12 research outputs found

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    Energy Efficiency Metrics in Cognitive Radio Networks: A Hollistic Overview

    Get PDF
    Due to the explosive progression in the number of users for new generation wireless communication networks which includes cognitive radio networks, energy efficiency has been a fundamental factor affecting its development and performance.  In order to adeptly access and analyze the energy efficiency of a cognitive radio network, a standardized metric for this purpose is required. As a starting point, in this article we provided an analysis for energy efficiency metrics of a cognitive radio network in respect to its design and operation. The performance metrics and metrics developed at the different levels of a cognitive radio network are also studied. Establishing a comprehensive metric for evaluating, measuring and reporting the energy efficiency of cognitive radio networks is a crucial step in achieving an energy-efficient cognitive radio network

    Low Complexity Energy-Efficient Collaborative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Clustering approach is considered a management technology that arranged the distributed cognitive radio users into logical groups to improve the sensing performance of the network. A lot of works in this area showed that cluster-based spectrum sensing (CBSS) technique efficiently tackled the trade-off between performance and overhead issue. By employing the tree structure of the cluster, a multilevel hierarchical cluster-based spectrum sensing (MH-CBSS) algorithm was proposed to compromise between the gained performance and incurred overhead. However, the MH-CBSS iterative algorithm incurs high computational requirements. In this thesis, an energy-efficient low computational hierarchical cluster-based algorithm is proposed which reduces the incurred computational burden. This is achieved by predetermining the number of cognitive radios (CRs) in the cluster, which provides an advantage of reducing the number of iterations of the MH-CBSS algorithm. Furthermore, for a comprehensive study, the modified algorithm is investigated over both Rayleigh and Nakagami fading channels. Simulation results show that the detection performance of the modified algorithm outperforms the MH-CBSS algorithm over Rayleigh and Nakagami fading channels. In addition, a conventional energy detection algorithm is a fixed threshold based algorithm. Therefore, the threshold should be selected properly since it significantly affects the sensing performance of energy detector. For this reason, an energy-efficient hierarchical cluster-based cooperative spectrum sensing algorithm with an adaptive threshold is proposed which enables the CR dynamically adapts its threshold to achieve the minimum total cluster error. Besides, the optimal threshold level for minimizing the overall cluster detection error rate is numerically determined. The detection performance of the proposed algorithm is presented and evaluated through simulation results

    A Comparative Study Of Spectrum Sensing Methods For Cognitive Radio Systems

    Get PDF
    With the increase of portable devices utilization and ever-growing demand for greater data rates in wireless transmission, an increasing demand for spectrum channels was observed since last decade. Conventionally, licensed spectrum channels are assigned for comparatively long time spans to the license holders who may not over time continuously use these channels, which creates an under-utilized spectrum. The inefficient utilization of inadequate wireless spectrum resources has motivated researchers to look for advanced and innovative technologies that enable an efficient use of the spectrum resources in a smart and efficient manner. The notion of Cognitive Radio technology was proposed to address the problem of spectrum inefficiency by using underutilized frequency bands in an opportunistic method. A cognitive radio system (CRS) is aware of its operational and geographical surroundings and is capable of dynamically and independently adjust its functioning. Thus, CRS functionality has to be addressed with smart sensing and intelligent decision making techniques. Therefore, spectrum sensing is one of the most essential CRS components. The few sensing techniques that have been proposed are complicated and come with the price of false detection under heavy noise and jamming scenarios. Other techniques that ensure better detection performance are very sophisticated and costly in terms of both processing and hardware. The objective of the thesis is to study and understand the three of the most basic spectrum sensing techniques i.e. energy detection, correlation based sensing, and matched filter sensing. Simulation platforms were developed for each of the three methods using GNU radio and python interpreted language. The simulated performances of the three methods have been analyzed through several test matrices and also were compared to observe and understand the corresponding strengths and weaknesses. These simulation results provide the understanding and base for the hardware implementation of spectrum sensing techniques and work towards a combined sensing approach with improved sensing performance with less complexity

    On optimum sensing time over fading channels for Cognitive Radio system

    Get PDF
    Cognitive Radio (CR) is widely expected to be the next Big Bang in wireless communications. In a CR network, the secondary users are allowed to utilize the frequency bands of primary users when these bands are not currently being used. For this, the secondary user should be able to detect the presence of the primary user. Therefore, spectrum sensing is of significant importance in CR networks. In this thesis, we consider the antenna selection problem over fading channels to optimize the trade off between probability of detection and power efficiency of CR systems. We formulate a target function consists of detection probability and power efficiency mathematically, and use energy detection sensing scheme to prove that the formulated problem indeed has one optimal sensing time which yields the highest target function value. Two modelling techniques are used to model the Rayleigh fading channels; one without correlations and one with correlations on temporal and frequency domains. For each model, we provide two scenarios for average SNRs of each channel. In the first scenario, the channels have distinguished level of average SNRs. The second scenario provides a condition in which the channels have similar average SNRs. The antenna selection criterion is based on the received signal strength; each simulation is compared with the worst case simulation, where the antennas are selected randomly. Numerical results have shown that the proposed antenna selection criterion enhanced the detection probability as well as it shortened the optimal sensing time. The target function achieved the higher value while maintaining 0.9 detection probability compared to the worst case simulation. The optimal sensing time is varied by other parameters, such as weighting factor of the target function

    Energy-efficient spectrum sensing approaches for cognitive radio systems

    Get PDF
    Designing an energy efficient cooperative spectrum sensing for cognitive radio network is our main research objective in this dissertation. Two different approaches are employed to achieve the goal, clustering and minimizing the number of participating cognitive radio users in the cooperative process. First, using clustering technique, a multilevel hierarchical cluster-based structure spectrum sensing algorithm has been proposed to tackle the balance between cooperation gain and cost by combining two different fusion rules and exploiting the tree structure of the cluster. The algorithm considerably minimizes the reporting overhead while satisfying the detection requirements. Second, based on reducing the number of participating cognitive radio users, primary user protection is considered to develop an energy efficient algorithm for cluster-based cooperative spectrum sensing system. An iterative algorithm with low complexity has been proposed to design energy efficient spectrum sensing for cluster-based cooperative systems. Simulation results show that the proposed algorithm can significantly minimize the number of contributing of cognitive radio users in the collaboration process and can compromise the performance gain and the incurred overhead. Moreover, a variable sensing window size is also considered to propose three novel strategies for energy efficient centralized cooperative spectrum sensing system using the three hard decision fusion rules. The results show that strategies remarkably increase the energy efficiency of the cooperative system; furthermore, it is shown optimality of k out of N rule over other two hard decision fusion rules. Finally, joint optimization of transmission power and sensing time for a single cognitive radio is considered. An iterative algorithm with low computational requirements has been proposed to jointly optimize power and sensing time to maximize the energy efficiency metric. Computer results have shown that the proposed algorithm outperforms those existing works in the literature

    Energy Detection Based Spectrum Sensing for Sensing Error Minimization in Cognitive Radio Networks

    No full text
    oai:ojs.www.ijcnis.org:article/1In this paper, we investigate an optimization of thresholdlevel with energy detection to improve the spectrum sensingperformance. Determining threshold level to minimize spectrumsensing error both reduces collision probability with primary userand enhances usage level of vacant spectrum, resulting inimproving total spectrum efficiency. However, when determiningthreshold level, spectrum sensing constraint should also be satisfiedsince it guarantees minimum required protection level of primaryuser and usage level of vacant spectrum. To minimize spectrumsensing error for given spectrum sensing constraint, we derive anoptimal adaptive threshold level by utilizing the spectrum sensingerror function and constraint which is given by inequality condition.Simulation results show that the proposed scheme provides betterspectrum sensing performance compared to conventional schemes

    An efficient multichannel wireless sensor networks MAC protocol based on IEEE 802.11 distributed co-ordinated function.

    Get PDF
    This research aimed to create new knowledge and pioneer a path in the area relating to future trends in the WSN, by resolving some of the issues at the MAC layer in Wireless Sensor Networks. This work introduced a Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks. This work commenced by surveying different protocols: contention-based MAC protocols, transport layer protocols, cross-layered design and multichannel multi-radio assignments. A number of existing protocols were analysed, each attempting to resolve one or more problems faced by the current layers. The 802.15.4 performed very poorly at high data rate and at long range. Therefore 802.15.4 is not suitable for sensor multimedia or surveillance system with streaming data for future multichannel multi-radio systems. A survey on 802.11 DCF - which was designed mainly for wireless networks –supports and confirm that it has a power saving mechanism which is used to synchronise nodes. However it uses a random back-off mechanism that cannot provide deterministic upper bounds on channel access delay and as such cannot support real-time traffic. The weaknesses identified by surveying this protocol form the backbone of this thesis The overall aim for this thesis was to introduce multichannel with single radio as a new paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor networks (WSNs) that is used in a wide range of applications, from military application, environmental monitoring, medical care, smart buildings and other industry and to extend WSNs with multimedia capability which sense for instance sounds or motion, video sensor which capture video events of interest. Traditionally WSNs do not need high data rate and throughput, since events are normally captured periodically. With the paradigm shift in technology, multimedia streaming has become more demanding than data sensing applications as such the need for high data rate protocol for WSN which is an emerging technology in this area. The IEEE 802.11 can support data rates up to 54Mbps and 802.11 DCF was designed specifically for use in wireless networks. This thesis focused on designing an algorithm that applied multichannel to IEEE 802.11 DCF back-off algorithm to reduce the waiting time of a node and increase throughput when attempting to access the medium. Data collection in WSN tends to suffer from heavy congestion especially nodes nearer to the sink node. Therefore, this thesis proposes a contention based MAC protocol to address this problem from the inspiration of the 802.11 DCF backoff algorithm resulting from a comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor Networks

    Applications of nonuniform sampling in wideband multichannel communication systems

    Get PDF
    This research is an investigation into utilising randomised sampling in communication systems to ease the sampling rate requirements of digitally processing narrowband signals residing within a wide range of overseen frequencies. By harnessing the aliasing suppression capabilities of such sampling schemes, it is shown that certain processing tasks, namely spectrum sensing, can be performed at significantly low sampling rates compared to those demanded by uniform-sampling-based digital signal processing. The latter imposes sampling frequencies of at least twice the monitored bandwidth regardless of the spectral activity within. Aliasing can otherwise result in irresolvable processing problems, as the spectral support of the present signal is a priori unknown. Lower sampling rates exploit the processing module(s) resources (such as power) more efficiently and avoid the possible need for premium specialised high-cost DSP, especially if the handled bandwidth is considerably wide. A number of randomised sampling schemes are examined and appropriate spectral analysis tools are used to furnish their salient features. The adopted periodogram-type estimators are tailored to each of the schemes and their statistical characteristics are assessed for stationary, and cyclostationary signals. Their ability to alleviate the bandwidth limitation of uniform sampling is demonstrated and the smeared-aliasing defect that accompanies randomised sampling is also quantified. In employing the aforementioned analysis tools a novel wideband spectrum sensing approach is introduced. It permits the simultaneous sensing of a number of nonoverlapping spectral subbands constituting a wide range of monitored frequencies. The operational sampling rates of the sensing procedure are not limited or dictated by the overseen bandwidth antithetical to uniform-sampling-based techniques. Prescriptive guidelines are developed to ensure that the proposed technique satisfies certain detection probabilities predefined by the user. These recommendations address the trade-off between the required sampling rate and the length of the signal observation window (sensing time) in a given scenario. Various aspects of the introduced multiband spectrum sensing approach are investigated and its applicability highlighted
    corecore