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Abstract

This paper focuses on the energy efficiency problem where camera equipped flying drones are able to detect and follow

mobile events that happen on the ground. We give a mathematical formulation of the problem of minimizing the total

energy consumption of a fleet of drones when coverage of all events is required. Due to the extremely high complexity

of the binary optimization problem, the optimum solution cannot be obtained even for small instances. On the contrary,

we present LAS, a localized solution for the aforementioned problem which takes into account the ability of the drones

to fly at lower altitudes in order to conserve energy. We simulate LAS and we compare its performance to a centralized

algorithm and to an approach that uses static drones to cover all the terrain. Our findings show that LAS performs

similar to the centralized algorithm, while it outperforms the static approach by up to 150% in terms of consumed

energy. Finally, the simulation results show that LAS is very sustainable in presence of communication errors.

c© 2011 Published by Elsevier Ltd.
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1. Introduction

During the last years, an increased use of flying drones has been noticed. The invention of light mate-

rials, low energy consumption machines and high performance processing units led to the construction of

flexible flying robots. They can be used in a variety of applications such as the vehicle tracking, the traffic

management and the fire detection [1]. The drones are able to fly autonomously in different altitudes and

they are usually equipped with sensors to monitor the environment and communication units to exchange

data with other drones or central stations.

Target tracking and vehicle control are two well studied problems in the literature. However, most

of the previous works focus on the quality of detection of the mobile targets from a single [2, 3, 4] or

multiple vehicles [5, 6] and there is no mention about energy efficiency. In more detail, the authors propose

techniques to construct a control strategy through which they maintain good visibility of the targets on the
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ground. All the fundamental tools of how a target can be detected, how to takeoff and how to land a drone

are well analyzed in the literature [7, 8, 9].

In this paper, we focus on providing a power efficient and reliable drone scheduling by adjusting the

drones position ensuring the surveillance of all the targets at the same time. To the best of our knowledge,

this is the first paper that deals with energy efficiency and mobile target tracking. We assume drones that are

equipped with a camera to detect mobile events. This camera has a maximum vision angle and a maximum

range beyond which the robot cannot accurately detect the events. The drones fly higher in order to monitor

a larger area and detect more events. However, the higher a drone flies, the more energy it consumes.

To minimize the energy consumption we allow the drones to adjust their altitude. Intuition says that

putting all the drones in minimum altitude we can obtain the best solution. However, when multiple events

are close enough to each other, this solution is not efficient. A formal description of the problem is given,

however its solution requires an extremely huge amount of time even for tiny instances. For that reason, an

efficient localized approach is presented along with a centralized heuristic for comparison purposes.

The rest of the paper is organized as follows. In Section 2, we provide a detailed description of the

problem. Our target tracking solutions are presented in Section 3, while in Section 4 we evaluate our

methods and we present extensive simulation results. Finally, Section 5 concludes the paper.

2. Problem description

The system is modeled as a 3-dimensional terrain with axes X, Y , and Z. A set of targets T =
{t1, t2, · · · , tn} can be randomly moved with speed υi, ∀ i ∈ [1, n] using X and Y axes.

Drones are used to cover the targets in T . Each drone is equipped with a camera aiming at the ground.

The camera has a maximum angle of view θ. We assume that the field of view is a cone with height h and

angle θ. The flat surface of the cone represents the monitoring area and every target that lies in this area can

be covered by the drone. The latter can move higher or lower in order to increase or decrease the size of the

monitoring area.

The altitude of the drones can be controlled by adjusting the power level of the motors. According to

this observation we assume that the higher the distance h, the higher the energy consumption. The energy

consumption of a drone u at any time τ is Eτu = m · g · hτu, where m is the mass of the drone, g is the

acceleration of gravity and hτu is the altitude of the drone at time τ. The initial amount of energy is equal to

E0 and it is the same for all the drones. The movement of the drones is restricted by a minimum altitude

hmin and a maximum altitude hmax.

The drones are, also, equipped with a wireless network interface in order to communicate with other

drones. The communication range is R. We assume that the communication energy cost is negligible

compared to the flying cost.

2.1. Mathematical model

In order to describe the proposed mathematical model to represent the optimal flying drones location

problem, it is useful to introduce the following notations and definition.

Let U denote the set of available drones. It is assumed that each target ti ∈ T is characterized by its

coordinates (Xti , Yti ). Given a drone u located in (x, y, h) and the target ti, Duxy
ti =

√
(Xti − x)2 + (Yti − y)2

represents the distance between u and ti when h = 0.

Each drone u has a visibility that is represented by a circle in the plane with radius rhu . The higher the

component hu, the longer the radius. The decision variables are defined in what follows.

δuxyh =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if the drone u is located at

the point of coordinates (x, y, h)

0, otherwise
γu

ti =

⎧⎪⎪⎨⎪⎪⎩
1, if the target ti is observed by the drone u
0, otherwise

(1)

We assume that the value of h belongs to the interval hmin, hmax and the projection of the flying region is

represented by rectangular with a length of xmax and a width of ymax. In addition, a time window [τti
min, τ

ti
max]
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is associated with each target ti ∈ T . This means that the target ti, initially located at the point of coordinates

(Xti , Yti ), must be observed in the time range defined by the corresponding time window.

Each target changes its position during the time. In order to represent the dynamism of the system,

starting from (Xti , Yti ), a sequence of coordinates Ci is associated with each target ti. We assume that Ci =⌈
τ

ti
max−τti

min
Δτ

⌉
, where Δτ is the time interval in which a new position of the target ti is reached.

In order to represent the movement, target ti is replaced with |Ci| copies. A time window is associated

with each copy t j
i , j = 1, . . . |Ci| of target ti. In particular, [τti

min, τ
ti
min+Δτ] is the time window associated with

the first copy of ti, whereas the time window associated with the copy t j+1

i , j = 1, . . . , |Ci| − 1, is defined as

[τ
t j
i

max, τ
t j
i

max + Δτ]. Of course, if τ
t|Ci |
i

max > τ
ti
max, then τ

t j
i

max = τ
ti
max. The copies of each target are stored in the set

Ṫ . Let τu
start and τu

end be the initial and final time of observation of drone u, respectively. The mathematical

formulation of the optimal flying drones location problem is reported in what follows.

min
∑

u∈U(τu
end − τu

start)
(
α
∑

(x,y,h) hδuxyh

)
(2)

s.t. ∑xmax
x=1

∑
(x,y,h) δ

u
xyh ≤ 1 ∀u ∈ U (3)

γu
t j
i

≤ ∑(x,y,h) δ
u
xyh

⎛⎜⎜⎜⎜⎜⎝ rhu

Duxy

t j
i

⎞⎟⎟⎟⎟⎟⎠∀u ∈ U, t j
i ∈ Ṫ (4)

∑
u∈U γu

t j
i

= 1 ∀t j
i ∈ Ṫ (5)

τu
start ≤ τt j

i
minγ

u
t j
i

∀u ∈ U, t j
i ∈ Ṫ , τu

end ≥ τ
t j
i

maxγ
u
t j
i

∀u ∈ U, t j
i ∈ Ṫ (6)

δuxyh ∈ {0, 1}, ∀(x, y, h) (7)

1 ≤ x ≤ xmax, 1 ≤ y ≤ ymax, hmin ≤ h ≤ hmax, u ∈ U;

γu
t j
i

∈ {0, 1}, ∀t j
i ∈ Ṫ , u ∈ U; (8)

τu, τ
u
start, τ

u
end ∈ R,∀u ∈ U (9)

The objective function (2), to be minimized, represents the total energy consumption. Constraints (3) ensure

that the drone u is located in at most one position. Conditions (4) are used to set the value of variable γu
t j
i

.

In particular, if the radius is less than the distance, then γu
t j
i

takes a value equal to 0, otherwise, the variable

can assume a value equal to either 0 or 1. Constraints (5) ensure that each target is observed by exactly

one drone. Conditions (6) define the initial and final time of observation of drone u, respectively, whereas

constraints (7) – (9) specify the domain of the decision variables.

It is worth observing that the proposed mathematical model (2) - (9) assumes that an infinite number of

drones is available. In particular, it is assumed that when a drone moves to another position, it is replaced

by another one. This hypothesis allows to simplify the model and it does not influence the solution, since

the objective is the minimization of the total energy consumption.

Even though the effective number of drones, with a given initial energy, needed to observe all targets

does not represent an output of the proposed model, it is possible, starting from the optimal solution, to

determine an estimate of this number. It is worth observing that the optimal flying drones location problem

is formulated as a binary optimization model, characterized by a high number of variables and constraints.

Thus, it is not possible to determine the optimal solution of the model (2) - (9), in a reasonable amount

of time. Since the solution process is very time consuming even for small instances, the use of heuristic

approach, that allows to determine feasible solution, is mandatory.

3. Mobile target tracking solutions

3.1. Localized Altitude Scheduler
The Localized Altitude Scheduler (LAS) provides the drones with the required functions in order to

compute the minimum possible altitude based on (a) the position of the targets that each drone currently
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Algorithm 1: A round of LAS
require: T � ∅, ACT IVE � ∅

1 foreach drone u ∈ ACT IVE do
2 detect events of T covered by u;
3 add detected events in CVRDu

4 foreach drone u ∈ ACT IVE do

5 timestampu = ρ +
hmax

hu
;

6 send timestampu to 1-hop neighbors along with the position and event details;

7 foreach drone u ∈ ACT IVE do
8 foreach msg received from neighbor u′ do

9 if (timestampu < timestampu′ ) & (
dist(u, u′) + hu tan θ′ + hu′ tan θ′

2 tan θ′
< hmax) & ((hu + hu′ ) >

dist(u, u′)
2 tan θ′

) then add events of CVRDu′

in CVRDu;

10 foreach event e ∈ CVRDu′ do
11 if (e ∈ CVRDu) & (timestampu >= timestampu′ ) & (dist(u, u′) < (hu tan θ′ + hu′ tan θ′)) then CVRDu = CVRDu − {e};
12 foreach drone u ∈ ACT IVE do
13 if CVRDu � ∅ then
14 compute new altitude h′u;
15 while h′ > hmax do
16 find the most distant event t in CVRDu;
17 send a new drone request to cover t;
18 ACT IVE = ACT IVE ∪ {u′′};
19 compute new altitude h′u;

20 update position;

21 else
22 ACT IVE = ACT IVE − {u};

covers, (b) the position of the targets that the neighboring drones cover, and (c) the minimum and the

maximum allowed altitude.

The algorithm considers that at any time τ all the drones are able to estimate their position and detect the

targets underneath. The procedure is divided in rounds and in each round (see Alg. 1) each drone decides its

state. There are two kinds of state. In the active state the drone monitors at least one event and communicates

with other drones. In the inactive state the drone abandons coverage and remains on the ground when the

targets it covers can be covered by neighboring drones. This process is explained later in the text.

Each round starts by detecting the events that each active drone covers. The initial number of active

drones depends on the initial placement. The initial placement of the robots can be done either randomly or

by placing them manually. Since the events have been detected and their position has been identified, each

active drone computes a timestamp taking into account its current altitude and a random value ρ. ρ is used

to avoid having two drones with same timestamp.

The timestamp of each active drone is broadcasted and the received timestamps are used by a drone to

decide if it will give up monitoring certain targets in case of a merging. A merging takes place due to two

reasons: (a) two neighboring drones with low altitude are very close to each other such as the events they

cover together, can now be covered using only one of the drones, and (b) one or more events covered by

a drone with low altitude come into the range of a drone with higher altitude. In the first case, a merging

takes place if the total energy consumption of the two (or more) drones before the merging is more than the

energy consumption of the single active drone after the merging. This check is done by the drone with the

lowest timestamp when the involving drones come close to each other.

In the first case, the left part of formula (10) makes sure that the new drone altitude will not exceed

the highest possible altitude, while the right part compares the energy consumption before and after the

merging. dist(u, u′) represents the current distance between the centers of the flat surface of the cones and

θ′ = θ/2.
dist(u, u′) + hu tan θ′ + hu′ tan θ′

2 tan θ′
< hmax, hu + hu′ >

dist(u, u′)
2 tan θ′

(10)

In the second case, dist(u, u′) < (hu tan θ′ + hu′ tan θ′) checks if u has been inserted into u′ range.

Since the robots have exchanged timestamps, they continue with the computation of their new position.
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Each active drone u maintains the information about the targets it covers in CVRDu. It can calculate the

final altitude by computing the radius of the circle that includes all the targets in CVRDu. This computation

can be done using a smallest enclosing circle (SEC) method or another suboptimal solution.

The computation complexity of the SEC is at least O(ν) [10], where ν is the number of events that take

part in the computation. In scenarios where a drone may cover several events, the altitude computation must

be as fast as possible, otherwise other operations such as the target detection would be delayed causing a

possible appearance of uncovered events. For that reason suboptimal solutions with lower computation cost

can be used.

Moreover, depending on the speed of the targets and how often the drones detect the events, the actual

altitude of the drones must be higher than the one computed by the SEC. The final drone altitude is computed

using the following formula:

hu = h′u tan θ′ + υmaxdt (11)

where dt is time elapsed between two target detections and h′u is the altitude calculated by the SEC algorithm

(or by another suboptimal solution). This formula ensures that the events in CVRDu will still be covered

until the next detection.

In some scenarios, as the targets go away the one with each other, the altitude of a drone may reach its

final value. In this case, the drone must decide which of the drones will follow, abandoning the monitoring

of the most distant event it covers and decreasing the altitude. Using a broadcast it demands an assistant

from the closest base to cover this event. Since the drones have the capability of moving fast, we assume

that the drone-assistant arrives during the same round.

A drone running LAS uses two types of messages to communicate with other drones. The first type

is a broadcasting packet containing information about the timestamp, its initial position and the events it

monitors. The second type is used to inform other drones that an abandoned event must be covered making

LAS as much tolerant as possible in presence of message failures. A possible packet loss of the first message

type does not affect the monitoring of the events since in the worst case it could only lead to a double or

triple covering of some of the targets. On the other hand, a packet loss of the second message type leads to

uncovered events if the abandoned event is not covered by any other drone at that particular moment.

Moreover, LAS does not require any synchronization between the drones since each drone can act inde-

pendently from the others. Non-synchronized neighboring drones do not lead to the appearance of uncovered

targets, since they abandon targets only if these particular targets are already covered by another drone.

3.2. Centralized Altitude Scheduler

The centralized altitude scheduler (CAS) works as a greedy heuristic and it assumes that the position

of the events and their movement is known in advance, so it is difficult to be used in practice. The aim

of the algorithm is to minimize the consumption by keeping the active drones in low altitude and avoiding

overlappings (i.e. two or more drones covering same targets). Note that it does not always mean that CAS

will use the minimum possible number of drones.

The algorithm starts by allowing a single drone to cover as many events as possible. When it reaches the

maximum possible altitude, another drone is used to cover the rest of the events. The new drone starts from

the most distant uncovered event and it avoids covering the events that the previous drones have covered.

The process terminates when all the events have been covered.

The complexity of the approach mainly depends on the complexity of the chosen SEC algorithm. Since

the lowest complexity of computing it is O(n), the overall complexity of CAS is O(n2).

4. Evaluation and discussion of the results

In this section we simulate the proposed algorithms and we compute the total energy consumption and

the average number of drones used throughout the monitoring process. We present results using two versions

of LAS; the first version uses the average of the coordinates of the events in order to compute the drone

position, while the second one uses the SEC solution. We name these two versions “LAS” and “LAS-sec”

respectively. “Static” uses the minimum possible number of drones to cover all the terrain area by placing
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the robots based on a triangular grid. In this case, all the drones are in the same altitude, while the altitude

varies depending on the terrain size. Since the problem is new and there is no other similar algorithm in the

literature, we compare LAS against CAS and Static approaches.

We assess the algorithms in two scenarios. In the first scenario, we vary the terrain size keeping constant

the number of events in the field (100 events), while in the second scenario we keep fixed the terrain size

(40K m2), varying the number of events. In the first case, we evaluate the behavior of the approaches

when few or many drones are used, while in the second case we assess the event exchange behavior when

few or many events exist. For each scenario, we use 50 topologies with random and uniform initial event

deployment and we compute the average values of these 50 topologies. The 95% confidence intervals are

shown in each figure. Each drone has a communication range of 150m, while the mass of the drone is 10Kg,

g is 10m/sec2, and the minimum and the maximum allowed altitudes hmin and hmax are equal to 10m and

100m respectively. The camera angle θ is set 60◦ which corresponds to a normal camera lens. We assume

that the starting position of the events is known, so the drones are initially placed according to this position.

If this information is not known, the “Static” model can be used to cover all the area.

Concerning the events, we evaluate our approaches using three mobility models. In the first model,

each event is attracted by a certain point in the terrain (Attractors model). The number of the attractors

is 5 and their position is fixed. In the second model, the events are moved with a random speed towards

a point that they also choose randomly (RWP model). In the third case, the events are moved completely

randomly without stopping at any point (Random model). In all the cases, the maximum speed of an event

is 1m/sec, each simulation lasts 500secs, and the position of the drones is updated every second. Since the

events might reach the final destination before the finish time, we mostly present evaluation findings for the

random mobility model. Otherwise, the results would be affected by the time the events stayed static.

4.1. Simulation results

The results of Figure 1 show that the performance gap between LAS and CAS is small. This performance

difference is even lower when the SEC solution is used for the computation of the position of the drones.

CAS presents the best performance activating though more drones as it is shown in Figure 2. On the contrary,

the static approach presents similar results when the terrain size is low, but the energy consumption increases

a lot for large terrain sizes.
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In the next experiment, we vary the detection frequency (i.e. the time elapsed between two successive

target detections) and we measure the total energy consumption for the two scenarios. According to Formula

(11) the final altitude of a drone depends on the detection frequency, which practically means that the active

drones should fly higher in order to still be able to detect the mobile events. The results are presented in

Figure 3 and show that for dense scenarios and high detection frequency (e.g. 10 secs), the total energy

consumption is slightly higher than that of the static approach. For lower detection frequencies LAS still

performs better than Static. We must mention though that LAS uses the average of the coordinates of the

events to compute the position of the drones. On the contrary, the energy consumption could be decreased

using a SEC method.
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Figure 4 illustrates the performance of LAS in presence of transmission or reception errors due to noisy

environment, channel congestion etc.. We assume a 50% failure each time a drones tries to communicate

with other drones. When failures occur, one or more events may be left uncovered as it is explained in Sec-

tion 1. Despite the huge failure probability, the percentage of uncovered events throughout the monitoring

time was 2-3% for the dense scenarios and up to 10% for the sparse scenarios (left figure). Since in case of

failures the number of active drones is lower, the energy consumption is slightly reduced (right figure).
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Fig. 4. Percentage of uncovered events (left) and total energy consumption (right) in relation with the terrain size

Figure 5 represents the energy consumption of the active drones at any time for the three mobility

models. When the random mobility model is used, the energy consumption reasonably fluctuates over time,

but in case of “attractors” or “Random” mobility models LAS is able to gradually decrease the energy

consumption by activating less drones since the events are getting closer to the destination. This case is,

also, illustrated in Figure 6. The events are initially scattered all over the terrain while they stop moving

when they reach one of the attractors. The final rounds include four active drones, three with low altitude

and one with higher altitude covering two attractor sites1.

5. Conclusion and future work

In this paper we dealt with the power efficient scheduling problem of a fleet of robots that monitor

events on the ground. We presented LAS, a localized algorithm that controls mobility of flying robots.

1Animated depictions produced by our simulation software can be found at http://uav-scheduling.gforge.inria.fr/
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The drones adjust their altitude to cover more or less targets at each time. This adjustment is achieved by

communicating with the neighboring drones and it leads to an up to 150% energy conservation compared to

the case where the drones are statically placed. Our future work involves the use of a metric to control the

detection probability of each event as well as the use of other mobility models.
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