19 research outputs found

    On The Continuous Coverage Problem for a Swarm of UAVs

    Full text link
    Unmanned aerial vehicles (UAVs) can be used to provide wireless network and remote surveillance coverage for disaster-affected areas. During such a situation, the UAVs need to return periodically to a charging station for recharging, due to their limited battery capacity. We study the problem of minimizing the number of UAVs required for a continuous coverage of a given area, given the recharging requirement. We prove that this problem is NP-complete. Due to its intractability, we study partitioning the coverage graph into cycles that start at the charging station. We first characterize the minimum number of UAVs to cover such a cycle based on the charging time, the traveling time, and the number of subareas to be covered by the cycle. Based on this analysis, we then develop an efficient algorithm, the cycles with limited energy algorithm. The straightforward method to continuously cover a given area is to split it into N subareas and cover it by N cycles using N additional UAVs. Our simulation results examine the importance of critical system parameters: the energy capacity of the UAVs, the number of subareas in the covered area, and the UAV charging and traveling times.We demonstrate that the cycles with limited energy algorithm requires 69%-94% fewer additional UAVs relative to the straightforward method, as the energy capacity of the UAVs is increased, and 67%-71% fewer additional UAVs, as the number of subareas is increased.Comment: 6 pages, 6 figure

    Dynamic Base Station Repositioning to Improve Spectral Efficiency of Drone Small Cells

    Full text link
    With recent advancements in drone technology, researchers are now considering the possibility of deploying small cells served by base stations mounted on flying drones. A major advantage of such drone small cells is that the operators can quickly provide cellular services in areas of urgent demand without having to pre-install any infrastructure. Since the base station is attached to the drone, technically it is feasible for the base station to dynamic reposition itself in response to the changing locations of users for reducing the communication distance, decreasing the probability of signal blocking, and ultimately increasing the spectral efficiency. In this paper, we first propose distributed algorithms for autonomous control of drone movements, and then model and analyse the spectral efficiency performance of a drone small cell to shed new light on the fundamental benefits of dynamic repositioning. We show that, with dynamic repositioning, the spectral efficiency of drone small cells can be increased by nearly 100\% for realistic drone speed, height, and user traffic model and without incurring any major increase in drone energy consumption.Comment: Accepted at IEEE WoWMoM 2017 - 9 pages, 2 tables, 4 figure

    An Energy Efficient Data Collection Using Multiple UAVs in Wireless Sensor Network: A Survey Study

    Get PDF
       اليوم، مع التقدم العلمي والتكنولوجي في الروبوتات، والذكاء الاصطناعي، والسيطرة والحواسيب، المركبات البرية والجوية والبحرية قد تم الاهتمام بها. كما تم تحسين الطائرات بدون طيار (UAVs) بشكل كبير وهي مفيدة جدا للعديد من التطبيقات الهامة في الأعمال التجارية والبيئة الحضرية والعسكرية. أحد أهم استخدامات الطائرات بدون طيار في شبكات الاستشعار اللاسلكية (WSNs)  التي لديها طاقة منخفضة وقد لا تكون قادرة على الاتصال في مناطق واسعة. في هذه الحالة ، يمكن أن توفر الطائرة بدون طيار وسيلة لجمع بيانات WSN من جهاز واحد ونقلها إلى المستلم المقصود تركز هذه المقالة على مجال البحث في التطبيقات العملية للطائرات بدون طيار كجامع متنقل لشبكات الاستشعار اللاسلكية. أولا التحقيقات حول الطائرات بدون طيار المقترحة تم دراستها ومقارنة نقاط ضعفها مع بعضها البعض. وكذلك التحديات التقنية لتطبيقات الطائرات بدون طيار في شبكة الاستشعار اللاسلكية تم استكشافها.Today, with scientific and technological advances in robotics, artificial intelligence, control and computers, land, air, and sea vehicles, they have been considered. Unmanned aerial vehicles (UAVs) have also significantly improved and are very useful for many important applications in the business, urban and military environment. One of the important uses of UAVs in Wireless Sensor Networks (WSNs) is that devices with low energy and may not be able to communicate in large areas. Nevertheless, a UAV can provide a tool for collecting the data of WSN from one device and transmitting it to another device. This article focuses on the field of research on practical applications of UAVs as mobile collectors for wireless sensor networks. First, the investigations of the proposed UAV were studied and compared their weaknesses with each other. Then, the technical challenges of the applications of UAVs in the wireless sensor network were explored

    Spreading Code Identification of Legal Drones in IoT Environment

    Get PDF
    The widespread use of drones has become very common today with large-scale civil and military applications. In the next few coming years, the outlook is expected that the number of drones will reach millions. So, these need to be well organised and managed in order to achieve the benefits of IoT with this accelerated environment. Drones or Unmanned Aerial Vehicles (UAVs) must achieved a level of communications to authenticate a legal working. The proposed approach concentrated on preparing each drone with identification key based on the combination of its international sim number with the date of the first action and the local country code. This approach is called Drone IDentification (DID) that generate a unique code for each drone via spreading technique. In this case any drone not apply this regulation is considered as unauthenticated drone and does not allowed to fly. This approach is very important to establish drone regulation via IoT

    Optimal UAV Deployment for Data Collection in Deadline-based IoT Applications

    Get PDF
    The deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming model (MILP) and then we used a heuristic to solve the time complexity problem. The results obtained in the simulation results indicate the optimal performance of the proposed scheme in terms of energy consumption and the number of used UAVs

    Post-industrial Virtue Epistemology on Globalized Games and Robotics

    Get PDF
    With the development of personalized and globalized technologies, a discussion regarding how and why virtue epistemology should be an essential part of post-industrial ethical analysis on augmented technologies and use of robotics in the global age becomes crucial. These globalized technologies in the form of either game apps (i.e., Pokémon Go) or robotics like drones become through the Internet multimedia a structural part of planetary digitalization. While this development takes place, traditional virtue epistemology responds insufficiently to the devitalization of knowledge regarding manners (savoir vivre) and ways (savoir faire) of practicing and the need to respond to the sudden expansion of augmented games and drone use with personal and social intellect, responsibility, and consequently safety. The chapter intends to discuss this analysis in order to argue that a postindustrial epistemic reconfiguration of digital ethics is necessary, since augmented reality games and robotics are taking the form of massive trends for adults and nonadults, while for the first time, digital gaming and robot entertainment exceed the limits of the personal space and the virtual mode of the screen, moving out into the public realm, where reality is mixed with virtuality and human environment with unmanned robots

    Efficient Deployment of Connected Unmanned Aerial Vehicles for Optimal Target Coverage

    Get PDF
    International audienceAnytime and anywhere network access can be provided by Unmanned Aerial Vehicles (UAV) with air-to-ground and air-to-air communications using directional antennas for targets located on the ground. Deploying these Unmanned Aerial Vehicles to cover targets is a complex problem since each target should be covered, while minimizing (i) the deployment cost and (ii) the UAV altitudes to ensure good communication quality. We also consider connectivity between the UAVs and a base station in order to collect and send information to the targets, which is not considered in many similar studies. In this paper, we provide an efficient optimal program to solve this problem and show the trade-off analysis due to conflicting objectives. We propose a fair trade-off optimal solution and also evaluate the cost of adding connectivity to the UAV deployment

    Energy-efficient navigation of an autonomous swarm with adaptive consciousness

    Get PDF
    The focus of this work is to analyze the behavior of an autonomous swarm, in which only the leader or a dedicated set of agents can take intelligent decisions with other agents just reacting to the information that is received by those dedicated agents, when the swarm comes across stationary or dynamic obstacles. An energy-aware information management algorithm is proposed to avoid over-sensation in order to optimize the sensing energy based on the amount of information obtained from the environment. The information that is needed from each agent is determined by the swarm’s self-awareness in the space domain, i.e., its self-localization characteristics. A swarm of drones as a multi-agent system is considered to be a distributed wireless sensor network that is able to share information inside the swarm and make decisions accordingly. The proposed algorithm reduces the power that is consumed by individual agents due to the use of ranging sensors for observing the environment for safe navigation. This is because only the leader or a dedicated set of agents will turn on their sensors and observe the environment, whereas other agents in the swarm will only be listening to their leader’s translated coordinates and the whereabouts of any detected obstacles w.r.t. the leader. Instead of systematically turning on the sensors to avoid potential collisions with moving obstacles, the follower agents themselves decide on when to turn on their sensors, resulting in further reduction of overall power consumption of the whole swarm. The simulation results show that the swarm maintains the desired formation and efficiently avoids collisions with encountered obstacles, based on the cross-referencing feedback between the swarm agents. View Full-TextKeywords: autonomous swarm; multi-agent systems; energy efficient; swarm intelligence; leader follower; collision avoidance</div
    corecore