8 research outputs found

    Implementation of Secure and Energy Efficient Routing Protocol for Mobile Adhoc Network

    Get PDF
    Mobile adhoc network are networks consisting of spatially distributed autonomous sensors, which are capable of sensing the physical or environmental conditions and have set of applications in various domains. But MANET is also prone to various active and passive attacks due to the lack of security mechanism, centralized management in routing protocol and. The prime task of WSN is to sense and collect information, process and transmit to the sink. One of the major security threats in MANET is attacks; attacks may be active or passive. First of all implementation of reference work carried out in NS 2 environment for various numbers of nodes in the range from 10 to 50 followed by integration of attacker node. In our research work specifically black hole attack has been taken to see the impact on network parameters. To overcome such active attacks an advanced Ad hoc On-Demand Distance Vector routing protocol techniques incorporated hash function with security algorithm so that data cannot be accessed by unauthorized person. Network matrices are improved by implementing advanced AODV routing protocol. In the distributed network trust among various sensing nodes is a powerful tool to increase the performance of device networks. In our research work depth analysis carried out on the security and trust communication between the device nodes with routing techniques to discover and prevent information packet from the being exposed to black hole attack. Further various mobility pattern can be investigated with different attacks

    DYNAMIC CONVICTION PROTECTED AND TRUSTABLE DIRECTION-FINDING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are increasingly being deployed in security-critical applications. Because of their inherent resource-constrained characteristics, they are prone to various security attacks, and a black hole attack is a type of attackthat seriously affects data collection. To conquer that challenge, an energetic recognition-based security and trust routing plan named Dynamic Convictionis recommended for WSNs. The key factor innovation of Dynamic Conviction can it be avoiding black holes while using the active development of numerous recognition routes to quickly identify and obtain nodal trust and for that reason raise the data route security. Furthermore, the generation and distribution of recognition routes receive inside the Dynamic Convictiont plan, that could utilize the ability in non-hotspots to create as much recognition routes as needed to possess preferred security and efficiency.Wireless sensor systems (WSNs) are increasingly more being deployed in security-critical applications. Because of their natural resource-restricted characteristics, they will probably various security attacks, plus a black hole attack is a type of attack that seriously affects data collection

    LSCD : A Low-Storage Clone Detection Protocol for Cyber-Physical Systems

    Get PDF
    Cyber-physical systems (CPSs) have recently become an important research field not only because of their important and varied application scenarios, including transportation systems, smart homes, surveillance systems, and wearable devices but also because the fundamental infrastructure has yet to be well addressed. Wireless sensor networks (WSNs), as a type of supporting infrastructure, play an irreplaceable role in CPS design. Specifically, secure communication in WSNs is vital because information transferred in the networks can be easily stolen or replaced. Therefore, this paper presents a novel distributed low-storage clone detection protocol (LSCD) for WSNs. We first design a detection route along the perpendicular direction of a witness path with witness nodes deployed in a ring path. This ensures that the detection route must encounter the witness path because the distance between any two detection routes must be smaller than the witness path length. In the LSCD protocol, clone detection is processed in a nonhotspot region where a large amount of energy remains, which can improve energy efficiency as well as network lifetime. Extensive simulations demonstrate that the lifetime, storage requirements, and detection probability of our protocol are substantially improved over competing solutions from the literature

    Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks

    Get PDF
    [EN] Mobile ad hoc networks (MANETs) are generally created for temporary scenarios. In such scenarios, where nodes are in mobility, efficient routing is a challenging task. In this paper, we propose an adaptive and cross-layer multipath routing protocol for such changing scenarios. Our routing mechanisms operate keeping in view the type of applications. For simple applications, the proposed protocol is inspired from traditional on-demand routing protocols by searching shortest routes from source to destination using default parameters. In case of multimedia applications, the proposed mechanism considers such routes which are capable of providing more data rates having less packet loss ratio. For those applications which need security, the proposed mechanism searches such routes which are more secure in nature as compared to others. Cross-layer methodology is used in proposed routing scheme so as to exchange different parameters across the protocol stack for better decision-making at network layer. Our approach is efficient and fault tolerant in a variety of scenarios that we simulated and tested.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no. 037-1435-RG.Iqbal, Z.; Khan, S.; Mehmood, A.; Lloret, J.; Alrajeh, NA. (2016). Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks. Journal of Sensors. 2016:1-18. https://doi.org/10.1155/2016/5486437S1182016Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78-93. doi:10.1109/surv.2008.080407Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183-197. doi:10.1007/bf01193336Toh, C.-K. (1997). Wireless Personal Communications, 4(2), 103-139. doi:10.1023/a:1008812928561Pearlman, M. R., & Haas, Z. J. (1999). Determining the optimal configuration for the zone routing protocol. IEEE Journal on Selected Areas in Communications, 17(8), 1395-1414. doi:10.1109/49.779922ZHEN, Y., WU, M., WU, D., ZHANG, Q., & XU, C. (2010). Toward path reliability by using adaptive multi-path routing mechanism for multimedia service in mobile Ad-hoc network. The Journal of China Universities of Posts and Telecommunications, 17(1), 93-100. doi:10.1016/s1005-8885(09)60431-3Sivakumar, R., Sinha, P., & Bharghavan, V. (1999). CEDAR: a core-extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in Communications, 17(8), 1454-1465. doi:10.1109/49.779926Zapata, M. G. (2002). Secure ad hoc on-demand distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review, 6(3), 106-107. doi:10.1145/581291.581312Khan, S., & Loo, J. (2010). Cross Layer Secure and Resource-Aware On-Demand Routing Protocol for Hybrid Wireless Mesh Networks. Wireless Personal Communications, 62(1), 201-214. doi:10.1007/s11277-010-0048-ySharma, V., & Alam, B. (2012). Unicaste Routing Protocols in Mobile Ad Hoc Networks: A Survey. International Journal of Computer Applications, 51(14), 9-18. doi:10.5120/8108-1714Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125-1143. doi:10.1016/j.jnca.2009.07.002Shiwen Mao, Shunan Lin, Yao Wang, Panwar, S. S., & Yihan Li. (2005). Multipath video transport over ad hoc networks. IEEE Wireless Communications, 12(4), 42-49. doi:10.1109/mwc.2005.1497857Li, Z., Chen, Q., Zhu, G., Choi, Y., & Sekiya, H. (2015). A Low Latency, Energy Efficient MAC Protocol for Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(8), 946587. doi:10.1155/2015/946587Zheng, Z., Liu, A., Cai, L. X., Chen, Z., & Shen, X. (2016). Energy and memory efficient clone detection in wireless sensor networks. IEEE Transactions on Mobile Computing, 15(5), 1130-1143. doi:10.1109/tmc.2015.2449847Dong, M., Ota, K., Liu, A., & Guo, M. (2016). Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225-236. doi:10.1109/tpds.2015.2388482Hamrioui, S., Lorenz, P., Lloret, J., & Lalam, M. (2013). A Cross Layer Solution for Better Interactions Between Routing and Transport Protocols in MANET. Journal of Computing and Information Technology, 21(3), 137. doi:10.2498/cit.1002136Sanchez-Iborra, R., & Cano, M.-D. (2014). An approach to a cross layer-based QoE improvement for MANET routing protocols. Network Protocols and Algorithms, 6(3), 18. doi:10.5296/npa.v6i3.5827Cho, J.-H., Swami, A., & Chen, I.-R. (2011). A Survey on Trust Management for Mobile Ad Hoc Networks. IEEE Communications Surveys & Tutorials, 13(4), 562-583. doi:10.1109/surv.2011.092110.0008

    ActiveTrust : Secure and Trustable Routing in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are increasingly being deployed in security-critical applications. Because of their inherent resource-constrained characteristics, they are prone to various security attacks, and a black hole attack is a type of attack that seriously affects data collection. To conquer that challenge, an active detection-based security and trust routing scheme named ActiveTrust is proposed for WSNs. The most important innovation of ActiveTrust is that it avoids black holes through the active creation of a number of detection routes to quickly detect and obtain nodal trust and thus improve the data route security. More importantly, the generation and the distribution of detection routes are given in the ActiveTrust scheme, which can fully use the energy in non-hotspots to create as many detection routes as needed to achieve the desired security and energy efficiency. Both comprehensive theoretical analysis and experimental results indicate that the performance of the ActiveTrust scheme is better than that of the previous studies. ActiveTrust can significantly improve the data route success probability and ability against black hole attacks and can optimize network lifetime

    Trust-based energy efficient routing protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of a number of distributed sensor nodes that are connected within a specified area. Generally, WSN is used for monitoring purposes and can be applied in many fields including health, environmental and habitat monitoring, weather forecasting, home automation, and in the military. Similar, to traditional wired networks, WSNs require security measures to ensure a trustworthy environment for communication. However, due to deployment scenarios nodes are exposed to physical capture and inclusion of malicious node led to internal network attacks hence providing the reliable delivery of data and trustworthy communication environment is a real challenge. Also, malicious nodes intentionally dropping data packets, spreading false reporting, and degrading the network performance. Trust based security solutions are regarded as a significant measure to improve the sensor network security, integrity, and identification of malicious nodes. Another extremely important issue for WSNs is energy conversation and efficiency, as energy sources and battery capacity are often limited, meaning that the implementation of efficient, reliable data delivery is an equally important consideration that is made more challenging due to the unpredictable behaviour of sensor nodes. Thus, this research aims to develop a trust and energy efficient routing protocol that ensures a trustworthy environment for communication and reliable delivery of data. Firstly, a Belief based Trust Evaluation Scheme (BTES) is proposed that identifies malicious nodes and maintains a trustworthy environment among sensor nodes while reducing the impact of false reporting. Secondly, a State based Energy Calculation Scheme (SECS) is proposed which periodically evaluates node energy levels, leading to increased network lifetime. Finally, as an integrated outcome of these two schemes, a Trust and Energy Efficient Path Selection (TEEPS) protocol has been proposed. The proposed protocol is benchmarked with A Trust-based Neighbour selection system using activation function (AF-TNS), and with A Novel Trust of dynamic optimization (Trust-Doe). The experimental results show that the proposed protocol performs better as compared to existing schemes in terms of throughput (by 40.14%), packet delivery ratio (by 28.91%), and end-to-end delay (by 41.86%). In conclusion, the proposed routing protocol able to identify malicious nodes provides a trustworthy environment and improves network energy efficiency and lifetime

    AUTENTIKASI JARINGAN SENSOR NIRKABEL UNTUK MENGHADAPI SERANGAN DoS BERBASIS PKC

    Get PDF
    Komunikasi broadcast pada jaringan sensor nirkabel (JSN) sangat efisien dan berdampak besar pada seluruh node sensor. Alasan tersebut mendasari pemanfaatan node sensor terutama pada proses diseminasi data, kode, pemeliharaan, menjalankan perintah atau query maupun sinkronisasi. Kondisi ini diikuti dengan rawannya keamanan yang dapat mengganggu ketersediaan komunikasi pada JSN. Oleh karena itu dibutuhkan proses autentikasi pengguna untuk memastikan apakah pengguna valid. Pemanfaatan digital signature untuk autentikasi memiliki keamanan yang tinggi akan tetapi harus diimbangi dengan komputasi yang tinggi. Kekurangan ini dimanfaatkan peretas untuk mengirimkan signature palsu dalam jumlah besar sehingga node sensor akan sibuk memverifikasi dan proses ini dikenal dengan serangan Denial of Service (DoS) berbasis Public Key Cryptography (PKC). Berbagai metode filter dikembangkan untuk mengatasi masalah ini. Mekanisme ini memiliki komputasi rendah dan bersifat mendampingi proses verifikasi signature bukan menggantinya. Skema puzzle merupakan salah satu filter dengan komputasi rendah namun dapat diandalkan dalam mengatasi serangan DoS berbasis PKC akan tetapi memiliki kelemahan pada delay yang tinggi dalam mencari solusi puzzle pada sisi pengirim. Berkembangnya berbagai aplikasi pendukung yang akan mengakses node sensor secara langsung meningkatkan keragaman dan skalabilitas pada JSN. Sedangkan node sensor memiliki keterbatasan dalam sumber daya terutama pada ruang penyimpanan dan kemampuan komputasi. Oleh karena itu, penelitian ini mengajukan skema puzzle dinamis pada JSN menggunakan Multiuser-Dynamic Cipher Puzzle (M-DCP) yang dilengkapi dengan TinySet. Skema ini bertujuan untuk mengurangi waktu pemrosesan dan dapat dimanfaatkan oleh banyak pengguna atau pengirim dengan kebutuhan ruang penyimpanan pada JSN yang rendah. M-DCP memanfaatkan fungsi ambang untuk membatasi jumlah iterasi hash. Hasil percobaan menunjukkan bahwa fungsi ambang eksponensial dapat menurunkan delay pada sisi pengirim hingga 94% dengan peluang ditemukannya solusi hingga 1-(1.738x10-13). Sedangkan pemanfaatan TinySet yang telah diregularisasi bisa menghemat ruang penyimpanan hingga 77% dibandingkan dengan Counting Bloom Filter (CBF). Pemanfaatan skema ini berdampak pada meningkatnya komputasi pada proses verifikasi. Peningkatan ini bernilai hingga 36% dibandingkan dengan Bloom Filter based Authentication (BAS) atau pada implementasinya membutuhkan waktu tidak lebih dari 0.5 detik. Performansi yang didapatkan diimbangi dengan meningkatnya keamanan terutama pada autentikasi, confidentiality dan ketahanan terhadap serangan DoS berbasis PKC. Hal ini dibuktikan dengan peningkatan kompleksitas serangan menggunakan brute force hingga 1.86x10137 trial yang didapatkan dari proses autentikasi menggunakan Elliptic Curve Digital Signature Algorithm (ECDSA), proses enkripsi menggunakan Rivest Cipher 5 (RC5) dan proses pembuatan puzzle menggunakan DCP. Kata kunci: autentikasi, DoS, jaringan sensor nirkabel, multiuser, skema puzzl

    Energy and memory efficient clone detection in wireless sensor networks

    No full text
    corecore