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CloudMoV: Cloud-Based Mobile Social TV
Yu Wu, Zhizhong Zhang, Chuan Wu, Member, IEEE, Zongpeng Li, and Francis C. M. Lau, Senior Member, IEEE

Abstract—The rapidly increasing power of personal mobile
devices (smartphones, tablets, etc.) is providing much richer
contents and social interactions to users on the move. This trend
however is throttled by the limited battery lifetime of mobile
devices and unstable wireless connectivity, making the highest
possible quality of service experienced by mobile users not
feasible. The recent cloud computing technology, with its rich
resources to compensate for the limitations of mobile devices and
connections, can potentially provide an ideal platform to support
the desired mobile services. Tough challenges arise on how to
effectively exploit cloud resources to facilitate mobile services,
especially those with stringent interaction delay requirements. In
this paper, we propose the design of a Cloud-based, novel Mobile
sOcial tV system (CloudMoV). The system effectively utilizes both
PaaS (Platform-as-a-Service) and IaaS (Infrastructure-as-a-Ser-
vice) cloud services to offer the living-room experience of video
watching to a group of disparate mobile users who can interact
socially while sharing the video. To guarantee good streaming
quality as experienced by the mobile users with time-varying wire-
less connectivity, we employ a surrogate for each user in the IaaS
cloud for video downloading and social exchanges on behalf of the
user. The surrogate performs efficient stream transcoding that
matches the current connectivity quality of the mobile user. Given
the battery life as a key performance bottleneck, we advocate the
use of burst transmission from the surrogates to the mobile users,
and carefully decide the burst size which can lead to high energy
efficiency and streaming quality. Social interactions among the
users, in terms of spontaneous textual exchanges, are effectively
achieved by efficient designs of data storage with BigTable and
dynamic handling of large volumes of concurrent messages in a
typical PaaS cloud. These various designs for flexible transcoding
capabilities, battery efficiency of mobile devices and spontaneous
social interactivity together provide an ideal platform for mobile
social TV services. We have implemented CloudMoV on Amazon
EC2 andGoogle App Engine and verified its superior performance
based on real-world experiments.

Index Terms—Computers and information processing, Mobile
computing, Communications technology, TV, Mobile TV.

I. INTRODUCTION

T HANKS to the revolutionary “reinventing the phone”
campaigns initiated by Apple Inc. in 2007, smartphones

nowadays are shipped with multiple microprocessor cores and
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gigabyte RAMs; they possess more computation power than
personal computers of a few years ago. On the other hand,
the wide deployment of 3G broadband cellular infrastructures
further fuels the trend. Apart from common productivity tasks
like emails and web surfing, smartphones are flexing their
strengths in more challenging scenarios such as realtime video
streaming and online gaming, as well as serving as a main tool
for social exchanges.
Although many mobile social or media applications have

emerged, truely killer ones gaining mass acceptance are still
impeded by the limitations of the current mobile and wireless
technologies, among which battery lifetime and unstable con-
nection bandwidth are the most difficult ones. It is natural to
resort to cloud computing, the newly-emerged computing par-
adigm for low-cost, agile, scalable resource supply, to support
power-efficient mobile data communication. With virtually
infinite hardware and software resources, the cloud can offload
the computation and other tasks involved in a mobile applica-
tion and may significantly reduce battery consumption at the
mobile devices, if a proper design is in place. The big challenge
in front of us is how to effectively exploit cloud services to
facilitate mobile applications. There have been a few studies on
designing mobile cloud computing systems [1]–[3], but none
of them deal in particular with stringent delay requirements for
spontaneous social interactivity among mobile users.
In this paper, we describe the design of a novel mobile so-

cial TV system, CloudMoV, which can effectively utilize the
cloud computing paradigm to offer a living-room experience of
video watching to disparate mobile users with spontaneous so-
cial interactions. In CloudMoV, mobile users can import a live
or on-demand video to watch from any video streaming site,
invite their friends to watch the video concurrently, and chat
with their friends while enjoying the video. It therefore blends
viewing experience and social awareness among friends on the
go. As opposed to traditional TV watching, mobile social TV is
well suited to today’s life style, where family and friends may
be separated geographically but hope to share a co-viewing ex-
perience. While social TV enabled by set-top boxes over the
traditional TV systems is already available [4], [5], it remains a
challenge to achieve mobile social TV, where the concurrently
viewing experience with friends is enabled on mobile devices.
We design CloudMoV to seamlessly utilize agile resource

support and rich functionalities offered by both an IaaS (In-
frastructure-as-a-Service) cloud and a PaaS (Platform-as-a-Ser-
vice) cloud. Our design achieves the following goals.

A. Encoding Flexibility

Different mobile devices have differently sized displays, cus-
tomized playback hardwares, and various codecs. Traditional
solutions would adopt a few encoding formats ahead of the re-
lease of a video program. But even the most generous content
providers would not be able to attend to all possible mobile

1520-9210/$31.00 © 2013 IEEE
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platforms, if not only to the current hottest models. CloudMoV
customizes the streams for different devices at real time, by of-
floading the transcoding tasks to an IaaS cloud. In particular,
we novelly employ a surrogate for each user, which is a virtual
machine (VM) in the IaaS cloud. The surrogate downloads the
video on behalf of the user and transcodes it into the desired for-
mats, while catering to the specific configurations of the mobile
device as well as the current connectivity quality.

B. Battery Efficiency
A breakdown analysis conducted by Carroll et al. [6] indi-

cates that the network modules (both Wi-Fi and 3G) and the
display contribute to a significant portion of the overall power
consumption in a mobile device, dwarfing usages from other
hardware modules including CPU,memory, etc.We target at en-
ergy saving coming from the network module of smartphones
through an efficient data transmission mechanism design. We
focus on 3G wireless networking as it is getting more widely
used and challenging in our design than Wi-Fi based transmis-
sions. Based on cellular network traces from real-world 3G car-
riers, we investigate the key 3G configuration parameters such
as the power states and the inactivity timers, and design a novel
burst transmissionmechanism for streaming from the surrogates
to the mobile devices. The burst transmission mechanismmakes
careful decisions on burst sizes and opportunistic transitions
among high/low power consumption modes at the devices, in
order to effectively increase the battery lifetime.

C. Spontaneous Social Interactivity

Multiple mechanisms are included in the design of
CloudMoV to enable spontaneous social, co-viewing ex-
perience. First, efficient synchronization mechanisms are
proposed to guarantee that friends joining in a video program
may watch the same portion (if they choose to), and share
immediate reactions and comments. Although synchronized
playback is inherently a feature of traditional TV, the current
Internet video services (e.g., Web 2.0 TV) rarely offer such a
service. Second, efficient message communication mechanisms
are designed for social interactions among friends, and different
types of messages are prioritized in their retrieval frequencies
to avoid unnecessary interruptions of the viewing progress. For
example, online friend lists can be retrieved at longer intervals
at each user, while invitation and chat messages should be
delivered more timely. We adopt textual chat messages rather
than voice in our current design, believing that text chats are
less distractive to viewers and easier to read/write and manage
by any user.
These mechanisms are seamlessly integrated with function-

alities provided by a typical PaaS cloud, via an efficient design
of data storage with BigTable and dynamic handling of large
volumes of concurrent messages. We exploit a PaaS cloud for
social interaction support due to its provision of robust under-
lying platforms (other than simply hardware resources provided
by an IaaS cloud), with transparent, automatic scaling of users’
applications onto the cloud.

D. Portability

A prototype CloudMov system is implemented following the
philosophy of “Write Once, Run Anywhere” (WORA): both

the front-end mobile modules and the back-end server mod-
ules are implemented in “100% Pure Java” [7], with well-de-
signed generic data models suitable for any BigTable-like data
store; the only exception is the transcodingmodule, which is im-
plemented using ANSI C for performance reasons and uses no
platform-dependent or proprietary APIs. The client module can
run on any mobile devices supporting HTML5, including An-
droid phones, iOS systems, etc. To showcase its performance,
we deploy the system on Amazon EC2 and Google App Engine,
and conduct thorough tests on iOS platforms. Our prototype can
be readily migrated to various cloud and mobile platforms with
little effort.
The remainder of this paper is organized as follows. In

Section II, we compare our work with the existing literature
and highlight our novelties. In Section III, we present the
architecture of CloudMoV and the design of individual mod-
ules. A real-world prototype implementation follows and is
described in Section IV, We discuss experimental evaluations
in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

A number of mobile TV systems have sprung up in recent
years, driven by both hardware and software advances in mobile
devices. Some early systems [8], [9] bring the “living-room”
experience to small screens on the move. But they focus more
on barrier clearance in order to realize the convergence of the
television network and the mobile network, than exploring the
demand of “social” interactions among mobile users. There is
another trend in which efforts are dedicated to extending social
elements to television systems [4], [5], [10]. Coppens et al. [4]
try to add rich social interactions to TV but their design is lim-
ited to traditional broadcast program channels. Oehllberg et al.
[5] conduct a series of experiments on human social activities
while watching different kinds of programs. Though inspiring,
these designs are not that suitable for being applied directly in
a mobile environment. Chuah et al. [11] extend the social ex-
periences of viewing traditional broadcast programs to mobile
devices, but have yet to deliver a well integrated framework.
Schatz et al. [12], [13] have designed amobile social TV system,
which is customized for DVB-H networks and Symbian devices
as opposed to a wider audience. Compared to these prior work
and systems, we target at a design for a generic, portable mobile
social TV framework, featuring co-viewing experiences among
friends over geographical separations through mobile devices.
Our framework is open to all Internet-based video programs,
either live or on-demand, and supports a wide range of devices
with HTML5 compatible browsers installed, without any other
mandatory component on the devices.
For any application targeted at mobile devices, reducing

power consumption is perennially one of the major concerns
and challenges. Flinn et al. [14] exploit collaborations between
the mobile OS and the mobile applications to balance the
energy conservation and application performance. Yuan et al.
[15] investigate mobile multimedia streaming, similar to most
of the other work, by adjusting the CPU power for energy
saving; however, according to the recent measurement work
of Carroll et al. [6], the display and the wireless network card
(including the cellular module) and not the CPU consume more
than half of the overall power consumption in smart phones
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nowadays. Our work is able to achieve a significant (about
30%) power saving, by opportunistically switching the device
between high-power and low-power transmission modes during
streaming. Some existing work (e.g., Anastasi et al. [16]) have
provided valuable guidelines for energy saving over WiFi
transmissions; our work focuses on 3G cellular transmissions
which have significantly different power models; 3G is a more
practical wireless connection technology for mobile TVs on
the go at the present time.
Cloud computing had its debut with much fanfare and is now

deemed a most powerful hosting platform in many areas in-
cluding mobile computing. Satyanarayanan et al. [1] suggest of-
floading mobile devices’ computation workload to a nearby re-
source-rich infrastructure (i.e., Cloudlets) by dynamic VM syn-
thesis. Kosta et al. [2] propose a virtualization framework for
mobile code offloading to the cloud. Zhang et al. [17] introduce
an elastic mobile application model by offloading part of the
applications (weblets) to an IaaS cloud. All these work target
at computational job offloading. Recently, attentions have been
drawn to enabling media applications using the cloud, for both
media storage [18] and processing [19]. We are aware of a re-
cent work by Huang et al. [3] which, in resemblance to ours,
also leverages cloud resources for video transcoding. But they
advocate scalable video coding (SVC) using multiple cluster
nodes, which is not suitable in a mobile social TV scenario
due to the encoding complexity of SVC (hence leading to in-
tolerable delays), when realtime video retrievals and social in-
teractions via mobile devices are desired. We instead advocate
non-layered coding in such delay-sensitive mobile applications,
although the detailed transcoding algorithm designs are out of
the scope of this work. In addition, we novelly employ a sur-
rogate for each mobile user in the cloud rather than relying on
a dedicated cluster, which can be more easily implemented in
practice. Liu et al. [20] build a mobile-based social interaction
framework on top of the Google App Engine and offer an iOS
implementation. We set out to design a portable, generic, and
robust framework to enable realtime streaming and social inter-
action concurrently, which is not bound to any specific cloud
platform. Although our prototype is implemented on only two
public clouds, i.e., Amazon EC2 and Google App Engine, it can
be easily ported to other cloud systems as long as the targeted
cloud platforms conform to the unified standard.
A recent work by Zhang et al. [21] investigates the media

caching management problem under HTTP adaptive bit rate
streaming over a wireless network environment, which can
complement our work when video streams are required to be
transcoded into multiple bit rates.
Finally, we are aware of the lack of a richly-featured cloud-

based mobile social TV system in real life. The only system
coming close to ours is Live Stream [22] on the iOS platform.
This iOS-locked application only supports live video channels,
and all its social functions are bound to Facebook open APIs.
Conversely, the prototype we implement is browser-based and
platform independent; it supports both live channels, VoD chan-
nels and even personal channels hosted by any user, with wider
usage ranges and flexible extensibility. The framework we pro-
pose can be readily applied to other cloud-assisted mobile media
applications as well.

Fig. 1. The architecture of CloudMoV.

III. CLOUDMOV: ARCHITECTURE AND DESIGN

As a novel Cloud-basedMobile sOcial tV system,CloudMoV
provides twomajor functionalities to participating mobile users:
(1) Universal streaming. A user can stream a live or on-de-
mand video from any video sources he chooses, such as a TV
program provider or an Internet video streaming site, with tai-
lored encoding formats and rates for the device each time. (2)
Co-viewing with social exchanges. A user can invite multiple
friends to watch the same video, and exchange text messages
while watching. The group of friends watching the same video
is referred to as a session. The mobile user who initiates a ses-
sion is the host of the session. We present the architecture of
CloudMoV and the detailed designs of the different modules in
the following.

A. Key Modules

Fig. 1 gives an overview of the architecture of CloudMoV.
A surrogate (i.e., a virtual machine (VM) instance), or a VM
surrogateequivalently, iscreatedforeachonlinemobileuser inan
IaaS cloud infrastructure. The surrogate acts as a proxy between
the mobile device and the video sources, providing transcoding
services as well as segmenting the streaming traffic for burst
transmission to the user. Besides, they are also responsible
for handling frequently exchanged social messages among
their corresponding users in a timely and efficient manner,
shielding mobile devices from unnecessary traffic and enabling
battery efficient, spontaneous social interactions. The surrogates
exchange social messages via a back-end PaaS cloud, which
adds scalability and robustness to the system. There is a
gateway server in CloudMoV that keeps track of participating
users and their VM surrogates, which can be implemented
by a standalone server or VMs in the IaaS cloud.
The design of CloudMoV can be divided into the following

major functional modules.
• Transcoder. It resides in each surrogate, and is respon-
sible for dynamically deciding how to encode the video
stream from the video source in the appropriate format,
dimension, and bit rate. Before delivery to the user, the
video stream is further encapsulated into a proper trans-
port stream. In our implementation, each video is exported
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as MPEG-2 transport streams, which is the de facto stan-
dard nowadays to deliver digital video and audio streams
over lossy medium.

• Reshaper. The reshaper in each surrogate receives the en-
coded transport stream from the transcoder, chops it into
segments, and then sends each segment in a burst to the
mobile device upon its request (i.e., a burst transmission
mechanism), to achieve the best power efficiency of the de-
vice. The burst size, i.e., the amount of data in each burst,
is carefully decided according to the 3G technologies im-
plemented by the corresponding carrier.

• Social Cloud. The social cloud is built on top of any gen-
eral PaaS cloud services with BigTable-like data store to
yield better economies of scale without being locked down
to any specific proprietary platforms. Despite its imple-
mentation on Google App Engine (GAE) as a proof of con-
cept, our prototype can be readily ported to other platforms.
It stores all the social data in the system, including the on-
line statuses of all users, records of the existing sessions,
and messages (invitations and chat histories) in each ses-
sion. The social data are categorized into different kinds
and split into different entities (in analogy to tables and
rows in traditional relational database, respectively) [23].
The social cloud is queried from time to time by the VM
surrogates.

• Messenger. It is the client side of the social cloud, residing
in each surrogate in the IaaS cloud. The Messenger peri-
odically queries the social cloud for the social data on be-
half of the mobile user and pre-processes the data into a
light-weighted format (plain text files), at a much lower
frequency. The plain text files (in XML formats) are asyn-
chronously delivered from the surrogate to the user in a
traffic-friendly manner, i.e., little traffic is incurred. In the
reverse direction, the messenger disseminates this user’s
messages (invitations and chat messages) to other users via
the data store of the social cloud.

• Syncer. The syncer on a surrogate guarantees that viewing
progress of this user is within a time window of other users
in the same session (if the user chooses to synchronize with
others). To achieve this, the syncer periodically retrieves
the current playback progress of the session host and in-
structs its mobile user to adjust its playback position. In this
way, friends can enjoy the “sitting together” viewing expe-
rience. Different from the design of communication among
messagers, syncers on different VM surrogates communi-
cate directly with each other as only limited amounts of
traffic are involved.

• Mobile Client. The mobile client is not required to install
any specific client software in order to use CloudMoV, as
long as it has an HTML5 compatible browser (e.g., Mo-
bile Safari, Chrome, etc.) and supports the HTTP Live
Streaming protocol [24]. Both are widely supported on
most state-of-the-art smartphones.

• Gateway. The gateway provides authentication services
for users to log in to the CloudMoV system, and stores
users’ credentials in a permanent table of a MySQL data-
base it has installed. It also stores information of the pool
of currently available VMs in the IaaS cloud in another
in-memory table. After a user successfully logs in to the

system, a VM surrogate will be assigned from the pool to
the user. The in-memory table is used to guarantee small
query latencies, since the VM pool is updated frequently
as the gateway reserves and destroys VM instances ac-
cording to the current workload. In addition, the gateway
also stores each user’s friend list in a plain text file (in XML
formats), which is immediately uploaded to the surrogate
after it is assigned to the user.

We describe the key designs in CloudMov in the following.

B. Loosely Coupled Interfaces

Similar in spirit to web services, the interfaces between dif-
ferent modules in CloudMov, i.e., mobile users, VM surrogates,
and the social cloud, are based onHTTP, a universal standard for
all Internet-connected devices or platforms. Thanks to the loose
coupling between users and the infrastructure, almost any mo-
bile device is ready to gain access to the CloudMoV services, as
long as it is installed with an HTTP browser. The VM surrogates
provisioned in the IaaS cloud cooperate with the social cloud
implemented on a PaaS cloud service via HTTP as well, with no
knowledge of the inner components and underlying technolo-
gies of each other, which contributes significantly to the porta-
bility and easy maintenance of the system.
For social message exchanges among friends,CloudMoV em-

ploys asynchronous communication. All the exchanged mes-
sages are routed via the surrogates to the social cloud, which
efficiently organizes and stores the large volumes of data in a
BigTable-like data store. The VM surrogates query the social
cloud frequently and processes the retrieved data into XML
files, for later retrieval by users in an asynchronous fashion.
Such a design effectively separates the mobile users from the
social cloud to significantly simplify the architecture, while the
extra delay introduced at the VM surrogates is ignorable, as
shown in Section V.

C. Pipelined Video Processing

Both live streaming of realtime contents and on-demand
streaming of stored contents are supported in CloudMoV.
Video processing in each surrogate is designed to work on
the fly, i.e., the transcoder conducts realtime encoding from
the video source, the encoded video is fed immediately into
the reshaper for segmentation and transmission, and a mobile
user can start viewing the video as soon as the first segment
is received. To support dynamic bit rate switch, the transcoder
launches multiple threads to transcode the video into multiple
bit rates once the connection speed between the surrogate and
the mobile user changes. The IaaS cloud where the surrogates
are deployed, represents an ideal platform for implementing
such computation intensive jobs.

D. Burst Transmissions

1) 3G Power States: Different from Wi-Fi which is more
similar to the LANed Internet access, 3G cellular services suffer
from the limited radio resources, and therefore each user equip-
ment (UE) needs to be regulated by a Radio Resource Con-
trol (RRC) state machine [25]. Different 3G carriers may cus-
tomize and deploy complex states in their respective cellular
networks. Different states indicate different levels of allocated
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radio resources, and hence different levels of energy consump-
tions. For ease of implementation, we consider three basic states
in our design, which are commonly employed by many carriers,
namely CELL_DCH (a dedicated physical channel is allocated
to the UE in both the uplink and the downlink), CELL_FACH
(no dedicated channel is allocated but the UE is assigned a de-
fault common transport channel in the uplink), and IDLE, in
decreasing order of power levels [25]. Contrary to intuition,
the energy consumption for data transmission depends largely
on the state a UE is working in, but has little to do with the
volume of data transmitted, i.e., a UE may stay at a high-power
state (CELL_DCH) for data transmission even the data rate is
very low [25] (this has also been verified in our experiments in
Section V).
A 3G carrier may commonly transfer a UE from a high-power

state to a low-power state (state demotion), for releasing radio
channels allocated to this UE to other users. For example, if
a UE working at a high-power state does not incur any data
traffic for a pre-configured period of time (measured by a crit-
ical inactivity timer), the state of the UE will be transferred to
a low-power one; when the volume of data traffic rises, the UE
“wakes up” from a low-power state and moves to a high-power
one. Timeouts of the critical inactivity timers for state transi-
tions are properly set by the carrier to guarantee performance
in both delay and energy consumption, since extra delay and
energy consumption are potentially incurred for acquiring new
radio channels when the UE transits from a low-power state to
a high-power one later (state promotion).
2) Transmission Mechanism: In CloudMoV, we aim at max-

imum conservation of the battery capacity of the mobile de-
vice, and design a burst transmission mechanism for streaming
between the surrogate and the device. Using the HTTP live
streaming protocol [24], the mobile device sends out requests
for the next segment of the video stream from time to time. The
surrogate divides the video into segments, and sends each seg-
ment in a burst transmission to the mobile device, upon such
a request. When the mobile device is receiving a segment, it
operates in the high-power state (CELL_DCH); when there is
nothing to receive, it transfers to the low-power state (IDLE) via
the intermediate state (CELL_FACH), and remains there until
the next burst (segment) arrives.
3) Burst Size: To decide the burst size, i.e., the size of the

segment transmitted in one burst, we need to take into consider-
ation characteristics of mobile streaming and energy consump-
tion during state transitions. For video streaming using a fixed
device without power concerns, it is desirable to download as
much of a video as what the connection bandwidth allows; how-
ever, for streaming over a cellular network, we should avoid
downloading more than what is being watched for one main
reason: users may switch among channels from time to time and
those prefetched contents are probably never watched, leading
to a waste of the battery power and the cellular data fee due to
their download. Hence, the bursty size should be kept small,
to minimize battery consumption and traffic charges. On the
other hand, state transitions introduce latency and energy over-
heads, so the burst should be large enough to avoid frequent
state transitions; otherwise, such overheads may diminish the
energy saving achieved by an intelligent state transition mech-
anism. We next derive a lower bound on the burst size, which

guarantees positive energy saving by such intelligent state tran-
sition.
Let be the average available bandwidth over a wireless

connection, be the burst size in the CELL_DCH state, and
be the video playback rate at the mobile user. , ,
and denote the power levels at states CELL_DCH,
CELL_FACH, and IDLE, respectively. is the
timeout of the critical inactivity timer (the transition time)
for state transition from CELL_DCH to CELL_FACH, and

is the timeout of the inactivity timer for state
transition from CELL_FACH to IDLE. Let ,

, and be the energy needed for
state promotion denoted by the respective subscript. We ignore
the delay overhead in the state promotion from a low-power
state to a high-power state, since its value is small—less than
one second—based on our real-life measurements as reported
in Section V. We consider two cases: (1) transmission of a
video according to our burst transmission mechanism, with

being the power level at time during the transmis-
sion; (2) continuous transmission of the video stream whenever
there are transcoded contents ready, with being the
power level at time during the transmission. An illustration
of power consumption in both cases is given in Fig. 2. The
burst transmission operates at state CELL_DCH to send a
total amount of data for a duration of ; then it transits
to state IDLE via state CELL_FACH, and remains there for
duration (
is the time taken for the mobile user to play the segment of size
). Note that the power consumption level during transition
periods and , remains at
and , respectively, although no data is transmitted then.
The continuous transmission always operates at the high-power
state CELL_DCH with power level . We cal-
culate the overall energy saving ( ) by burst transmission of
the video over the time span (multiples of ), as compared
to the continuous transmission, as follows:

(1)

The burst size should be chosen such that positive energy
saving, , can be achieved. A lower bound of the burst
size can be decided using . We also see that the larger
is, the more energy saving we can achieve using burst trans-

mission. However, with a large , a user has to wait for a long
time before the first segment is transcoded and delivered, and
there is also the risk that it may download contents it will never
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Fig. 2. Power consumption over time.

watch. We evaluate the tradeoffs in selecting different values of
in our experiments in Section V.

IV. CLOUDMOV: PROTOTYPE IMPLEMENTATION

Following the design guidelines in Section III, we have im-
plemented a real-world mobile social TV system, and deployed
it on the Google App Engine (GAE) and Amazon EC2 clouds,
which are the two most widely used public PaaS and IaaS cloud
platforms.
GAE, as a PaaS cloud, provides rich services on top

of Google’s data centers and enables rapid deployment of
Java-based and Python-based applications. Data store, a thin
layer built on top of Google’s famous BigTable [26], handles
“big” data queries well with linear and modular scalability even
for high-throughput usage scenarios. Hence, GAE is an ideal
platform for implementing our social cloud, which dynamically
handles large volumes of messages. On the other hand, GAE
imposes many constraints on application deployment, e.g., lack
of support for multi-threading, file storage, etc., which may
hinder both computation-intensive jobs and content distribution
applications.
Amazon EC2 [27] is a representative IaaS cloud, offering raw

hardware resources including CPU, storage, and networks to
users. Most EC2 VM instances are launched with Linux kernels,
and are Xen-para-virtualized as domU guests on top of dom0,
which run directly on the bare-metal hardware upon booting.
As the leading virtualization technology in the Linux commu-
nity together with KVM [28], Xen supports para-virtualization
on almost all hardware with Linux drivers, and hence gives
close-to-native performance, especially for CPU virtualization
and I/O virtualization, as has been verified by extensive mea-
surements including ours. Comparing to a common PaaS cloud,
EC2 is an appropriate platform for computation-intensive tasks
in CloudMoV, i.e., those the surrogates carry out.
We will show that a hybrid of the IaaS cloud, working as the

computing unit, and the PaaS cloud, as the back-end NoSQL
data store, serves as a perfect substrate in CloudMoV.

A. Client Use of CloudMov

All mobile devices installed with HTML5 compatible
browsers can use CloudMoV services, as long as the HTTP
Live Streaming (HLS) [24] protocol is supported. The user first
connects to the login page ofCloudMoV, as illustrated in the top
left corner of Fig. 3. After the user successfully logs in through
the gateway, he is assigned a VM surrogate from the VM pool
(the hostnames of available VMs, e.g., ec2-50-16-xx-xx.com-
pute-1.amazonaws.com, are maintained in an in-memory table
of a MySQL database deployed in the gateway). Then the
user is automatically redirected to the assigned VM surrogate,

and welcomed by a portal page as shown on the right-hand
side of Fig. 3. Upon user login, the portal collects the device
configuration information by examining the “User-Agent”
header values, and this information will be sent to its surrogate
for decision making of the video encoding formats. The user
can enter the URL of the video or live broadcast he wishes to
watch, on the “Subscribe” tab of the portal; after he clicks the
“Subscribe” button, the address of the video is sent to the VM
surrogate, which downloads the stream on the user’s behalf,
transcodes and sends properly encoded segments to the user.
From the surrogate to the mobile device, the video stream
delivered using HLS is always divided into multiple segments,
with a playlist file (.m3u8) giving the indices. When the mobile
client subscribes to a video, the playlist is first downloaded
and individual segments are requested by the client in the
following. A playlist file may become outdated if new contents
are generated, e.g., in case of a live broadcast. In that case, the
mobile client needs to download the playlist again to keep the
indices updated. The client starts to play the video as soon as
the first segment is received.
When watching a video, the user can check out his friends’

status (online or offline, which video they are currently
watching) on the “Friends” tab (a snapshot is given in
Fig. 4(a)), and invite one or more friends to join him in
watching the video. When a user receives an invitation from
a friend (profile pictures of those friends who have sent invi-
tations will be highlighted on the “Friends” tab) and decides
to join the session, he can choose to watch from the start, or
catch up with the viewing progresses of others by clicking the
“Sync” button, which triggers the Syncer functionality in the
surrogate. Users in the same session can exchange opinions and
comments on the “Chat” tab (a snapshot is given in Fig. 4(b)),
where new chat messages can be entered and the chat history
of the session is shown. The “Info” tab shows an abstract of the
video, as edited by the session host.
All the data (.xml files) updates are delivered in an asyn-

chronous manner based on AJAX techniques without the
need of reloading the portal page, as has been introduced in
Section III.

B. VM Surrogates

All the VM surrogates are provisioned from Amazon EC2
web services and tracked by the gateway. We create our
own AMI (ami-b6f220df) based on Linux kernel 2.6.35.14,
the default image Amazon provides [27]. Due to the inten-
sive computation involved, we propose to implement all the
video processing related tasks using ANSI C, to guarantee
the performance. In particular, we install FFmpeg together
with libavcodec as the groundsill library [29] to develop the
transcoding, segmentation and reshaping modules on the VM
surrogates. We have also installed a Tomcat web server (version
6.5) to serve as a Servlet container and a file server on each
surrogate. Both FFmpeg and Tomcat are open source projects.
Once a VM surrogate receives a video subscription request
from the user, it downloads the video from the source URL, and
processes the video stream by transcoding and segmentation,
based on the collected device configurations by the portal.
For example, in our experiments, the downloaded stream is
transcoded into a high-quality stream and a low-quality stream
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Fig. 3. Client UI of CloudMoV.

Fig. 4. “Friend” and “Chat” tabs. (a) “Friend tab”. (b) “Chat tab”.

in real time with H264/AAC codecs. The high-quality stream
has a “480 272” resolution with 24 frames per second,
while the low-quality one has a “240 136” resolution with
10 frames per second. A mobile user dynamically requests
segments of these two different video streams, according to his
current network connection speed. The transcoded stream is
further exported to an MPEG-2 transporting stream (.ts), which
is segmented for burst transmission to the user. The burst sizes
depend on both the network bandwidth and video bit rate. We
evaluate the impact of different burst sizes on the streaming
quality and energy consumption in details in Section V. Fig. 5
shows the streaming architecture in our customized VM image.
Here, the modules on social message exchanges are omitted,
which will be presented in Fig. 6.

C. Data Models in the Social Cloud

We use GAE mainly as the back-end data store to keep the
transient states and data of CloudMoV, including users’ online
presence status, social messages (invitation and chat messages)
in all the sessions. With Jetty as the underlying Servlet con-
tainer, most Java-based applications can be easily migrated to
GAE, under limited usage constraints, where no platform-spe-
cific APIs are enforced for the deployment. GAE provides both

Fig. 5. Streaming architecture in each customized VM image (ami-b6f220df).

Fig. 6. Social message exchanges via Google App Engine.

its Java Persistence API (JPA 1.0, part of JSR 220) adapter and a
set of proprietary low-level APIs to map the relational data. We
choose to use the former only inCloudMoV such thatCloudMoV
can be easily migrated to other PaaS clouds as well.
Once a user logs in to the system and enters the URL of

a video to watch, a session ID is generated for the new ses-
sion (corresponding to viewing of this video), by combining the
user’s “username” in the system with the time stamp when the
session is created. The gateway delivers an HTTP request to a
Servlet listener running on GAE, to notify it that an entry for the
newly joined user should be added, with the user’s “username”
as the key and other information (URL of the subscribed video,
the session ID, etc.) as the value. This entry will then be period-
ically retrieved through a public Servlet interface by surrogates
representing the user’s friends, in order to learn the updated
status of the user over time. The default interval for retrieving
updates of friends’ online status is five minutes. When the user
goes offline, the user online status record will be deleted.
Whenever a user decides to join a session hosted by his friend

upon invitation, his VM surrogate switches to download the
video of the session, and at the same time sends an HTTP re-
quest to the social cloud, for updating the session ID in this
user’s entry to the new one. If the user wishes to synchronize
his playback progress with that of the session host, his VM sur-
rogate synchronizes with the session host to maintain the play-
back “currenttime” value (HTML5 property).
The social cloud maintains a “Logs” entry for each existing

session in CloudMoV, with the session ID as the primary key
and an array list as the value, which corresponds to individual
messages in this session. When a user in a session posts a com-
ment, this message is first sent to his VM surrogate, which fur-
ther injects the message into the social cloud via another Servlet
listener. Themessage is stored as a “Message” entry in the social
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cloud, with the message content as the value, and an auto-gen-
erated integer as the key. Entries “Logs” and “Message” are an-
notated by a @OneToMany relationship, to facilitate the data
management. VM surrogates of users in the same session send
periodical HTTP query requests to the social cloud for the latest
comments from others. The default interval for retrieval of new
comments is 10 seconds. The retrieved messages are stored and
updated on the surrogates, which process them into well-formed
XML formats for efficient parsing at the user devices. The user
devices retrieve the XML files from the surrogates at a lower fre-
quency (with default interval 1 minute), in order to minimize the
power consumption and the traffic. Fig. 6 presents social mes-
sage exchanges among a mobile user, his VM surrogate, and the
GAE.
A large number of entries in the social cloud becomes out-

dated very soon, since users may switch from one session to an-
other, quit the system, and so on. We launch a cron job behind
the scene every 10 minutes to clear those outdated entries. For
example, for sessions of which everybody has left, their “Logs”
entries and all the associated “Message” entries are deleted in a
single transaction.

V. REAL-WORLD EXPERIMENTS

We carry out both unit tests and performance evaluations of
CloudMoV deployed on Amazon EC2 and Google App Engine,
using a number of iPhone 4S smart phones (iOS 5.01) as the
mobile clients, which have been registered on the Apple de-
veloper site. The gateway is implemented on a Virtual Private
Server (VPS) hosted by Bluehost [30]. Unless stated otherwise,
the experiments are conducted over the 3G cellular network of
3HK [31], which is one of the largest Telecom operators in Hong
Kong.

A. Measuring the RRC States

We first design measurement experiments to discover the
timeout values of the critical inactivity timers employed in
3HK’s 3G network, as discussed in Section III-D. We enable
logging functions on an fully charged iPhone 4S and use the
Mobile Safari (the HTML5-compatible browser on iPhone) to
watch a YouTube video using CloudMoV services. The battery
consumption traces on the phone are profiled by “Instruments”,
a powerful tool of Xcode [32]. The playback rate of the video
on the phone is about 254 Kbps.
Fig. 7 shows the power consumption levels on the phone over

time, in terms of portions of the highest device power level. The
red vertical lines represent the starting points of playback pe-
riods when the Safari runs in the foreground, and the green lines
represent the finish times of playback periods when the Safari
is suspended in the background. We can see that our state tran-
sition model in Fig. 2 is verified by these real-world measure-
ments: when there is data transmission, the device operates at
the high power mode; when data transmission stops, the trans-
mission power of the device first decreases to an intermediate
level, and then to a very low level. We also find out that time-
outs of the inactivity timers and
are approximately 14 and 16 seconds, respectively. It shows that
the interval between the finish of one burst transmission to the
start of the next burst transmission should be at least 30 seconds,
to allow the phone to enter a low-power mode. Following these

Fig. 7. Power consumption over time on an iPhone 4S.

Fig. 8. Power consumption over time with different burst transmission sizes.

measurement results, in our following experiments conducted
over 3HK 3G network, we set the default burst transmission in-
terval to 60 seconds, the time from the start of one burst trans-
mission to the start of the next burst transmission, corresponding
to the playback time of one burst segment, , where is the
burst size.

B. Impact of Burst Size on Power Consumption

The technique of video segmentation is widely employed in
video streaming applications, but mostly for ease of distribu-
tion and not for battery efficiency at potential mobile users.
Apple Inc., which proposed the HTTP Live Streaming protocol
[24], suggests 10-second-playback segments, which has been
followed in many streaming applications. We find this segment
size is problematic and can drain the battery of a mobile device
quickly. In Fig. 8, we compare the power consumption levels
when burst transmission intervals of 10 seconds and 60 seconds
are used, respectively, for the iPhone 4S to stream a 10-minute
YouTube flash video (.flv). We note that, iOS devices can not
play flash videos, but CloudMoV helps transcode the flash to the
H264/AAC stream, which is compatible with our iPhone 4S.
We observe that the device remains at the high power

mode (CELL_DCH) if the 10-second segmentation is used,
since the state transition takes at least 30 seconds, as given
in Section V-A. On the other hand, using 60-second burst
transmission intervals, CloudMoV may transfer the device to
the low power mode (IDLE) via the intermediate power mode
(CELL_FACH) from time to time. In this way, CloudMoV
can achieve approximately 29.1% power saving. We also
observe some unexpected behavior of the power levels around
400 seconds, where the power does not drop. After checking
Tomcat server logs on the VM surrogate, we find that the de-
vice requested the play list file (.m3u8) twice around that time,
possibly due to packet loss, and the tiny traffic of the playlist
(about 4 KB) deprived the device from a “sleep” chance.
To verify whether such playback list updates may always pro-

hibit the device’s power level from dropping, we have further
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Fig. 9. Average user sign-in latencies over time.

conducted tests by creating a live broadcast stream from the
same flash video and deploy it on CloudMoV. We find that re-
gardless of the burst transmission intervals we set, the device’s
power level does not drop due to frequent play list update in a
live streaming. We omit the plots of the results since they are
similar to the red curve in Fig. 8. Different browsers may con-
figure different update frequencies, since the value is not spec-
ified in the HTTP Live Streaming protocol. This value should
be carefully set, for potentially increasing battery lifetime at the
mobile users.

C. Sign-In Latency Into the System

When a user signs into the CloudMoV system via the login
gateway shown in Fig. 3 and gets identified, the gateway will
request a virtual machine instance from the IaaS cloud to be the
user’s surrogate. The sign-in process finishes when the surro-
gate is initialized and the user is connected to the surrogate. In
this experiment, five mobile users repeatedly join the system
and log off as soon as the respective surrogate is initialized.
We inject JavaScript snippets into the client of CloudMov on
the mobile device to record the timestamps during the sign-in
process. Fig. 9 shows the average sign-in latencies experienced
by these clients during a 4.5-hour span. The “Front-end” latency
consists of both the sign-in request/response and identification
delays, while the “Back-end” latency is the surrogate VM pro-
visioning delay from the IaaS cloud (Amazon EC2). We can see
that most of the latencies are caused by the latter. The delay can
be significantly reduced if a VM pool is maintained wherein idle
surrogates are initialized before hand (based on estimated user
numbers), ready for immediate allocation when new users sign
in.

D. Startup Latency of Video Playback

We evaluate the transcoding performance on the surrogates in
CloudMoV, first by measuring the playback startup latency on
the surrogates, from the time when the video subscription re-
quest is received from the mobile user to the time when the first
transcoded burst segment is generated. We deploy the VM sur-
rogates (ami-b6f220df) on three types of instances provided by
Amazon EC2, with the detailed configurations shown in Table I.
For fair comparison, all the instances are deployed in the zone
“east-1-c”, and they transcode the same flash video used in ex-
periments of Section V-B. Fig. 10 shows the playback startup
latencies when different VM instances are used as the surrogate
for an iPhone 4S, and different burst transmission intervals are
employed.

TABLE I
CONFIGURATIONS OF VM INSTANCES

Fig. 10. Startup latency at different burst sizes.

In our experiments, we tested the network connection band-
width between the Amazon EC2 instances and the YouTube
website, and found that video downloading from YouTube web-
site to the instances is very fast. Therefore, the startup latency
depends mainly on the burst interval setting and the transcoding
speed at the VM surrogate. Fig. 10 shows that in general, the
longer the burst interval is, the larger the segment of video to
transcode is, and thus the longer the startup latency is. We can
see the medium instance achieves better transcoding perfor-
mance with larger computation capacity, as compared to the
small instance. The latency with the micro instance is unex-
pectedly large when the burst interval is longer than 60 sec-
onds, and as such we need not collect the latencies for even
longer burst intervals. However, the micro instance performs
even better than the small instance with smaller burst intervals
due to more CPU power (Amazon claims the micro instance has
“UP to 2 ECUs”.) The reason lies in memory thrashing on the
micro instance (it has a smaller memory than other instances),
when burst transmission intervals are longer than 60 seconds,
when memory becomes the bottleneck. In case of the medium
instance, we also find that the startup latency with 100-second
burst intervals is smaller than that with 90-second bursts. We
believe that it is caused by the overheads of load balancing be-
tween its two cores. This shows that the performance can be
improved by a more efficient transcoding algorithm targeting at
multi-core platforms, which will be part of our future work.

E. Dynamic Bit Rate Switch

We next evaluate whether CloudMoV can effectively
transcode a video stream to different bit rates when the con-
nection bandwidth changes. We use a 1-hour-36-minute long
movie produced by Pixar, in the original bit rate of 1017 Kbps
and .avi format with the XviD codec. The movie is stored on
an Apache web server isolated from the CloudMoV system.
The format of the movie can not be directly played on an
iPhone. CloudMoV dynamically transcodes this movie into two
H264/AAC streams of different bit rates: a high-quality stream
with a bit rate up to 515 Kbps and a low-quality stream at
261 Kbps. When the phone’s wireless connection bandwidth is
lower than 900 Kbps, CloudMoV directs the low-quality stream
to it; otherwise, it transmits the high-quality stream.
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Fig. 11. Streaming rate with variation of the connection bandwidth.

To make the experiment reproducible and controllable,
we test it over WiFi by connecting the phone to a TP-LINK
WR741ND wireless router, instead of using a 3G connection
(given that the cellular signal strength is hard to control).
We believe this is a reasonable choice, for unit testing of
the dynamic transcoding functionality only. By installing
DD-WRT (v24-sp2 version 18007) on the router, we can have
full control over the bandwidth limit through “tc” scripts. In
our experiment, the maximum bandwidth ( ) allowed at
the wireless interface is updated every 90 seconds by setting

( thus ranges
from 300 Kbps to 1200 Kbps). Tomcat server logs can capture
each request for the video segments, which tells whether the
high-quality or the low-quality stream is fetched. By syn-
chronizing the timestamps of both the bandwidth variation
sequence controlled by our bash script and the bit rate switch
activity captured by the Tomcat logs, we plot in Fig. 11 the
instantaneous bandwidths at the mobile phone over time. The
red curve represents variation of the maximal bandwidth
and the blue one represents the streaming bit rate at the user.
We can see that the streaming rates are effectively adjusted to
adapt to the current connection bandwidth levels.

F. Jitters

By “Jitters”, we mean the discontinuous video playback
experienced by mobile users who have to wait for segments
to be buffered, due to the dynamically varying download
bandwidths. Following the same experiment settings as in
Section V-E, we emulate a highly unstable 3G cellular network
and measure the occurrence and stall duration of jitters when a
mobile client is viewing the movie. We examine the download
completion time for each segment: if this time is later than
the playback deadline of the segment, a jitter is captured and
the stall duration is estimated as the difference between the
two. Fig. 12 compares the results of CloudMoV and the case
where the movie is directly streamed to the mobile user without
dynamic transcoding nor burst transmission mechanisms, i.e.,
the case of “Normal Streaming”. A line segment is plotted
when a jitter happens at the corresponding time in the axis,
and the length of the line segment represents the stall dura-
tion. We can see that CloudMoV incurs no jitter while “Normal
Streaming” suffers a total of 716 seconds of playback stall. This
again verifies the excellent streaming playback performance of
CloudMov clients.

G. Social Interaction Latencies

The service latency of Google App Engine is critical to the
overall performance of CloudMoV. In this set of experiments,

Fig. 12. Jitters and the stall durations.

Fig. 13. Post latency to GAE.

Fig. 14. Query latency from GAE.

we launch a VM surrogate in each of four different regions (cor-
responding to four mobile users), i.e., “east-1-a”, “east-1-b”,
“east-1-c” and “east-1-d”, all of which join the same session.
Each surrogate keeps posting a short chat message every second
and retrieves its own message immediately. We evaluate two
critical latencies: one is the post latency to the GAE, i.e., the
time from when a message is sent out from a surrogate to the
time when it receives confirmation from GAE that the message
is successfully recorded in the social cloud; the other is the query
latency, i.e., the time from when a query is sent out from a sur-
rogate to the time when the queried message is received at the
surrogate.
Figs. 13 and 14 show the average values of the two types of

latencies among surrogates in all regions, during a 155-second
run of the experiments. Our results are mostly consistent with
the 978-ms post latency and 106-ms query latency, given as the
processing delays in the dashboard of GAE [33] (our latencies
additionally include a round-trip time between a surrogate and
the GAE). The query latency is relatively stable over time, while
the post latency becomes larger after 70 seconds of the run. We
reckon the reason to be either due to limitations imposed by
Google on our free GAE account, or based on a side effect of the
automatic scaling in GAE: given the large volumes of requests,
i.e., more than 16,000 requests per minute (we used up our free
GAE quota of 0.05-million requests within three minutes), GAE
may well have distributed the newly posted messages to dif-
ferent geo-distributed data centers of Google. Confirming the
detailed reason is part of our future work.
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Fig. 15. Message retrieval latency at mobile clients.

Fig. 16. Session size and the workload on the surrogate of the session host over
time. (a) Session size over time. (b) Workload of the session host over time.

For further demonstration, we have also injected JavaScript
snippets into the CloudMov client to capture the textual laten-
cies, from the time a message is successfully posted by a client
(stored into GAE) to the time the other clients receive the mes-
sage. The results are given in Fig. 15. We can see all latencies
that we have measured are short enough for realtime CloudMoV
services.

H. Scalability

To evaluate the scalability of CloudMoV, we investigate the
workload at the host of a session. As compared to a regular par-
ticipant in a session, the surrogate of a session host is addition-
ally responsible for maintaining the session group and carrying
out synchronization for “co-viewing” experiences, besides its
own transcoding tasks, which may potentially become a perfor-
mance bottleneck in the system when the number of participants
in the session is large. In this experiment, 200 users dynami-
cally join and leave a session over a 100-minute interval, with
dynamical session size given in Fig. 16(a). We also apply an
extremely aggressive synchronization interval, i.e., every par-
ticipant synchronizes with the session host in every second, and
assign a low-end “Micro”-type VM instance as the surrogate of
the session host. Fig. 16(b) illustrates the workload on the sur-
rogate of the session host, calculated as the percentage of busy
time of the VM in each single second, when it is either handling
the transcoding or the synchronization tasks. The surrogate of a
session host is idling when it has finished these tasks. We can
see that even under such an extreme setting, the surrogate of the
session host can still finish all the computation and communi-
cation tasks within 70–80% of its time, which again verifies the
excellent scalability of our system, thanks mainly to the fully
distributed design of surrogates.

VI. CONCLUDING REMARKS AND FUTURE WORK

This paper presents our view of what might become a trend
for mobile TV, i.e., mobile social TV based on agile resource
supports and rich functionalities of cloud computing services.
We introduce a generic and portable mobile social TV frame-
work, CloudMoV, that makes use of both an IaaS cloud and a
PaaS cloud. The framework provides efficient transcoding ser-
vices for most platforms under various network conditions and
supports for co-viewing experiences through timely chat ex-
changes among the viewing users. By employing one surrogate
VM for each mobile user, we achieve ultimate scalability of the
system. Through an in-depth investigation of the power states
in commercial 3G cellular networks, we then propose an en-
ergy-efficient burst transmission mechanism that can effectively
increase the battery lifetime of user devices.
We have implemented a realistic prototype of CloudMoV, de-

ployed on Amazon EC2 and Google App Engine, where EC2
instances serve as the mobile users’ surrogates and GAE as
the social cloud to handle the large volumes of social mes-
sage exchanges. We conducted carefully designed experiments
on iPhone 4S platforms. The experimental results prove the
superior performance of CloudMoV, in terms of transcoding
efficiency, power saving, timely social interaction, and scala-
bility. The experiments also highlight the drawbacks of the cur-
rent HTTP Live Streaming protocol implementation on mobile
devices [24] as compared to our proposed burst transmission
mechanismwhich achieves a 29.1% increase of battery lifetime.
Much more, however, can be done to enhance CloudMoV to

have product-level performance. In the current prototype, we do
not enable sharing of encoded streams (in the same format/bit
rate) among surrogates of different users. In our future work,
such sharing can be enabled and carried out in a peer-to-peer
fashion, e.g., the surrogate of a newly joined user may fetch the
transcoded streams directly from other surrogates, if they are
encoded in the format/bit rate that the new user wants.
For implementing social interactions, most BigTable-like

data stores (including GAE) support memcache [34] which is a
highly efficient secondary storage on the data stores. We seek
to integrate memcache support into CloudMoV, by possibly
memcaching the data (e.g., chat histories) of sessions where
friends chat actively, so as to further improve the query perfor-
mance. To sustain the portability of the system, we will stick to
standard API interfaces, i.e., JCache (JSR 107), in our system.
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