can be expressed as [37]

gm =
√

1− τ2Dĝm + τDΩD, (21)

where ΩD ∈ C
K×M represents the channel estimation noise

independent of the estimated channel, which has i.i.d entries

with zero mean and unit variance, and τD ∈ [0, 1] reflects
the estimation accuracy of the channel coefficient matrix ĝm.
Under the condition of τD = 0, we have perfect CSI estima-
tion. Under the condition of τD = 1, the CSI is completely
unknown. The CSI may be imperfect due to the estimation

errors, limited CSI feedback quantization, delays, etc. On the

other hand, the Quality of Experience (QoE) of computation

heavily relies on the wireless fading channel conditions since

task offloading requires effective wireless transmission. Thus,

we consider imperfect CSI for task offloading. Given the

imperfect CSI of receiver, the precoding matrix of the CAN

is similar to [9], [10], which can be expressed as

ĝ∗m = ĝ†m, (22)

where ĝ†m = (ĝHmĝm)−1ĝHm.

The multiplied symbol of ĝ∗m,kym is then delivered to CPU

via backhaul link using high-throughput optical fiber for signal

detection. Then, the received data at CPU is aggregated, which
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can be expressed as

rCPU =

M∑
m=1

ĝ∗mym

=
√
ρqk

M∑
m=1

g†mgms+
M∑

m=1

g†mnm

=
√
ρqk

M∑
m=1

(ĝHmĝm)−1ĝHm

(√
1− τ2Dĝm + τDΩD

)
s

+

M∑
m=1

(ĝHmĝm)−1ĝHmnm

=
√
ρqk(1− τ2D)

M∑
m=1

s+ τD
√
ρqk

M∑
m=1

(ĝHmĝm)−1ĝHmΩDs

+
M∑

m=1

(ĝHmĝm)−1ĝHmnm

(23)
1

Denote rk as the aggregated received signal for TN k in
(23), which can be expressed as

rk =
√
ρ(1− τ2D)

M∑
m=1

√
qksk+

τD
√
ρqk

M∑
m=1

(ĝHm,kĝm,k)
−1ĝHm,kΩD,ksk+

M∑
m=1

(ĝHm,kĝm,k)
−1ĝHm,knm,k

(24)

Consider the worst-case of the uncorrelated Gaussian noise,

we can obtain the received SINR of the transmitted signal in

(24) [36], which is shown as (25) in the bottom of this page. As

cell-free massive MIMO systems support a very large number

of CANs serving a small number of FANs, we characterize

the asymptotic property of the received SINR in (25) with the

cell-free massive MIMO setting in the following theorem. By

this theorem, we can solve the task allocation subproblem.

Theorem 1. As the number of CANs goes to infinity, i.e.,
M → ∞, the received SINR in (25) is capable of being
asymptotically expressed as

γk =
qkρ(1− τ2D)

σ2

M

∑M
m=1

∑K
k=1 λ

−1
k,m

. (26)

Proof: The proof is given in Appendix A.
Based on Theorem 1, the received SINR for TN k only

related to transmit power from the kth FAN for very large M .

B. Bandwidth Allocation

As second-order derivative of the objective function is strict-

ly negative, we have that Ttotal is a convex function of η, so we

1Similar to [20], [36], the CANs are transmitted with the CPU through
perfect communication links. These perfect communication links might be
established through optical fiber between the CANs and CPU. Additionally,
the communication links between CANs and CPU can be realized by
copperbased backhaul links, which is capable of providing a capacity of 750
Mbits/s with the maximum range of 1.5 km according to [38].

obtain that optimization problem (16) is a convex optimization

problem. Then, we refer to the Lagrangian multiplier method

to solve problem (16). We denote κ, ν and ξ as the Lagrange
multipliers associated with each constraint in problem (16).

Consequently, we have the Lagrangian function as

L(η,κ,ν, ξ) = Ωtotal(η) +

K∑
k=1

κkηk +

K∑
k=1

νk(1− ηk)

+
K∑

k=1

ξk(

K∑
k=1

ηk −B). (27)

Then, we have

∂L(η,κ,ν, ξ)

∂ηk
=

⎛
⎝ −μkpb,mli

η2kB log2

(
1 +

pb,mdb,m|hb,m|2
σ2m

)−
(1− μk)lk

η2kB log2

(
1 +

pb,mdb,m|hb,m|2
σ2m

)
⎞
⎠+ κk

− νk + ξk.
(28)

Next, the Karush-Kuhn-Tucker (KKT) conditions can be ex-

pressed as

∂L(η∗,κ,ν, ξ)
∂η∗k

= 0, ∀k ∈ K, (29)

κkη
∗
k = 0, νk(1− η∗k) = 0, ∀k ∈ K, (30)

ξk(

K∑
k=1

η∗k −B) = 0, ∀k ∈ K, (31)

K∑
k=1

η∗k = B, 0 ≤ η∗k ≤ 1, ∀k ∈ K. (32)

Based on (28) and (29), we arrive at

ξk =
1

(η∗k)2

⎛
⎝ (1− μk)lk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)+
μkpblk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)
⎞
⎠− κk + νk.

(33)

As a result, the optimal solution can be summarized as follows:

• Under the condition that

ξk ≥ 1

(η∗k)2

⎛
⎝ (1− μk)lk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)+
μkpblk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)
⎞
⎠ .

(34)

we have η∗k = 0, νk = 0 and κk ≥ 0 based on (30).
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• Under the condition that

ξk ≤ 1

(η∗k)2

⎛
⎝ (1− μk)lk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)+
μkpblk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)
⎞
⎠ .

(35)

we have η∗k = 1, κk = 0 and νk ≥ 0 based on (30).
• If 0 < η∗k < 1, we have νk = κk = 0 based on (30).
Thus, we have

ξk =
1

(η∗k)2

⎛
⎝ (1− μk)lk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)+
μkpblk

B log2

(
1 +

pbdb,m|hb,m|2
σ2m

)
⎞
⎠ .

(36)

Then, the optimal solution can be derived as η∗k =√
(1−μk)lk

ξkB log2

(
1+

pbdb,m|hb,m|2
σ2m

) +
μkpb,mlk

ξkB log2

(
1+

pbdb,m|hb,m|2
σ2m

) ,

∀k ∈ K.

Since 0 < ηk < 1, ∀k, the optimal bandwidth allocation
results η∗ of Problem (16) can be obtained as (37), which is
shown in the bottom of the next page.

C. Optimizing Task Allocation

Since problem (16) is a mixed integer programming problem

with respect to α, to obtain its globally optimal solution is NP-
hard. Under the circumstances, the partially dualized method

of [39] can be adopted to solve such problem. Then, we denote

ψ = [ψ1, · · · , ψK ] as the dual variable for the constraint (16d).

Consequently, the Lagrangian function can be expressed as

F (α,ψ) = Ωtotal(α) +
∑
k∈K

ψk

(∑
k∈K

αk −K

)

=
∑
k∈K

⎧⎨
⎩ (1− μk)lk

ηkB log2

(
1 +

pbdb,m|hb,m|2
σ2m

) +
Ck(1− μk)(1− αk)lk

fFk

+
(1− μk)αklk
B log2 (1 + γk)

+
Ck(1− μk)αklk

fCk
+

μkpblk

ηiB log2

(
1 +

pbdb,m|hb,m|2
σ2m

) + C0μk(1− αk)lkPCN

+
μkqkαklk

B log2 (1 + γk)

}
+ ψ

(∑
k∈K

αk −K

)

=
∑
k∈K

(
(1− μk)lk

B log2 (1 + γk)
+

(1− μk)Cklk
fCk

− (1− μk)Cklk
fFk

+

μkqklk
B log2 (1 + γk)

− C0μklkPCN + ψ

)
αk +Kψ

+
∑
k∈K

⎛
⎝ (1− μk)lk

ηkB log2

(
1 +

pbdb,m|hb,m|2
σ2m

) +
Cklk
fFk

+
μkpblk

ηiB log2

(
1 +

pbdb,m|hb,m|2
σ2m

)
⎞
⎠ . (38)

In this case, we can obtain the the partially dualized problem

of the original Problem (16), which is given by

f(α,ψ) = min
αj

F ({αj},ψ) ,

s.t. αj ∈ {0, 1}, ∀j ∈ K,∑K
j=1 αj ≤ K.

(39)

Then, the analytical task allocation results can be explicitly

obtained for fixed dual variable ψk, which is shown as (40)

in the bottom of the next page. As k∗ is not unique, the tasks
will be computed remotely at CAN with k∗ = 1. The optimal
dual variable ψ∗

k can be obtained by applying the subgradient

approach of [39] or the coordinate descent approach [40].

According to the above results, we have a theorem shown

in the following.

Theorem 2. For binary task offloading in cell-free massive
MIMO systems, when the number of CANs tends to infinity,
i.e., M →∞, all the tasks will be computed remotely at CAN
for the delay tolerant services, i.e., μk = 1, ∀k. On the other
hand, only the tasks from node i∗ will be computed remotely
at CAN, where FAN i∗ has the lest computational capacity.
The other tasks will be computed locally at the FAN for the
delay sensitive services, i.e., μk = 0, ∀k.

Proof: The proof is given in Appendix B.

γk =
ρ(1− τ2D)|∑M

m=1

√
qk|2

ρτ2Dqk|
∑M

m=1(ĝ
H
m,kĝm,k)−1ĝHm,kΩD,ksk|2 + |∑M

m=1(ĝ
H
m,kĝm,k)−1ĝHm,knm,k|2

(25)
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Fig. 2. Total task computation cost versus the task size, for K = 8.

V. PERFORMANCE EVALUATION

In this section, our simulation results characterize the per-

formance of bandwidth allocation and task allocation for the

proposed delay-aware cell-free massive MIMO-aided multi-

tier computing systems compared to several baseline schemes.

A. System Parameters

To verify the accuracy of the analysis results, we run

simulations over 10, 000 channel realizations to obtain the
averaging results. Additionally, the channel coefficient samples

are generated at a period of 0.005ms during the simulation.
Unless otherwise noted, most simulations follow the following

scenario. The cell-free massive MIMO systems have 25 FANs
with sufficient computing resources. The computational ca-

pacity of each CN is selected from the set {0.2, 0.3, · · · , 0.8}
GHz randomly and will be fixed. The local computing energy

per computation cycle zi follows a uniform distribution in the
range of (0, 20× 10−11) J/cycle. For the computational task,
we consider the service similar to that in [8], where any task

ks has a size of lk = 500 KB, ∀k ∈ S , and the required
computation cycles per bit follows a uniform distribution in

the range of [500, 1500] cycles/bit.
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Fig. 3. Total cost versus the weight of energy cost μk , ∀k, for K = 8.
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Fig. 4. Total cost versus the number of TNs K.

B. Performance bandwidth allocation

In Fig. 2, we show the total cost under different sizes of the

computational task at each TN, where we compare our opti-

η∗k =

√√√√ (1− μk)lk

ξkB log2

(
1 +

pbdb,m|hb,m|2
σ2m

) +
μkpb,mlk

ξkB log2

(
1 +

pb,mdb,m|hb,m|2
σ2m

) , ∀k. (37)

α∗k =

⎧⎪⎨
⎪⎩
1, if k∗ = arg min

k′∈K
( (1−μk′ )lk′
B log2(1+γk′ ) +

(1−μk′ )Ck′Lk′,s
fC
k′

− (1−μk′ )Ck′ lk′
fF
k′

+

μk′qk′ lk′
B log2(1+γk′ ) − C0μk′ lk′PCN + ψ),

0, otherwise,

(40)
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Fig. 5. Total cost versus different number of TNs K for different number
of CANs.
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Fig. 6. Total cost versus different number of TNs for different delay
requirement services.

mal bandwidth allocation (OBA) strategy to the conventional

techniques of time division multiple access (TDMA) [7], non-

orthgonal multiple access (NOMA) [6] and random bandwidth

allocation (RBA) [41]. Explicitly, in the NOMA strategy, each

TN offloads the task with the same time and frequency. It

can be observed from this figure that the NOMA performs

best in total energy and delay cost compared to TDMA and

FDMA. This is because the task offloading latency can be

largely reduced by NOMA strategy. However, as the received

signals from different TNs are superimposed at the FANs,

this strategy has relatively highest computational complexity

than TDMA and FDMA. As expected, we can observe from

this figure that our OBA strategy always performs best in

total cost than those of the TDMA and RBA strategies for

different sizes of computational task. Furthermore, we can

observe that the NOMA offers better performance in total cost

than that of the OBA strategy, since OBA strategy is derived

from FDMA. Upon increasing the size of the computational

task, there is an another interesting remark, the total cost is

increased. If the number of size of the computational task is

higher, then the task computation energy consumption will be

higher. Additionally, it can be observed from this figure that

the OBA strategy offers better performance than TDMA in

terms of total energy and delay consumption, implying that

it is more beneficial for optimal bandwidth allocation in total

energy and delay consumption.
For the comparison of different bandwidth allocation strate-

gies, we also plot the total cost when applying simulated

optimal task offloading (SOT), optimized task offloading (O-

TO) and random task offloading (RO) strategies. In Fig. 3,

we show the total task offloading cost versus the weight

of energy consumption μk, ∀k, for different task offloading
strategies. We can observe from this figure that the total cost

increases when increasing μk, implying that the total energy

consumption dominates the total cost. It can be observed

that the total task offloading cost of OBA strategy is lower

than that of the TDMA under the condition of the same task

offloading policy. These observations further verify that the

system cost can be reduced by different weights of energy

consumption with OBA policy. In summary, OBA strategy

makes the task offloading more power efficient without de-

grading corresponding task offloading rate. As expected, it can

be observed from this figure that SOT always performs best in

total cost than those of the OTO and RO strategies for different

weights of energy consumption. Furthermore, we can observe

that the OTO strategy always reduces the total cost regardless

of the bandwidth allocation strategies, which confirms the

analytical results. In case of energy efficient task offloading,

our simulation results further indicate that taking bandwidth

allocation into account is necessary, which can realize energy-

efficient task offloading for different delay requirements.

C. Performance of task allocation
As shown analytically in Section IV, the cell-free massive

MIMO gain of the bandwidth allocation strategy over the

task offloading strategy decreases with the number of CAN

as well as the received SINR, while it is not affected by these

parameters when the number of CAN goes to infinity. In this

section, we demonstrate the impact of M , K, and different
requirements of the computational tasks on the total cost by

means of simulations.
Fig. 4 illustrates the total cost versus different number of

TNs for different bandwidth allocation and task offloading

policies. We compare our strategy to traditional systems op-

erating with RO, such that RO serves as a benchmark. As

expected, we can observed from this figure that our OTO

strategy always performs better in total energy and delay cost

than that of the RO policy with different number of TNs.

Additionally, it can observed that the OTO scheme relying on

the optimal bandwidth allocation strategy can always achieve

better performance than that of the traditional offloading

scheme. Furthermore, as expected, optimal bandwidth alloca-

tion scheme offers much better performance than TDMA and
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RBA utilizing the same task allocation scheme. It should be

noted that even if the OBA scheme is adopted, OTO performs

better by the optimal task allocation scheme with the aid

of cell-free massive MIMO. This is due to the fact that the

optimal task allocation scheme increases the task offloading

throughput as well as decreases its energy cost of the cell-free

massive MIMO systems. On the other hand, it can be observed

that the total cost is increased by increasing the number of

TNs. It should be noted that if the number of TNs is larger,

then the energy cost and total computational delay of the task

offloading cell-free massive MIMO systems will be larger.

Fig. 5 illustrates the performance of the total cost in terms of

both different number of TNs and different number of CANs.

As expected, it can be observed that the OBA scheme using

OTO strategy can reduce total cost. Meanwhile, the total cost

is increased by increasing the number of TNs. This result

implies that the total energy consumption and computational

latency are increased. Furthermore, we can observe that the

larger the number of CAN is, the smaller the total cost is.

This is because the larger the number of CAN, the higher the

SINR at the CPU, thus reducing both the total task offloading

delay and energy cost. As the optimal task allocation strategy

can realize energy-efficient task transmission, the larger the

number of CAN utlizing the optimal task allocation strategy

can always perform better in total cost, which confirms our

analysis results. It should be noted that these results indicate

that the total cost is decreased by placing more CANs.

Next, Fig. 6 plots the total cost versus different number

of TNs K for different delay requirement services. It can

be observed that the total cost is significantly increased upon

increasing K and the delay tolerant services (DTS) with OTO
always performs best in total cost, which is due to the fact

that the tasks are allocated to the CPU with cloud computation

for DTS with OTO. Additionally, the OTO scheme associated

with optimal task allocation scheme always offers better per-

formance than the RO scheme. This is because the optimal task

allocation scheme can achieve the minimal delay and energy

consumption for task transmission. We can also observe that

for different number of TNs, delay sensitive services (DSS)

always have much larger computational latency and energy

consumption than DTS for the same task offloading strategy.

Since the DSS has much more stringent delay requirement,

result in larger energy consumption and total cost, which

confirms our analysis results. We have another interesting

remark from this figure, there is a crossing point by increasing

the number of TNs between the performances of the DSS and

the DTS for different task offloading strategies. According to

these simulation results, when K is small, the DTS with RO
strategy has smaller total cost than DSS with OTO scheme.

On the other hand, when K is large, the DTS with RO strategy
has larger total cost than DSS with OTO scheme. We hold the

opinion that the optimal task offloading strategy has a great

influence on the total cost when K is large. In this case, the
OTO will always performs better regardless of the different

delay requirements of the tasks.

VI. CONCLUSIONS

In this paper, we proposed a cell-free massive MIMO-

assisted multi-tier computing systems and investigated the

bandwidth allocation and task offloading, where the intensive

tasks from TNs can be offloaded to nearby FAN, and to the

CPU constituted by the nearby CAN via the cell-free massive

MIMO. We formulated a total cost minimization problem

in terms of energy consumption and computational latency,

while considering realistic heterogenous delay requirements

of the tasks. Since we consider binary task offloading, the

resulting non-convex bandwidth and task allocations prob-

lem can be solved by decoupling the original problem. As

the bandwidth allocation problem is a convex optimization

problem, we first obtained the bandwidth allocation solution

under a given task allocation strategy, followed by conceiv-

ing the traditional convex optimization method to determine

the bandwidth allocation result. According to the bandwidth

allocation solution, the Lagrange partial relaxation method

has been used for formulating the Lagrange dual problem by

relaxing the binary constraint to determine the task offloading

result. The simulation results demonstrate that the proposed

strategy always performs best with the benchmark strategies.

Meanwhile, based on the received SINR obtained byM →∞,
the cost optimal task offloading strategy can be chosen for

heterogeneous delay requirements of the computational tasks

in our proposed cell-free massive MIMO-assisted multi-tier

computing systems. Future work is in progress to consider

more general case that arbitrary FANs are deployed for each

TN to assist task offloading in the proposed framework.

APPENDIX A

PROOF OF THEOREM 1

According to Tchebyshevs theorem [42], we have

lim
N→∞

1

N
(X1+X2+. . .+XN ) =

1

N
(E(X1)+E(X2)+. . .+E(XN )),

(41)

where X1, X2, . . ., XN are N independent random variables,

E(Xi) denotes the expectation of Xi, ∀i. Then, regarding the
second term on the right hand side in (24), we have

lim
M→∞

1

M
τD
√
ρqk

M∑
m=1

(ĝHm,kĝm,k)
−1ĝHm,kΩD,ksk = 0. (42)

By adopting the eigenvalue/eigenvector decomposition of

ĝHm,kĝm,k, we obtain

ĝHm,kĝm,k = QΛQH, (43)

where Λ = diag{λ1, · · · , λK} and Q respectively denotes

the nonnegative diagonal eigenvalue matrix and the unitary

eigenvector matrix, respectively. Thus, regarding the third term
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on the right hand side in (24), we have

lim
M→∞

1

M

M∑
m=1

(ĝHm,kĝm,k)
−1ĝHm,knm,k

= lim
M→∞

1

M

M∑
m=1

(QΛQH)−1ĝHm,knm,k

= lim
M→∞

1

M

M∑
m=1

(Λ)−1ĝHm,knm,k

(44)

Then, we have

lim
M→∞

1

M
|

M∑
m=1

(ĝHm,kĝm,k)
−1ĝHm,knm,k|2

= lim
M→∞

σ2

M

M∑
m=1

tr
(
(ĝHm,kĝm,k)

−1ĝHm,kĝm,k(ĝ
H
m,kĝm,k)

−1
)
k,k

=
σ2

M

M∑
m=1

K∑
k=1

λ−1
k,m.

(45)

Based on (42) and (45), we have

lim
M→∞

γk =
qkρ(1− τ2D)

σ2

M

∑M
m=1

∑K
k=1 λ

−1
k,m

. (46)

APPENDIX B

PROOF OF THEOREM 2

While all tasks are from delay tolerant services, the energy

consumption will dominate the total cost. Then, μk = 1, ∀k.
Substitute μk = 1 into (40), we have

α∗k =

{
1, if k∗ = arg min

k′∈K
( ql
B log2(1+γk′ ) − C0lPCN + ψ),

0, otherwise.
(47)

As a result, α∗k = 1, ∀k. Therefore, all the tasks will be
computed remotely at CAN.

On the other hand, while all the tasks are from delay

sensitive services, the total delay cost will dominate the total

cost. Then, μk = 0, ∀k. Substitute μk = 1 into (40), we have

α∗k =

{
1, if k∗ = arg min

k′∈K
( l
B log2(1+γk′ ) +

Ck′ l
fC
k′
− Ck′ l

fF
k′

+ ψ),

0, otherwise.
(48)

Then, only the tasks from node i∗ will be computed remotely
at CAN, where i∗ = argmin

i∈K
( li
B log2(1+γi)

− Cili
fF
i
), i.e., i∗ is

from the smallest fFk , ∀k. This indicates that the FAN with
the lest computational capacity will offload the tasks to the

CAN, while the other tasks will be computed locally at the

FAN.
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