34 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Towards reliable communication in LTE-A connected heterogeneous machine to machine network

    Get PDF
    Machine to machine (M2M) communication is an emerging technology that enables heterogeneous devices to communicate with each other without human intervention and thus forming so-called Internet of Things (IoTs). Wireless cellular networks (WCNs) play a significant role in the successful deployment of M2M communication. Specially the ongoing massive deployment of long term evolution advanced (LTE-A) makes it possible to establish machine type communication (MTC) in most urban and remote areas, and by using LTE-A backhaul network, a seamless network communication is being established between MTC-devices and-applications. However, the extensive network coverage does not ensure a successful implementation of M2M communication in the LTE-A, and therefore there are still some challenges. Energy efficient reliable transmission is perhaps the most compelling demand for various M2M applications. Among the factors affecting reliability of M2M communication are the high endto-end delay and high bit error rate. The objective of the thesis is to provide reliable M2M communication in LTE-A network. In this aim, to alleviate the signalling congestion on air interface and efficient data aggregation we consider a cluster based architecture where the MTC devices are grouped into number of clusters and traffics are forwarded through some special nodes called cluster heads (CHs) to the base station (BS) using single or multi-hop transmissions. In many deployment scenarios, some machines are allowed to move and change their location in the deployment area with very low mobility. In practice, the performance of data transmission often degrades with the increase of distance between neighboring CHs. CH needs to be reselected in such cases. However, frequent re-selection of CHs results in counter effect on routing and reconfiguration of resource allocation associated with CH-dependent protocols. In addition, the link quality between a CH-CH and CH-BS are very often affected by various dynamic environmental factors such as heat and humidity, obstacles and RF interferences. Since CH aggregates the traffic from all cluster members, failure of the CH means that the full cluster will fail. Many solutions have been proposed to combat with error prone wireless channel such as automatic repeat request (ARQ) and multipath routing. Though the above mentioned techniques improve the communication reliability but intervene the communication efficiency. In the former scheme, the transmitter retransmits the whole packet even though the part of the packet has been received correctly and in the later one, the receiver may receive the same information from multiple paths; thus both techniques are bandwidth and energy inefficient. In addition, with retransmission, overall end to end delay may exceed the maximum allowable delay budget. Based on the aforementioned observations, we identify CH-to-CH channel is one of the bottlenecks to provide reliable communication in cluster based multihop M2M network and present a full solution to support fountain coded cooperative communications. Our solution covers many aspects from relay selection to cooperative formation to meet the user’s QoS requirements. In the first part of the thesis, we first design a rateless-coded-incremental-relay selection (RCIRS) algorithm based on greedy techniques to guarantee the required data rate with a minimum cost. After that, we develop fountain coded cooperative communication protocols to facilitate the data transmission between two neighbor CHs. In the second part, we propose joint network and fountain coding schemes for reliable communication. Through coupling channel coding and network coding simultaneously in the physical layer, joint network and fountain coding schemes efficiently exploit the redundancy of both codes and effectively combat the detrimental effect of fading conditions in wireless channels. In the proposed scheme, after correctly decoding the information from different sources, a relay node applies network and fountain coding on the received signals and then transmits to the destination in a single transmission. Therefore, the proposed schemes exploit the diversity and coding gain to improve the system performance. In the third part, we focus on the reliable uplink transmission between CHs and BS where CHs transmit to BS directly or with the help of the LTE-A relay nodes (RN). We investigate both type-I and type-II enhanced LTE-A networks and propose a set of joint network and fountain coding schemes to enhance the link robustness. Finally, the proposed solutions are evaluated through extensive numerical simulations and the numerical results are presented to provide a comparison with the related works found in the literature

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    D6.6 Final report on the METIS 5G system concept and technology roadmap

    Full text link
    This deliverable presents the METIS 5G system concept which was developed to fulfil the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems to include new usage scenarios. The METIS 5G system concept consists of three generic 5G services and four main enablers. The three generic 5G services are Extreme Mobile BroadBand (xMBB), Massive Machine- Type Communications (mMTC), and Ultra-reliable Machine-Type Communication (uMTC). The four main enablers are Lean System Control Plane (LSCP), Dynamic RAN, Localized Contents and Traffic Flows, and Spectrum Toolbox. An overview of the METIS 5G architecture is given, as well as spectrum requirements and considerations. System-level evaluation of the METIS 5G system concept has been conducted, and we conclude that the METIS technical objectives are met. A technology roadmap outlining further 5G development, including a timeline and recommended future work is given.Popovski, P.; Mange, G.; Gozalvez -Serrano, D.; Rosowski, T.; Zimmermann, G.; Agyapong, P.; Fallgren, M.... (2014). D6.6 Final report on the METIS 5G system concept and technology roadmap. http://hdl.handle.net/10251/7676

    Kapeankaistan LTE koneiden välisessä satelliittitietoliikenteessä

    Get PDF
    Recent trends to wireless Machine-to-Machine (M2M) communication and Internet of Things (IoT) has created a new demand for more efficient low-throughput wireless data connections. Beside the traditional wireless standards, focused on high bandwidth data transfer, has emerged a new generation of Low Power Wide Area Networks (LPWAN) which targets for less power demanding low-throughput devices requiring inexpensive data connections. Recently released NB-IoT (Narrowband IoT) specification extends the existing 4G/LTE standard allowing more easily accessible LPWAN cellular connectivity for IoT devices. Narrower bandwidth and lower data rates combined to a simplified air interface make it less resource demanding still benefiting from the widely spread LTE technologies and infrastructure. %% Applications & Why space Applications, such as wide scale sensor or asset tracking networks, can benefit from a global scale network coverage and easily available low-cost user equipment which could be made possible by new narrowband IoT satellite networks. In this thesis, the NB-IoT specification and its applicability for satellite communication is discussed. Primarily, LTE and NB-IoT standards are designed only for terrestrial and their utilization in Earth-to-space communication raises new challenges, such as timing and frequency synchronization requirements when utilizing Orthogonal Frequency Signal Multiplexing (OFDM) techniques. Many of these challenges can be overcome by specification adaptations and other existing techniques making minimal changes to the standard and allowing extension of the terrestrial cellular networks to global satellite access.Viimeaikaiset kehitystrendit koneiden välisessä kommunikaatiossa (Machine to Machine Communication, M2M) ja esineiden Internet (Internet of Things, IoT) -sovelluksissa ovat luoneet perinteisteisten nopean tiedonsiirron langattomien standardien ohelle uuden sukupolven LPWAN (Low Power Wide Area Networks) -tekniikoita, jotka ovat tarkoitettu pienitehoisille tiedonsiirtoa tarvitseville sovelluksille. Viimeaikoina yleistynyt NB-IoT standardi laajentaa 4G/LTE standardia mahdollistaen entistä matalamman virrankulutuksen matkapuhelinyhteydet IoT laitteissa. Kapeampi lähetyskaista ja hitaampi tiedonsiirtonopeus yhdistettynä yksinkertaisempaan ilmarajapintaan mahdollistaa pienemmän resurssivaatimukset saman aikaan hyötyen laajalti levinneistä LTE teknologioista ja olemassa olevasta infrastruktuurista. Useissa sovelluskohteissa, kuten suurissa sensoriverkoissa, voitaisiin hyötyä merkittävästi globaalista kattavuudesta yhdistettynä edullisiin helposti saataviin päätelaitteisiin. Tässä työssä käsitellään NB-IoT standardia ja sen soveltuvuutta satellittitietoliikenteeseen. LTE ja NB-IoT ovat kehitty maanpääliseen tietoliikenteeseen ja niiden hyödyntäminen avaruuden ja maan välisessä kommunikaatiossa aiheuttaa uusia haasteita esimerkiksi aika- ja taajuussynkronisaatiossa ja OFDM (Orthogonal Frequency Signal Multiplexing) -tekniikan hyödyntämisessä. Nämä haasteet voidaan ratkaista soveltamalla spesifikaatiota sekä muilla jo olemassa olevilla tekniikoilla tehden mahdollisimman vähän muutoksia alkuperäiseen standardiin, ja täten sallien maanpäälisten IoT verkkojen laajenemisen avaruuteen

    Enabling Technologies for Internet of Things: Licensed and Unlicensed Techniques

    Get PDF
    The Internet of Things (IoT) is a novel paradigm which is shaping the evolution of the future Internet. According to the vision underlying the IoT, the next step in increasing the ubiquity of the Internet, after connecting people anytime and everywhere, is to connect inanimate objects. By providing objects with embedded communication capabilities and a common addressing scheme, a highly distributed and ubiquitous network of seamlessly connected heterogeneous devices is formed, which can be fully integrated into the current Internet and mobile networks, thus allowing for the development of new intelligent services available anytime, anywhere, by anyone and anything. Such a vision is also becoming known under the name of Machine-to-Machine (M2M), where the absence of human interaction in the system dynamics is further emphasized. A massive number of wireless devices will have the ability to connect to the Internat through the IoT framework. With the accelerating pace of marketing such framework, the new wireless communications standards are studying/proposing solutions to incorporate the services needed for the IoT. However, with an estimate of 30 billion connected devices, a lot of challenges are facing the current wireless technology. In our research, we address a variety of technology candidates for enabling such a massive framework. Mainly, we focus on the nderlay cognitive radio networks as the unlicensed candidate for IoT. On the other hand, we look into the current efforts done by the standardization bodies to accommodate the requirements of the IoT into the current cellular networks. Specifically, we survey the new features and the new user equipment categories added to the physical layer of the LTE-A. In particular, we study the performance of a dual-hop cognitive radio network sharing the spectrum of a primary network in an underlay fashion. In particular, the cognitive network consists of a source, a destination, and multiple nodes employed as amplify-and-forward relays. To improve the spectral efficiency, all relays are allowed to instantaneously transmit to the destination over the same frequency band. We present the optimal power allocation that maximizes the received signal-to-noise ratio (SNR) at the destination while satisfying the interference constrains of the primary network. The optimal power allocation is obtained through an eigen-solution of a channel-dependent matrix, and is shown to transform the transmission over the non-orthogonal relays into parallel channels. Furthermore, while the secondary destination is equipped with multiple antennas, we propose an antenna selection scheme to select the antenna with the highest SNR. To this end, we propose a clustering scheme to subgroup the available relays and use antenna selection at the receiver to extract the same diversity order. We show that random clustering causes the system to lose some of the available degrees of freedom. We provide analytical expression of the outage probability of the system for the random clustering and the proposed maximum-SNR clustering scheme with antenna selection. In addition, we adapt our design to increase the energy-efficiency of the overall network without significant loss in the data rate. In the second part of this thesis, we will look into the current efforts done by the standardization bodies to accommodate the equirements of the IoT into the current cellular networks. Specifically, we present the new features and the new user equipment categories added to the physical layer of the LTE-A. We study some of the challenges facing the LTE-A when dealing with Machine Type communications (MTC). Specifically, the MTC Physical Downlink control channel (MPDCCH) is among the newly introduced features in the LTE-A that carries the downlink control information (DCI) for MTC devices. Correctly decoding the PDCCH, mainly depends on the channel estimation used to compensate for the channel errors during transmission, and the choice of such technique will affect both the complexity and the performance of the user equipment. We propose and assess the performance of a simple channel estimation technique depends in essence on the Least Squares (LS) estimates of the pilots signal and linear interpolations for low-Doppler channels associated with the MTC application

    Radio hardware virtualization for software-defined wireless networks

    Get PDF
    Software-Defined Network (SDN) is a promising architecture for next generation Internet. SDN can achieve Network Function Virtualization much more efficiently than conventional architectures by splitting the data and control planes. Though SDN emerged first in wired network, its wireless counterpart Software-Defined Wireless Network (SDWN) also attracted an increasing amount of interest in the recent years. Wireless networks have some distinct characteristics compared to the wired networks due to the wireless channel dynamics. Therefore, network controllers present some extra degrees of freedom, such as taking measurements against interference and noise, or adapting channels according to the radio spectrum occupation. These specific characteristics bring about more challenges to wireless SDNs. Currently, SDWN implementations are mainly using customized firmware, such as OpenWRT, running on an embedded application processor in commercial WiFi chips, and restricted to layers above lower Media Access Control. This limitation comes from the fact that radio hardware usually require specific drivers, which have a proprietary implementation by various chipset vendors. Hence, it is difficult, if not impossible, to achieve virtualization on the radio hardware. However, this status has been changing as Software-Defined Radio (SDR) systems open up the entire radio communication stack to radio hobbyists and researchers. The bridge between SDR and SDN will make it possible to bring the softwarization and virtualization of wireless networks down to the physical layer, which will unlock the full potential of SDWN. This paper investigates the necessity and feasibility of extending the virtualization of wireless networks towards the radio hardware. A SDR architecture is presented for radio hardware virtualization in order to facilitate SDWN design and experimentation. We do believe that by adopting the virtualization-oriented hardware accelerator design presented here, an all-layer end-to-end high performance SDWN can be achieved
    corecore