9,031 research outputs found

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Mobile Edge Computing Empowers Internet of Things

    Full text link
    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations

    Research in Mobile Database Query Optimization and Processing

    Get PDF

    CloudMoV: Cloud-based Mobile Social TV

    Get PDF
    published_or_final_versio

    It's about THYME: On the design and implementation of a time-aware reactive storage system for pervasive edge computing environments

    Get PDF
    This work was partially supported by Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) through project DeDuCe (PTDC/CCI-COM/32166/2017), NOVA LINCS UIDB/04516/2020, and grant SFRH/BD/99486/2014; and by the European Union through project LightKone (grant agreement n. 732505).Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. In this article, we address the challenge of supporting reliable and efficient data storage and dissemination among co-located wireless mobile devices without resorting to centralized services or network infrastructures. We propose THYME, a novel time-aware reactive data storage system for pervasive edge computing environments, that exploits synergies between the storage substrate and the publish/subscribe paradigm. We present the design of THYME and elaborate a three-fold evaluation, through an analytical study, and both simulation and real world experimentations, characterizing the scenarios best suited for its use. The evaluation shows that THYME allows the notification and retrieval of relevant data with low overhead and latency, and also with low energy consumption, proving to be a practical solution in a variety of situations.publishersversionpublishe
    corecore