4,703 research outputs found

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Practical mobile ad hoc networks for large scale cattle monitoring

    Get PDF
    This thesis is concerned with identification of realistic requirements for the cattle monitoring system and design of the practical architecture addressing these requirements. Automated monitoring of cattle with wireless monitoring devices mounted on the animals can increase efficiency of cattle production, decrease its reliance on human labour and thus increase its profitability. Multi-hop ad hoc wireless communication has the potential to increase battery life of the animal mounted devices, decrease their size and combat disconnections. This thesis reveals that no current approach sufficiently addresses energy constrains of the animal mounted devices and potential disconnections. We propose a delay tolerant store and forward architecture that provides data retention, detecting custom events, issues notifications, answers remote and in-situ queries, based on requirements identified during field experiments we conducted. This architecture utilizes fixed infrastructure but also works in ad hoc infrastructureless conditions. The core of the proposed architecture, Mobile Ad Hoc Network (MANET) communication, provides offloading data for long term storage by sending data to farm servers via sinks that are a part of MANET and handles in-situ queries issued by users collocated with the animals. The proposed MANET routing algorithm addresses high mobility of nodes and disconnections. It provides lower and more balanced energy usage, shorter delays and increased success ratio of delivering answers to in-situ queries than more generic existing approaches. Problems of large scale deployment of the envisaged system are also addressed. We discuss the necessary configuration process performed during the system installation as well as pervasive mobile and home access to the target system. We propose cost efficient strategies for sinks installation and connecting sinks to farm servers, adaptive to different requirements, estates layout, available infrastructure and existing human and vehicle mobility. We also propose a cost efficient security model for the target system based on public key cryptography

    Mobile Ad Hoc Networking Approach to Detecting and Querying Events Related to Farm Animals

    Full text link

    VECTORS: Video communication through opportunistic relays and scalable video coding

    Full text link
    Crowd-sourced video distribution is frequently of interest in the local vicinity. In this paper, we propose a novel design to transfer such content over opportunistic networks with adaptive quality encoding to achieve reasonable delay bounds. The video segments are transmitted between source and destination in a delay tolerant manner using the Nearby Connections Android library. This implementation can be applied to multiple domains, including farm monitoring, wildlife, and environmental tracking, disaster response scenarios, etc. In this work, we present the design of an opportunistic contact based system, and we discuss basic results for the trial runs within our institute.Comment: 13 pages, 6 figures, and under 3000 words for submission to the SoftwareX journa

    A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    Get PDF
    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed

    An Empirical Analysis of cluster-based routing protocols in wireless sensor network

    Get PDF
    Wireless Sensor Networks (WSNs) are utilized for condition monitoring, developing the board, following animals or goods, social protection, transportation, and house frameworks. WSNs are revolutionizing research. A WSN includes a large number of sensor nodes, or bits, in the application. Bits outfitted with the application\u27s sensors acquire nature data and send it to at least one sink center (in like manner called base stations). This article simulates energy-efficient network initialization strategies using simulation models. First, an overview of network initiation and exploration procedures in wireless ad-hoc networks is provided. The clustering-based routing strategy was selected since it\u27s best for ad-hoc sensor networks. The clustering-based routing techniques used for this study are described below. LEACH, SEP, and Z-SEP are used. MATLAB was used to implement and simulate all routing protocols. All protocols were simulated with various parameters like Number of CHs, Number of Alive Nodes, Number of Dead Nodes, Number of packets to BS, and circumstances to show their functioning and to determine their behavior in different sensor networks

    Routing in MobileWireless Sensor Networks: A Leader-Based Approach

    Get PDF
    This paper presents a leader-based approach to routing in Mobile Wireless Sensor Networks (MWSN). Using local information from neighbour nodes, a leader election mechanism maintains a spanning tree in order to provide the necessary adaptations for efficient routing upon the connectivity changes resulting from the mobility of sensors or sink nodes. We present two protocols following the leader election approach, which have been implemented using Castalia and OMNeT++. The protocols have been evaluated, besides other reference MWSN routing protocols, to analyse the impact of network size and node velocity on performance, which has demonstrated the validity of our approach.Research supported by the Spanish Research Council (MINECO), Grant TIN2016-79897-P, and the Department of Education, Universities and Research of the Basque Government, Grant IT980-16

    Design of implicit routing protocols for large scale mobile wireless sensor networks

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13189Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives.Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives
    • …
    corecore