227 research outputs found

    Energy Efficient and Reliable Wireless Sensor Networks - An Extension to IEEE 802.15.4e

    Get PDF
    Collecting sensor data in industrial environments from up to some tenth of battery powered sensor nodes with sampling rates up to 100Hz requires energy aware protocols, which avoid collisions and long listening phases. The IEEE 802.15.4 standard focuses on energy aware wireless sensor networks (WSNs) and the Task Group 4e has published an amendment to fulfill up to 100 sensor value transmissions per second per sensor node (Low Latency Deterministic Network (LLDN) mode) to satisfy demands of factory automation. To improve the reliability of the data collection in the star topology of the LLDN mode, we propose a relay strategy, which can be performed within the LLDN schedule. Furthermore we propose an extension of the star topology to collect data from two-hop sensor nodes. The proposed Retransmission Mode enables power savings in the sensor node of more than 33%, while reducing the packet loss by up to 50%. To reach this performance, an optimum spatial distribution is necessary, which is discussed in detail

    IEEE 802.15.4e: a Survey

    Get PDF
    Several studies have highlighted that the IEEE 802.15.4 standard presents a number of limitations such as low reliability, unbounded packet delays and no protection against interference/fading, that prevent its adoption in applications with stringent requirements in terms of reliability and latency. Recently, the IEEE has released the 802.15.4e amendment that introduces a number of enhancements/modifications to the MAC layer of the original standard in order to overcome such limitations. In this paper we provide a clear and structured overview of all the new 802.15.4e mechanisms. After a general introduction to the 802.15.4e standard, we describe the details of the main 802.15.4e MAC behavior modes, namely Time Slotted Channel Hopping (TSCH), Deterministic and Synchronous Multi-channel Extension (DSME), and Low Latency Deterministic Network (LLDN). For each of them, we provide a detailed description and highlight the main features and possible application domains. Also, we survey the current literature and summarize open research issues

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Tackling Mobility in Low Latency Deterministic Multihop IEEE 802.15.4e Sensor Network

    Get PDF
    Providing reliable services for low latency (LL) applications within the IoT context is a challenging issue. Several wireless sensor network (WSN) applications require deterministic systems that ensure a reliable and low latency aggregation service. The IEEE 802.15.4e standard, which is considered as the backbone of the IoT regarding WSN, has presented the low-latency deterministic network mode (LLDN) that can fulfil the major requirements of low latency applications. Meanwhile, several LL applications, for example in the automotive industry, demand the support of sensor node mobility which in turn affects network performance. Node mobility triggers several dissociations from the network that will increase latency and degrade node throughput. In this paper, we investigate the impact of node mobility over the LLDN mode while defining key factors that maximize latency and degrade throughput. In addition, an enhanced version of the LLDN mode is presented and evaluated that supports node mobility while maintaining the targeted limits of LL application requirements. The proposed mobility aware (MA-LLDN) technique manages to reduce the dissociation overhead by a factor of 75% while the packet delivery ratio (PDR) has been enhanced by 30%. Furthermore, this paper presents an analytical model that provides a snapshot of the tradeoff process between different metrics in the IEEE 802.15.4e LLDN design, which must be considered prior network deployment in mobile LL applications

    A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes

    Full text link
    [EN] The IEEE 802.15.4 standard is one of the widely adopted networking specification for Internet of Things (IoT). It defines several physical layer (PHY) options and medium access control (MAC) sub-layer protocols for interconnection of constrained wireless devices. These devices are usually battery-powered and need to support requirements like low-power consumption and low-data rates. The standard has been revised twice to incorporate new PHY layers and improvements learned from implementations. Research in this direction has been primarily centered around improving the energy consumption of devices. Recently, to meet specific Quality-of-Service (QoS) requirements of different industrial applications, the IEEE 802.15.4e amendment was released that focuses on improving reliability, robustness and latency. In this paper, we carry out a performance-to-cost analysis of Deterministic and Synchronous Multi-channel Extension (DSME) and Time-slotted Channel Hopping (TSCH) MAC modes of IEEE 802.15.4e with 802.15.4 MAC protocol to analyze the trade-off of choosing a particular MAC mode over others. The parameters considered for performance are throughput and latency, and the cost is quantified in terms of energy. A Markov model has been developed for TSCH MAC mode to compare its energy costs with 802.15.4 MAC. Finally, we present the applicability of different MAC modes to different application scenarios.This work was supported in part by the SERB, DST, Government of India under Grant ECRA/2016/001651.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. (2020). A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes. IEEE Access. 8:41936-41950. https://doi.org/10.1109/ACCESS.2020.2976654S4193641950
    corecore