249 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Using metaheuristics to improve the placement of multi-controllers in software-defined networking enabled clouds

    Get PDF
    SDN is a model that separates the control and the data levels in an arrangement to enhance capability to program and configure the network in a more agile and efficient manner. Multiple controller modules have been used in the SDN engineering to empower programmable and adaptable configurations such as improving scalability and reliability. The distance and time calculations and other performance measures have to be considered in solving the Multi-Controller Position Problem (MCPP). This paper investigates the use of metaheuristic algorithms to build an MCPP mathematical model. Both the symmetric Harmony Search (HS) modelling and the Particle Swarm Optimization (PSO) algorithm are considered in this respect. Thus, our hybrid approach is proposed and known as Harmony Search with Particle Swarm Optimization (HSPSO) is applied and we compared the extracted results with the state-of-the-art techniques in the previous literature. Besides the development of the mathematical model, a simulation study has been done considering the relevant parameters including the link distance description and the access time between the SDN entities. The console simulation uses NetBeans with CloudsimSDN procedure files in the SDN-based cloud environment

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Load Balancing Mechanisms in the Software Defined Networks: A Systematic and Comprehensive Review of the Literature

    Get PDF
    With the expansion of the network and increasing their users, as well as emerging new technologies, such as cloud computing and big data, managing traditional networks is difficult. Therefore, it is necessary to change the traditional network architecture. Lately, to address this issue, a notion named software-defined network (SDN) has been proposed, which makes network management more conformable. Due to limited network resources and to meet the requirements of quality of service, one of the points that must be considered is load balancing issue that serves to distribute data traffic among multiple resources in order to maximize the efficiency and reliability of network resources. Load balancing is established based on the local information of the network in the conventional network. Hence, it is not very precise. However, SDN controllers have a global view of the network and can produce more optimized load balances. Although load balancing mechanisms are important in the SDN, to the best of our knowledge, there exists no precise and systematic review or survey on investigating these issues. Hence, this paper reviews the load balancing mechanisms which have been used in the SDN systematically based on two categories, deterministic and non-deterministic. Also, this paper represents benefits and some weakness regarded of the selected load balancing algorithms and investigates the metrics of their algorithms. In addition, the important challenges of these algorithms have been reviewed, so better load balancing techniques can be applied by the researchers in the future. © 2018 IEEE

    Theory of Algorithm Suitability on Managing Radio Resources in Next Generation Mobile Networks

    Get PDF
    Beyond 2020, wireless networking model will be radically changed and oriented to business-driven concept as foreseen by the next generation mobile network (NGMN) alliance. As the available spectrum granted to a given operator is physically limited, new radio resource management techniques are required to ensure massive connectivity for wireless devices. Given this situation, we investigate in this paper how the key network functionalities as self-optimizing network (SON) must be thought to meet NGMN requirements. We propose therefore, algorithm suitability theory (AST) combined to the notion of network operator infrastructure convergence. The approach is based on software-defined networking (SDN) principle that allows an adaptability of the load balance algorithm to the dynamic network status. Besides, we use the concept of network function virtualization (NFV) that alleviates the constraint of confining the wireless devices to their home network operator only. Relying on these two technologies, we build AST through a lexicographic optimality criterion based on SPC (Status, Performance, and Complexity) order. Numerical results demonstrate a better network coverage verified by the improvement of metrics such as call blocking rate, spectrum efficiency, energy efficiency and load balance index

    Theory of Algorithm Suitability on Managing Radio Resources in Next Generation Mobile Networks

    Get PDF
    Beyond 2020, wireless networking model will be radically changed and oriented to business-driven concept as foreseen by the next generation mobile network (NGMN) alliance. As the available spectrum granted to a given operator is physically limited, new radio resource management techniques are required to ensure massive connectivity for wireless devices. Given this situation, we investigate in this paper how the key network functionalities as self-optimizing network (SON) must be thought to meet NGMN requirements. We propose therefore, algorithm suitability theory (AST) combined to the notion of network operator infrastructure convergence. The approach is based on software-defined networking (SDN) principle that allows an adaptability of the load balance algorithm to the dynamic network status. Besides, we use the concept of network function virtualization (NFV) that alleviates the constraint of confining the wireless devices to their home network operator only. Relying on these two technologies, we build AST through a lexicographic optimality criterion based on SPC (Status, Performance, and Complexity) order. Numerical results demonstrate a better network coverage verified by the improvement of metrics such as call blocking rate, spectrum efficiency, energy efficiency and load balance index

    Software-Defined Networks for Resource Allocation in Cloud Computing: A Survey

    Get PDF
    Cloud computing has a shared set of resources, including physical servers, networks, storage, and user applications. Resource allocation is a critical issue for cloud computing, especially in Infrastructure-as-a-Service (IaaS). The decision-making process in the cloud computing network is non-trivial as it is handled by switches and routers. Moreover, the network concept drifts resulting from changing user demands are among the problems affecting cloud computing. The cloud data center needs agile and elastic network control functions with control of computing resources to ensure proper virtual machine (VM) operations, traffic performance, and energy conservation. Software-Defined Network (SDN) proffers new opportunities to blueprint resource management to handle cloud services allocation while dynamically updating traffic requirements of running VMs. The inclusion of an SDN for managing the infrastructure in a cloud data center better empowers cloud computing, making it easier to allocate resources. In this survey, we discuss and survey resource allocation in cloud computing based on SDN. It is noted that various related studies did not contain all the required requirements. This study is intended to enhance resource allocation mechanisms that involve both cloud computing and SDN domains. Consequently, we analyze resource allocation mechanisms utilized by various researchers; we categorize and evaluate them based on the measured parameters and the problems presented. This survey also contributes to a better understanding of the core of current research that will allow researchers to obtain further information about the possible cloud computing strategies relevant to IaaS resource allocation
    corecore