217 research outputs found

    Energy Storage System optimization for an Autonomous SailBoat

    Get PDF

    Fuel cell systems for marine applications

    Get PDF
    The aim of this work is the assessment of the most suitable hydrogen solution for ship applications and the definition of the role of hydrogen as alternative fuel for shipping. The importance of the \u201cHydrogen Technologies\u201d for ships comes from the most important social challenge that is driving innovation in the shipping sector: Environmental Challenge. The PhD research project encountered important development both from the industrial and the academic side that brought to the construction of a joint laboratory between Fincantieri and the Polytechnic School of the University of Genoa, the: HI-SEA laboratory, dedicated to the study of fuel cell system for marine application. Moreover the simulation modelling and experimental results developed during the PhD research on the PEM fuel cell and MH hydrogen storage systems, found an application in the nautical sector. The former brought to a patent and the creation of a dedicated start-up company named H2Boat, that was recognised as University spin-off. The first part of the study define the role of hydrogen as alternative energy vector (fuel) for marine application, analysing the complex context in which it is supposed to be used. In part 2.1 a detailed assessment of the characteristics of different alternative fuels have been conducted. The complexity of work brought to the construction of comparative models, descripted in part 2.2 that have been used to analyse the characteristic of various alternative solution. An analysis of the PEM FCS state of the art is presented in part 2.3 together with the definition of FCS design for marine application in part 2.4. The study of the hydrogen technologies considered also the definition of simulation models of fuel cell systems and metal hydride hydrogen storage system 3.2. The former has also been assessed towards experimental tests, presented in part 3.3. The models have been used to develop larger laboratory, to define correct operative parameters and FCS design. Finally a number of application developed during the PhD study are proposed in part 4 to show the goal of the research that is still under development

    Autonomous Sailboat Navigation

    Get PDF
    The purpose of this study was to investigate novel methods on an unmanned sailing boat, which enables it to sail fully autonomously, navigate safely, and perform long-term missions. The author used robotic sailing boat prototypes for field experiments as his main research method. Two robotic sailing boats have been developed especially for this purpose. A compact software model of a sailing boat's behaviour allowed for further evaluation of routing and obstacle avoidance methods in a computer simulation. The results of real-world experiments and computer simulations are validated against each other. It has been demonstrated that autonomous boat sailing is possible by the effective combination of appropriate new and novel techniques that will allow autonomous sailing boats to create appropriate routes, to react properly on obstacles and to carry out sailing manoeuvres by controlling rudder and sails. Novel methods for weather routing, collision avoidance, and autonomous manoeuvre execution have been proposed and successfully demonstrated. The combination of these techniques in a layered hybrid subsumption architecture make robotic sailing boats a promising tool for many applications, especially in ocean observation

    Advanced Techniques for Design and Manufacturing in Marine Engineering

    Get PDF
    Modern engineering design processes are driven by the extensive use of numerical simulations; naval architecture and ocean engineering are no exception. Computational power has been improved over the last few decades; therefore, the integration of different tools such as CAD, FEM, CFD, and CAM has enabled complex modeling and manufacturing problems to be solved in a more feasible way. Classical naval design methodology can take advantage of this integration, giving rise to more robust designs in terms of shape, structural and hydrodynamic performances, and the manufacturing process.This Special Issue invites researchers and engineers from both academia and the industry to publish the latest progress in design and manufacturing techniques in marine engineering and to debate the current issues and future perspectives in this research area. Suitable topics for this issue include, but are not limited to, the following:CAD-based approaches for designing the hull and appendages of sailing and engine-powered boats and comparisons with traditional techniques;Finite element method applications to predict the structural performance of the whole boat or of a portion of it, with particular attention to the modeling of the material used;Embedded measurement systems for structural health monitoring;Determination of hydrodynamic efficiency using experimental, numerical, or semi-empiric methods for displacement and planning hulls;Topology optimization techniques to overcome traditional scantling criteria based on international standards;Applications of additive manufacturing to derive innovative shapes for internal reinforcements or sandwich hull structures

    Maritime Computing Transportation, Environment, and Development: Trends of Data Visualization and Computational Methodologies

    Get PDF
    This research aims to characterize the field of maritime computing (MC) transportation, environment, and development. It is the first report to discover how MC domain configurations support management technologies. An aspect of this research is the creation of drivers of ocean-based businesses. Systematic search and meta-analysis are employed to classify and define the MC domain. MC developments were first identified in the 1990s, representing maritime development for designing sailboats, submarines, and ship hydrodynamics. The maritime environment is simulated to predict emission reductions, coastal waste particles, renewable energy, and engineer robots to observe the ocean ecosystem. Maritime transportation focuses on optimizing ship speed, maneuvering ships, and using liquefied natural gas and submarine pipelines. Data trends with machine learning can be obtained by collecting a big data of similar computational results for implementing artificial intelligence strategies. Research findings show that modeling is an essential skill set in the 21st century

    A structured index describing the ease of disassembly for handcrafted product

    Get PDF
    Both economic and environmental aspects significantly influence the design process since the early phases of preliminary design. The total Life Cycle Assessment (LCA) and the End of Life (EoL) of products have to be defined in the early design phases too but, for industrial products that are not feasible to automatic production, they are hard issues. However, the EoL of products can be assessed by evaluating the disassembly of joints assembling the product, even when the production process is subject to an important contribute of workmanship. In this paper, a useful method is proposed to analyze the disassembly plant of products, in order to optimize the design process in the early preliminary phases. The method quantitatively evaluates a Disassembly Index that describes the attitude of a product to be disassembled. A case study describes the disassembly attitude of structural subassemblies of a sailboat. In order to test the applicability of the model described to both manual and automated disassembly, a further application of the method is proposed on a Computer CPU. As result, the model demonstrated good sensitiveness to the testing of products quite different for dimensions, number of components, manufacturing processes and, in all cases, it quantified the disassembly easiness with good relevance

    Stable Adaptive Control Using New Critic Designs

    Full text link
    Classical adaptive control proves total-system stability for control of linear plants, but only for plants meeting very restrictive assumptions. Approximate Dynamic Programming (ADP) has the potential, in principle, to ensure stability without such tight restrictions. It also offers nonlinear and neural extensions for optimal control, with empirically supported links to what is seen in the brain. However, the relevant ADP methods in use today -- TD, HDP, DHP, GDHP -- and the Galerkin-based versions of these all have serious limitations when used here as parallel distributed real-time learning systems; either they do not possess quadratic unconditional stability (to be defined) or they lead to incorrect results in the stochastic case. (ADAC or Q-learning designs do not help.) After explaining these conclusions, this paper describes new ADP designs which overcome these limitations. It also addresses the Generalized Moving Target problem, a common family of static optimization problems, and describes a way to stabilize large-scale economic equilibrium models, such as the old long-term energy model of DOE.Comment: Includes general reviews of alternative control technologies and reinforcement learning. 4 figs, >70p., >200 eqs. Implementation details, stability analysis. Included in 9/24/98 patent disclosure. pdf version uploaded 2012, based on direct conversion of the original word/html file, because of issues of format compatabilit
    • …
    corecore