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Abstract: The focus of this work is to analyze the behavior of an autonomous swarm, in which only
the leader or a dedicated set of agents can take intelligent decisions with other agents just reacting to
the information that is received by those dedicated agents, when the swarm comes across stationary
or dynamic obstacles. An energy-aware information management algorithm is proposed to avoid
over-sensation in order to optimize the sensing energy based on the amount of information obtained
from the environment. The information that is needed from each agent is determined by the swarm’s
self-awareness in the space domain, i.e., its self-localization characteristics. A swarm of drones as
a multi-agent system is considered to be a distributed wireless sensor network that is able to share
information inside the swarm and make decisions accordingly. The proposed algorithm reduces the
power that is consumed by individual agents due to the use of ranging sensors for observing the
environment for safe navigation. This is because only the leader or a dedicated set of agents will
turn on their sensors and observe the environment, whereas other agents in the swarm will only
be listening to their leader’s translated coordinates and the whereabouts of any detected obstacles
w.r.t. the leader. Instead of systematically turning on the sensors to avoid potential collisions with
moving obstacles, the follower agents themselves decide on when to turn on their sensors, resulting
in further reduction of overall power consumption of the whole swarm. The simulation results show
that the swarm maintains the desired formation and efficiently avoids collisions with encountered
obstacles, based on the cross-referencing feedback between the swarm agents.

Keywords: autonomous swarm; multi-agent systems; energy efficient; swarm intelligence; leader
follower; collision avoidance

1. Introduction

The optimization of autonomous navigation, collision avoidance, and resource al-
location in swarms of drones (Unmanned Aerial Vehicles or UAVs) is currently one of
the major focus areas in the robotics research community [1]. Besides the usability of
individual UAVs, the considerable advantages of utilizing swarms of UAVs have increased
their demand in various fields, such as search and rescue, traffic monitoring, atmospheric
research, and military applications [2–5].

A general categorization of the agents in a swarm can be presented, as follows [6–8]:

• Evolutionary agents, where the agents work on the fundamental theory of evolutionary
algorithms i.e., mutation, reproduction, recombination, and selection.

• Cognitive agents, where the agents can take decisions, make predictions, and process
data based on their cognitive architecture.

• Reactive agents, where, as the name suggests, the agents react to a signal from another
agent or to any change in the surrounding environment.
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• Flocking agents, where the agents imitate the flocking behavior, i.e., moving together,
inspired by flocks of birds or swarms of bees, for instance.

When considering the navigation of a swarm of drones, collision avoidance and
formation maintenance in the swarm are the two of the most prominent problems to
solve [9–11]. With the exponential increase in the use of UAVs and their integration into
many different commercial, military, and leisure applications, the need for an efficient
onboard collision avoidance system increases exponentially. Such an onboard system
enables a drone to react rapidly to encountered objects during flight [12,13]. Owing
to, e.g., onboard payload limitations, power limitations, and complications in remote
monitoring, tasks become increasingly difficult for UAVs to accomplish. The robotics
community is trying hard to counter these issues by developing new technologies to ensure
safe navigation for UAVs in various environments [14–17].

Collision avoidance systems or algorithms are responsible for safely and reliably
avoiding any possible collisions amongst the agents (e.g., UAVs) themselves and between
an agent and a surrounding obstacle in the environment [18]. Collision avoidance algo-
rithms can be roughly classified into the following three categories [19]: (1) sense-and-avoid
algorithms that simplify the process by delegating the detection and avoidance activities to
individual agents/nodes and, therefore, they have short response times, are independent
of inter-node communication, and require less computational power [20–22]; (2) force-field
algorithms, also known as potential field methods, which use the basic concept of attrac-
tion/repulsion between the agents in the swarm and between the agents and obstacles
in the environment to guide an agent towards a destination while avoiding objects along
the path [23–26]; (3) optimization based algorithms, relying on geographical informa-
tion, which utilize knowledge on the sizes, shapes, and locations of obstacles to provide
near-optimal path planning solutions [27–29].

Formation control can be divided into several separate tasks: navigation of the whole
formation/swarm from one point to the designated point, maintaining a certain formation
shape or orientation, splitting the formation, bringing the agents back into the original
formation, and avoiding collisions while accomplishing these tasks [30]. In more general
terms, a formation can be defined as the shape where the positioning of each agent within
the swarm is relative to other agents [31–33]. Formation maintenance algorithms can be
outlined into the following three classes [34,35]: (1) leader–follower based approaches, in
which all of the agents in the swarm follow the leader and autonomously maintain their
respective positions, w.r.t. their neighbours and the leader [36–39]; (2) virtual structure
based approaches, in which all of the agents of the swarm as a whole are considered to be a
single compound agent to be navigated along a given trajectory [40–43]; and, (3) behavior
based approaches, in which the agents select their behavior in each situation based on a
pre-determined procedure or strategy [44,45].

In this paper, we propose a strategy to reduce the processing power of individual
agents in the swarm without losing the swarm’s ability for autonomous operation. In order
to achieve this, a leader-follower based approach is adopted for maintaining the formation,
due to its relatively simple implementation, scalable nature, and reliability [9,38]. The global
leader in the formation utilizes a given global collision avoidance algorithm, which is then
used by the followers for the calculation of the relative coordinates, which are also known
as translational coordinates, w.r.t. themselves, of the detected objects in the environment,
as observed by the global leader. Furthermore, followers themselves, upon receiving the
observed coordinates of a detected obstacle from the leader, compute to decide the optimal
time for turning on their sensors for dynamic avoidance if some error has been detected
in the calculation of translational coordinates while cross-checking is performed by the
leader. In the case an error has been detected, it indicates that the obstacle is not stationary
anymore, i.e., the environment is not static and, hence, it is treated as a moving obstacle,
i.e., the environment is dynamic.

In this paper, a new strategy for reducing the overall energy consumption of a swarm
is proposed. The main idea is to remove the unnecessary power consumption due to
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the sensors for a portion of the swarm in cases where the information the agents per-
ceive from their neighbors is enough for individual navigation of an agent. In other
words, the neighbors of each agent are playing as a source of information for navigational
purposes. The main contribution of the proposed approach is that besides the existing
energy-efficient methods, such as movement-based and communication-based methods,
the energy consumption of the swarm can be further reduced by injecting adaptive con-
sciousness in the agents, especially in scenarios where the environment is either static or
dynamic variables in the surroundings are negligible. In such situations, the agents can
turn off their ranging sensors, translate the coordinates transmitted by their leader, and,
upon performing necessary calculations, switch to the high-conscious mode if deemed to
be necessary.

The organization of the rest of the paper is as follows. Section 2 provides the motiva-
tion. Section 3 provides the development of the proposed algorithm in detail. Section 4
provides the simulation results. Finally, Section 5 provides the concluding remarks, discus-
sion, and future work.

2. Motivation

The minimization of energy consumption of UAVs, or autonomous mobile agents
more generally, for the efficient utilization of their limited resources, is currently gaining
the attention of researchers. This is of high interest in scenarios where a prolonged mission
duration is desirable, such as in large warehouses, underwater exploration, patrolling,
and guarding [38]. However, in the literature, most of the energy-efficiency related work
focuses on countering the adverse effect of external influences [46], route optimization [47],
recharging optimization [48], altitude based navigation [49], or exploiting the direction of
wind to extend mission duration [50].

In a multi-agent system, it is a norm to have every single agent making more or less
intelligent decisions by utilizing the onboard sensor system for observing the surroundings.
The active sensors and onboard processing of sensory data consume power and reduce
battery run-time, which results in decreased mission life on a single charge. However,
in static environments, all of the agents in the swarm do not necessarily have to either keep
their onboard sensors turned on continuously or take decisions intelligently. If intelligent
decision making and sensor usage are restricted based on some constraints, depending on
the environment and surroundings, a major portion of power consumption due to sensors
and related data processing can be reduced, as shown in Figure 1. The approach that is
presented in [17] proposes a translational coordinates scheme in which the leader agent
has its sensor turned on all the time, while the follower agents turn on their sensors as soon
as the leader detects any static obstacle in its surroundings. Indeed, for such environments,
if only the leader of the swarm remains at a high-conscious mode continuously and
performs all of the necessary required calculations (Figure 1a), the system’s sensor related
power consumption can be reduced considerably, and the potential run-time of the mission
is thereby increased. Furthermore, the adaptive capability of the individual follower agents
to dynamically switch between the low-conscious and autonomous high-conscious modes,
depending on the situation at hand (Figure 1b), guarantees that the system’s degree of
autonomy is not compromised.

In this paper, based on the principle that is described above, an approach is developed
to reduce the overall power consumption of the system by intentionally deactivating and
reactivating the sensors at run-time. Basing our proposed technique on reactive agents [6]
and a control methodology for formation based on 1-N leader-follower approach (1-leader
and N-followers) [38], the leader constantly observes the environment and informs its
followers of the coordinates of any detected obstacles in the vicinity. In case there are no
obstacles in the vicinity of the leader, it only broadcasts its own coordinates. The follower
agents, after translating the coordinates according to their own positions, decide whether
continuing the same trajectory is safe or if they are required to deviate from their path.
However, in the case a dynamic obstacle is detected by the leader agent, the coordinates
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are broadcasted in a similar manner to the followers, who, then upon performing the
necessary calculations, realize the direction of movement of the obstacle and its speed.
After this, based on their own trajectory and the obstacle’s trajectory, it is calculated if
continuing on the same trajectory will lead to a potential collision, in which case the
respective agent switches from the low-conscious mode to the autonomous high-conscious
mode, as shown in Figure 1. After successfully avoiding the collision or bypassing the
obstacle, the follower agent switches back again to the low-conscious mode. Individual
agents in the swarm utilize the collision avoidance technique developed and presented
in [9] for avoiding collisions in the high-conscious mode. The main motivation behind
this approach is not only the overall power cost reduction of the swarm, but also the
capability of the agents to autonomously decide on switching between the low-conscious
and high-conscious modes, enabling situation-aware optimization of power consumption,
due to ranging sensors, at run-time. A simplified approach has been chosen for validation
of the proposed approach by limiting the depth of the swarm to two agents, i.e., ”N” = 2
agents in the 1-N leader–follower model. It is important to note here that the agents in
the Follower_Mode are assumed to utilize the on-board IMU (Inertial Measurement Unit)
and GPS (Global Positioning System) for localization purposes, i.e., obtaining their own
positions (localization methodologies are not in the scope of this work. However, while
in low-conscious mode, the possible error in obtaining position vectors due to the IMU
drift over time and also the probable GPS signal loss, is also handled by the algorithm, as
the cross-checking of the translated coordinates will return false readings and the follower
agent will go into the high-conscious mode temporarily ).

(a) Scene 1 (b) Scene 2

Figure 1. Swarm in a static environment with only one dynamic obstacle. (a) the initial scene
where the leader (encircled by light green) has its ranging sensors turned on, performs all the
processing, and transferring the information about the surroundings to its followers, (b) the Follower
2, upon performing necessary calculations, realizes that the dynamic obstacle is potentially moving
in its path and turns on its sensors to be able to perform collision avoidance actively. In both scenes,
Follower 1 does not turn its sensors on, since the dynamic obstacle is moving in the other direction
and does not pose a potential collision threat. For bypassing the static obstacles, Follower 1 translates
the received coordinates to generate escape routes.

3. Proposed Approach

In this section, we describe the proposed method in more detail. The strategy is to
combine the navigation and object detection with coordinate calculation and adaptive
autonomous modes in order to facilitate the process of autonomous swarm navigation
using translational coordinates. The proposed top-level algorithm to accomplish this
(Algorithm 1) is composed of two partial feedback-based algorithms: one for managing
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the followers and the other for managing the adaptive autonomous mode in the presence
of obstacles. The adaptive autonomous mode calls collision avoidance from within if
deemed to be necessary.

In the Follower_Function module, drones receive the coordinates of their leader and
of the obstacles, as seen and transmitted by the leader, and then perform the necessary
calculations to translate the received coordinates according to their own respective positions.
Meanwhile, if there is no feedback from the leader and the defined timeout is exceeded,
it is assumed that the leader is not alive/reachable, i.e., the communication link with the
leader is lost. In such a case, the drone in question temporarily declares itself as its own
leader as a fail-safe mechanism and resumes navigation by turning its sensors on.

The environment is declared to be dynamic, if the leader detects one or more moving
obstacles, or if the cross-check of the translational coordinates indicates a mismatch. The fol-
lower, in this case, starts calculating the obstacle’s velocity to determine the apparent point
of impact. Upon estimating the point of impact, the follower node/drone itself decides
when it needs to turn on its sensor(s) in order to perform active collision avoidance for
safe maneuvering.

Algorithm 1 Leader: Navigation & Object Detection

agent Leader()
2: while True do

if obstacle detected then
4: Dobstacle, Aobstacle ← Obstacle’s distance and angle calculation;

end if
6: for all i do

Follower(i).Transfer_Coordinates(dt f , d f f (i), tsuccess);
8: if tsuccess then

cal.re f .coords← Reverse cross-check follower’s received
coordinates(d f f (i));

10: cal.re f .angle← Reverse cross-check follower’s received angle(d f f (i));
∆coords, ∆angle = re f .coords− cal.re f .coords, re f .angle− cal.re f .angle;

12: if |∆coords| > Thresholdc OR |∆angle| > Thresholda then
Follower(i).Set-Dynamic; . Setting remote Dynamic flag

14: end if
end if

16: end for
Collision_Avoidance();

18: end while
end agent . end agent leader

3.1. Agent Leader

Algorithm 1 provides the general pseudo-code for the global leader. This top-level
algorithm is executed utilizing the on-board processing units by all agents locally. The as-
signment of IDs to all agents is assumed to be achieved before starting the mission. The al-
gorithm is initialized by first setting up the necessary flags. Subsequently, the leader
agent starts scanning for any obstacles in the vicinity and then calculates the distance
and angles at which the detected obstacle(s) lie (Lines 3–4). After this, the leader starts
sending its coordinates to its respective follower(s), including the detected obstacle’s (if
any) angle and distance (Lines 6–7). Here, the symbols, dt f and d f f , are used to simplify
the notations and contain the distance of the obstacle(s), the angles at they lie, the agents’
own parameters, such as coordinates and heading direction. After receiving the coordi-
nates from its follower(s), i.e., the transfer is successful (tsuccess), the leader cross-checks
the distances and angles calculated by the follower (Lines 8–10). After cross-checking,
the environment is declared to be dynamic if the absolute value of the received angles
or coordinates, i.e., ∆coords, ∆angle, is more than a defined threshold level, i.e., Thresholdc
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error tolerance for coordinates and Thresholda error tolerance for calculated angle (Lines
12–14). The leader agent then calls Collision_Avoidance to bypass the obstacle(s) successfully
(Line 17).

3.2. Agent Follower

Algorithm 2 provides the general pseudo-code for the follower agents. The algorithm
starts by declaring its global procedures that are also utilized by the leader and, furthermore,
setting up the necessary flags (Lines 2–3). Afterwards, the follower agent(s) check if the
leader is alive, i.e., they are getting constant feedback from the leader (Lead_is_Alive ==
True), or if they are in the follower mode, i.e., Follower_Mode == True. If either Lead_is_Alive
or Follower_Mode is False, the respective agent performs obstacle detection actively and then
calculates the distance and angle at which the obstacle is detected (Lines 5–6). In the case of
constant feedback from the leader, the respective follower agents check if the environment
has been declared as dynamic by the leader or not. If the environment is not declared
as dynamic, the agent calls Follower_Function for navigational purposes. On the contrary,
if the environment has been declared to be dynamic, Adaptive_Mode_Function (Lines 8–11).
Finally, the Coordinates_Received flag is reset to False, for next iteration (Line 13).

Algorithm 2 Follower: Navigation & Object Detection

agent Follower()
2: global procedure Transfer_coordinates, Set-Dynamic;. declaration of of follower’s

global procedures Leader will call
Lead_is_Alive, Follow_Mode, Dynamic, coordinates_received = True, True, False,

False;
4: while True do

if (!Lead_is_Alive OR !Follower_Mode) AND obstacle detected then
6: Dobstacle, Aobstacle ← Obstacle’s distance and angle calculation;

end if
8: if !Dynamic AND Lead_is_Alive then

Follower_Function();
10: else

Adaptive_Mode_Function();
12: end if

coordinates_received = False;
14: end while

end agent . end agent follower

3.3. Set-Dynamic

Algorithm 3 shows the procedure that is called by the leader to set the dynamic flag
for its followers to True.

Algorithm 3 Set-Dynamic

procedure SET-DYNAMIC() . this procedure is called remotely to set Dynamic to True
for Follower(i)

2: Dynamic = True;
end procedure

3.4. Transfer Function

Algorithm 4 specifies the pseudo-code for Transfer Function. The algorithm starts
by setting the tsuccess, i.e., the transfer success, flag based on the coordinates_received and
randomizing the True/False to simulate the possibility of transfer failure (Line 2). Sub-
sequently, if tsuccess is True, the data sent by the leader are utilized to compute the trans-
lated coordinates by the follower (d f f ). If there was a constant feedback from the leader,
the node/follower uses the translational coordinates of the obstacle, as observed by the
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leader and based on its own coordinates, calculates the location of the obstacle according
to its own position, as shown in Figure 2 variables description given in Table 1). These
translated coordinates that are calculated by the follower are then utilized by the leader,
as data from the follower, d f f , (Algorithm 1, Lines 17–19) for cross-checking purposes.
The coordinates_received flag is then set to True (Lines 3–6).

Algorithm 4 Transfer Function

procedure TRANSFER_COORDINATES(dt f , d f f )
2: tsuccess = !coordinates_received AND random select(True, False);. modeling transfer

failure possibility
if tsuccess then

4: receiveddata = dt f ;
d f f = calculate translational coordinates(dt f ); . Follower’s data for Leader

6: coordinates_received = True;
Lead_is_Alive = True; . if Lead_is_Alive is False, turn it to True

8: end if
end procedure

Figure 2. Distance and direction calculation of the detected obstacle.

Table 1. Description of Variables from Figure 2.

Variables Description

DL distance of the obstacle’s left
DR and right edges from leader

D1L translational calculated distance of
D1R right and left edges of the obstacle
D2L from follower 1 and follower 2,
D2R respectively, as observed by leader

d1 follower 1 and follower 2’s distance
d2 from leader respectively

θR angle of detected right and left edges
θL from leader respectively

θ1L leader’s angle from follower 1 and
θ2L follower 2, respectively

ϕF1R angles of right and left edges as
ϕF1L calculated by follower 1 and
ϕF2R follower 2, respectively
ϕF2L
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3.5. Follower Function: Coordinate Calculation

Algorithm 5 specifies the Follower_Function module, where the follower node waits
until either the defined Timeout is reached or the coordinates are received (Line 2). Sub-
seuently, if the coordinates_received is True, i.e., coordinates are received by the follower,
the reference coordinates that the follower should navigate to, i.e., ref.coords, are updated
w.r.t. d f f (Lines 3–4). Moreover, if the ranging sensors are on/activated previously, they are
turned off, as the agent is now in the follower mode (lines 5–6). However, if the coordinates
are not received until the Timeout, the Lead_is_Alive is set to False, ranging sensors are
turned on for actively observing the environment and perform obstacle avoidance, and to
make itself its own leader, the node sets the ref.coords as its own coordinates, i.e., self.coords,
to start navigating towards the destination (Lines 8–11).

Algorithm 5 Follower Function

procedure FOLLOWER_FUNCTION()
2: wait until Timeout OR coordinates_received;

if coordinates_received then
4: re f .coords← d f f ;. Update the reference coordinates to translational coordinates

if Sensors are ON then
6: Turn off the Sensors;

end if
8: else

Lead_is_Alive = False;
10: Turn on the Sensors;

re f .coords = sel f .coords;
12: end if

end procedure

The timeout signal is only checked if the node in question is not the leader itself. Every
other node constantly checks whether its respective leader’s transmitted signals are being
constantly received. If the node has not received the coordinates sent by its leader by the
timeout, it turns on its sensors for active collision avoidance maneuvering by declaring
itself as its own leader.

3.6. Adaptive Mode Function

This module, Algorithm 6, is called by the leader if it detects obstacles in the vicinity.
Or, in the case the environment is already as dynamic, then the nodes in Follow_Mode call
this module locally. As soon as this module is called, it is checked whether the node in
question is the global leader or is it one of the followers (Line 2). The default or initial
value of Follow_Mode for all of the follower nodes is True. If the node is the follower, using
previous translational readings, the obstacle’s velocity is approximated (Line 3) using
Equations (1)–(3), and a visual illustration is shown in Figure 3.

Figure 3. Illustration of calculation of movement of obstacle.
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Algorithm 6 Adaptive Mode Function

procedure ADAPTIVE_MODE_FUNCTION()
2: if Follow_Mode then

Vobs ← Calculate obstacle’s velocity from previous readings(dt f );
4: Dimp ← Calculate the distance to impact;

if Dimp < Detection Range then
6: Turn on the sensors;

Follow_Mode = False;
8: end if

end if
10: Collision avoidance ();

if Dobstacle NOT in Detection Range then
12: Dynamic = False;

if Leader != Sel f AND Lead_is_Alive then
14: Follow_Mode = True;

Turn off the sensors;
16: end if

end if
18: end procedure

Three scenarios are possible based on Vobs: (1) if Vobs < 0, i.e., positive, this means that
the obstacle is going away from the node; (2) if Vobs = 0, this means that the obstacle is not
moving, i.e., stationary; (3) if Vobs < 0, this means that the obstacle is travelling towards
the node. Based on these readings, the distance to the potential impact/collision (Dimp) is
calculated (Line 4). The distance travelled by the node after t1 seconds is computed by:

dn = vn ∗ (t1 − t0) (1)

where dn and vn are the distances travelled by the node and velocity of the node, respec-
tively. The distance covered by the obstacle and its velocity can be determined by (2) and
(3), respectively:

dobs = do − dn − d1 (2)

vobs = dobs/∆t (3)

where dobs is the distance travelled by the obstacle, vobs velocity of the obstacle, dn the
distance travelled by the node, d1 the distance between the obstacle and the node at time
t1, and do is the distance between the obstacle and node at the previous time t0.

If the distance that is travelled by the obstacle is zero, i.e., dobs = 0, it means that the
obstacle is stationary. However, if the distance covered by the obstacle after t1, i.e., d1 is
less than the distance between the node and the obstacle (do), in that case, the obstacle is
moving towards the node (as shown in Figure 3). Otherwise, the obstacle is moving away
from the node. Based on the movement of the node and the obstacle, the apparent distance
to impact is calculated and, if that distance to impact is less than the detection range
of the on-board sensor system, the node turns on its sensors and comes out of follower
mode to perform active collision avoidance (Lines 5–7). The collision avoidance module is
then invoked to constantly monitor the environment (line 10). After successful collision
avoidance, the status of the surroundings is changed back to static (Lines 11–12). The node
turns off its sensors and goes back into Follow_Mode and the control is returned to the main
module (Lines 13–16).

3.7. Collision Avoidance

Collision avoidance, with the pseudo-code in Algorithm 7, is invoked when the
detected obstacle gets critically close. It is then checked whether there is only one obstacle
in the vicinity or there are multiple obstacles (Line 3). In case, more than one obstacle is
detected, the gap between the obstacles is calculated (Line 4). Based on the calculation,
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the algorithm takes the following actions: if the gap is more than the sa f e_dist, i.e., defined
based on the dimensions of the UAV, then the UAV is aligned to pass through the gap
available between the obstacles (Lines 5–6); otherwise, the obstacles are treated as a single
obstacle and the UAV is rerouted accordingly to navigate around them in order to avoid
collisions (Lines 7–9). However, if only one obstacle was detected in the first place, the path
planning is done accordingly to bypass the obstacle while keeping the deviation to a
minimum (Lines 11–13). For performing successful path planning and aligning, we utilized
and implemented the technique that is presented in [9]. The algorithm then recalculates
the obstacle’s distance and updates it. Based on the updated value, the control returned
back to the Adaptive_Mode_Function.

Algorithm 7 Collision Avoidance

procedure COLLISION_AVOIDANCE()
2: while Dobstacle < Detection Range do

if detected obstacles > 1 then
4: gap← calculate the gap between obstacles;

if gap > sa f e_dist then
6: path planning(edges); . UAV is aligned to pass through the obstacles

else
8: path_plan← single obstacle;

path planning(path_plan); . considered as single obstacle
10: end if

else
12: path_plan← single obstacle;

path planning(path_plan);
14: end if

Dobstacle ← Update the obstacle distance;
16: end while

end procedure

4. Simulation Results

The area used for the basis of the simulation was defined as 700 m × 500 m two-
dimensional XY-plane, i.e., all of the objects are considered to be at the same altitude.
The number of agents is set to three and the agents are already in the defined V-shaped
formation at the start of the mission. It is important to note that, in the performed ex-
periments, the leader agent has more computational and power resources to be able to
perform the leadership tasks. The leader was equipped with Nvidia Jetson TX2, which is
a power-efficient embedded system with the capability of operating between 0.5–2 GHz.
In order to be more power efficient, we set the operating frequency to 0.5 GHz, at which
the average power consumption is 4.5 Watts. The followers were equipped with Raspberry
Pi 3B, which consumes around 2.4 Watts in high-conscious mode and 1.4 Watts in the idle
mode. Velodyne Puck LITE was used for the generation of the data, which was then used
in the simulation platform for visualization purposes, simulating the sensor, generating
the obstacles, and subsequently to verify the proposed algorithm. Puck LITE has a 360◦

field of view horizontally, 30◦ vertically, generates 300,000 points/second, and has an
accuracy of ±3 cm and range of 100 m [51]. For communication between the agents, due to
its longer transmission range (100 m indoor/urban environment), data rate of 250 kbps,
and possibility of large number of devices to be connected, communication-based power
consumption is evaluated based on Legacy Digi XBee-Pro S1 802.15.4 consumption, i.e., in
Transmitting Mode = 710 mW, in Receiving Mode = 182 mW [52].

The following assumptions and initial conditions are used in this study:

1. all of the agents are travelling with constant ground speeds;
2. communication link between the agents is setup ideally and with no information loss;

and,
3. agents utilize the on-board localization techniques in order to obtain their positions.
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The LiDAR (Light Detection and Ranging) data [53] is shown at different time intervals
and from different angles shown in Figure 4. Figure 4b–d show the obstacles when they
are in close vicinity and in the detection range. These figures show the position of the
LiDAR sensor equipped drone as the blue, red, and green interactive marker. It is to be
noted that the developed algorithm takes the point cloud that is captured by the LiDAR
based on the defined constraints to reduce the complexity of the algorithm. Because its
running on a resource-constrained system it is crucial to discard unnecessary point clouds,
i.e., point clouds that are not in the field of view (FoV). The FoV is defined in the proposed
algorithm to be ±30◦. Only the obstacles within this FoV are considered to be posing
a potential collision threat to the agents and, therefore, any obstacles outside this are
discarded. The detected obstacles are contoured by light blue rectangles.

(a) (b)

(c) (d)

Figure 4. Light Detection and Ranging (LiDAR) point set snapshots at different intervals: starting
point of simulation and when the obstacles are visible. (a) LiDAR data 1: at the start of the simulation.
(b) LiDAR data 2: obstacles are starting to enter the detection range. (c) LiDAR data 3: obstacles are
detected and in close proximity. (d) LiDAR data 4: bypassing the obstacles.

Figure 5 shows the simulation results for a static environment when the obstacles are
stationary. In the V-shaped formation that is shown in the figure, agent 1 (leader) is shown
as a blue circle, which has its ranging sensor (shown in Figure 4) on always-on mode, while
red and green followers, i.e., agent 2 and agent 3 respectively, are following the leader
by translating the leaders’ transmitted coordinates as shown in Figure 2. In Figure 5b,
the obstacle has entered the detection range of agent 1 but since there is no danger of
collision, agent 1 continues its trajectory as shown in Figure 5c. Similarly, agent 2 is
following agent 1 while utilizing the translational coordinates, and as there is no collision
risk found upon calculations it continues to function in the Follower_Function. Whereas,
as shown in Figure 5b, the translational coordinates calculations performed by agent 3
clearly indicate the potential collision if the same trajectory is continued and, therefore, it
diverts from its original trajectory by performing offline collision avoidance to avoid the
obstacle, as can be seen from the traces of the agents in Figure 5c.
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(a) (b)

(c) (d)

Figure 5. Simulation results at different time intervals, showing the behavior of the agents while
going through obstacles. (a) Mission start with agents in formation, with leader in blue, agent 2 in red,
and agent 3 in green. (b) Obstacle in range, agent 3 deviates by performing necessary calculations.
(c) Traces of movement while going through the obstacles. (d) Agent 3 comes back to its intended
position in the formation when there is no obstacle.

Agent 2 maintains its trajectory w.r.t. the leader without deviating from the original
trajectory even while going through the obstacles and second obstacle being close to it, as
can be seen from Figure 5c,d. This shows the effectiveness of utilizing the translational
coordinates as the obstacle was out of the collision radius as also indicated by the performed
calculations by the agent. Whereas, agent 3 maintains the pre-defined minimum distance
from agent 1 after avoiding the obstacle, which is due to the third obstacle in the bottom.
In Figure 5d, the destination point was moved at run-time to demonstrate the reformation
process and, as can been seen, agent 3 starts going back to the position in the formation, it
was supposed to be, as soon as it moves away from the obstacle in the bottom.

Figure 6 illustrates the simulation results for dynamic environment scenarios, where:
Case 1: only one obstacle is moving, as shown in Figure 6a–c. In this case scenario,
the obstacle is moving in the direction of the swarm. The obstacle, as observed by agent 1,
will intercept the swarm and a potential collision is evident if agent 3 continues its trajectory,
as can be seen from Figure 6b. Therefore, after performing the necessary calculations, agent
3 turns on its own ranging sensor and performs collision avoidance actively. After avoiding
the obstacle, agent 3 turns off its sensors and starts following the leader once again based
on translational coordinates from the leader. Figure 7a shows the distance maintained
by the agents throughout the simulation; Case 2: two obstacles are moving, as shown in
Figures 6d–f. In this case scenario, the first moving obstacle only disturbs agent 3, as in
Case 1. However, after performing the translational coordinate calculations, as soon as
agent 2 observes that the second obstacle is moving towards their direction and a collision
may be inevitable, it turns on its ranging sensor to actively avoid the collision and divert
from its trajectory if necessary (as shown in Figure 6f). After successful avoidance, when
there are no moving obstacles in the vicinity, the agents turn off their sensors and switch
back to the Follower_Function. Figure 7b shows the distance maintained by the agents
throughout the simulation.
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(a) (b) (c)

(d) (e) (f)

Figure 6. The results shown from the simulations of two case scenarios showing the traces of move-
ment and deviations due to moving obstacles, with one moving obstacle and two moving obstacles.
(a) Mission start. (b) Moving obstacle observed. (c) Overall trace of movement. (d) Mission start. (e)
Movement of Obstacle 1 observed. (f) Movement obstacle 2 observed and traces of the deviated path.

(a) With one moving obstacle

0

20

40

60

80

0 50 100 150 200 250 300 350 400

D
is

ta
n

ce
 (

m
)

Time (s)

distance 21 distance 31

distance 32 Safe Distance
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Figure 7. Distance maintained by each agent from its neighbour.

We report and compare the power consumed by our setup based on the experiment to
analyze the efficiency of the proposed algorithm. The battery used in the setup for calcula-
tion of these attributes was 5000 mAh and, in typical conditions, the power consumption
of one Velodyne Puck LITE is 8 Watts and operating voltage is 9 volts. Based on these
values and the tracking the amount of time, each agent had its sensor turned on during
the simulation with and without our proposed methodology, as shown in Figure 8. We
placed these calculated values side-by-side with the reference algorithm [17]. The normal
setup with all agents running their sensors always-on mode will consume about 3000 mWh,
which is calculated as

N

∑
agent=1

Eagent = Ps,agent ∗ tα,agent (4)

where the summation is over all the agents in the system, Eagent denotes the energy con-
sumption of an agent, Ps,agent is the power consumption of the agent’s sensor, and tα,agent
is the total time for which the agent’s sensor remains active. In the instant case, there are
three agents, the power consumption of the sensor is 8000 mW and the sensors remain
active all the time, i.e., 450 s, Eagent comes out to be 1000 mWh and the total consumption
for three agents will be 3000 mWh.

Figure 8. Energy Consumption by all nodes (mWh).
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Similarly, the setup that was used in [17] consumed 1595 mWh, as in that setup
the follower agents turn on the sensors as soon as the leader detects any static obstacle.
However, while utilizing the proposed modified algorithm, the energy consumption for
the same setup can be reduced by about 600 mWh to 1000 mWh. As in the proposed
methodology, only agent 1 (the leader) had its sensor always-on, while agents 2 and 3
never had to turn on their sensors, as they only translated the broadcasted coordinates by
the leader and followed. Subsequently, the power consumption due to ranging sensors
in static environments can be further reduced by another 40% mark approximately. Addi-
tionally, that can be further utilized when the environment has some dynamic variables
involved and, hence, increasing the overall mission life on a single charge. When testing the
proposed methodology for the environment with some dynamic variables, the following
results were observed: (1) Dynamic S1: is the experiment with swarm consisting of three
agents and obstacle 1 moving. This only affected agent 3, and agent 3 turned on its sensor
to perform collision avoidance for 37s and turned off the sensor after successful avoidance
to go back into the Follower_Function resulting in the overall energy consumption due to
sensor usage by all nodes to 1083 mWh; (2) Dynamic S2: is the experiment performed with
swarm that consists of three agents and obstacle 1 and 2 are both moving. This affects both
agents 2 and 3. Agent 3 had to turn on its sensor for 37 s, while agent 2 had its sensor
turned on for 68 s, which resulted in the overall energy consumption due to sensor usage
by all nodes to 1234 mWh; and, (3) Dynamic S3: is the experiment performed with swarm
consisting of five agents and both obstacles 1 and 2 are dynamic. This affects all of the
agents. Agents 2 and 3 remain at high-conscious mode for the same amount of time as in
“Dynamic S2” case, whereas agents 5 and 4 remain at high-conscious mode for 57 s and
65 s, respectively. Resulting in the overall energy consumption due to sensors usage to
1506 mWh.

Based on the incremental consumption due to dynamic obstacles in the environment,
Figure 9 shows an estimation of the relationship between the dynamicity of the environ-
ment and the energy consumption of the swarm. It is important to note that the energy
consumption due to the sensor(s) usage depends on the duration that each agent stays at
the high-conscious mode. It can be concluded that the energy consumption of the swarm is
independent of the number of dynamic obstacles; however, it is dependent on the dura-
tion that each agent is affected by the dynamic obstacles or has to stay at high-conscious
mode, i.e., their sensor(s) turned on. In the figure, A = 1 represents one agent operating
in high-conscious mode, A = 2 represents two agents operating in the high-conscious
mode, A = 3 shows the consumption of the swarm when three agents are operating in the
high-conscious mode, and A = 5 shows the consumption of the swarm when five agents
are operating in the high-conscious mode.

Figure 9. Energy consumption of the swarm based on the average duration that the agents stay at
high-conscious mode.

5. Conclusions and Future Work

We developed an algorithm for a pre-defined formation of multi-agents with adaptive
ability for static and dynamic environments to reduce the power consumption due to
sensors usage. Under normal conditions in a static environment, one dedicated agent
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(leader) can see its surroundings with the sensors turned on, while other agents (followers)
blindly follow by translating the received coordinates from the leader. However, according
to the demand of the environment, the follower(s) have the ability to decide to turn
on their ranging sensors for safe maneuver, after performing the necessary calculations.
The proposed methodology of the effectiveness of translational coordinates and the proof of
concept was verified in the simulation environment. It is evident from the simulation results
that the proposed method is reliable in static environments, as well as in the environment
with some dynamic variables. Furthermore, it helps in reducing the power consumption
due to the usage of sensors over time. The proposed method, in the considered test case
and static environment, helped in reducing the power consumed by the sensors by about
40% when compared to the reference algorithm. In general, it is obvious that this power
saving in dynamic environments definitely depends on the structure of the environment
and its dynamicity. However, in environments with some dynamic variables in our test
scenarios, the proposed methodology still proved to be effective, as utilizing it kept the
power consumption about 50% less than if the sensors were used in a continuous mode.

In the future, we plan to further extend this work by increasing the depth of the
swarm, i.e., the number of followers in the swarm, in order to further investigate the
information exchange between the agents by taking the possible communication delays
into consideration. Furthermore, the power consumption due to wireless communication
and the effect of processing the information and coordinates on the battery life will also
be analyzed. Because the leader undertakes all of the necessary computations, leading
to faster draining of its battery and resultant shortening of overall life time of a mission,
it will be interesting to analyze the effectiveness of an election-based leadership solution
and explore different options for optimally swapping the leadership role amongst the
followers, e.g., swap the places by selecting the follower with highest remaining battery
life. Further, the effect of such improvements on the overall mission life needs to be studied.
Additionally, finally moving onto testing the proposed approach in real-time initially under
static environments and further moving to real-time controlled dynamic environments.
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