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“It can scarcely be denied that the supreme goal of all theory is to make the irreducible 
basic elements as simple and as few as possible without having to surrender the adequate 

representation of a single datum of experience.” 
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Abstract 
 
 
 
This research is an investigation into utilising randomised sampling in communication 

systems to ease the sampling rate requirements of digitally processing narrowband signals 

residing within a wide range of overseen frequencies. By harnessing the aliasing 

suppression capabilities of such sampling schemes, it is shown that certain processing 

tasks, namely spectrum sensing, can be performed at significantly low sampling rates 

compared to those demanded by uniform-sampling-based digital signal processing. The 

latter imposes sampling frequencies of at least twice the monitored bandwidth regardless of 

the spectral activity within. Aliasing can otherwise result in irresolvable processing 

problems, as the spectral support of the present signal is a priori unknown. Lower 

sampling rates exploit the processing module(s) resources (such as power) more efficiently 

and avoid the possible need for premium specialised high-cost DSP, especially if the 

handled bandwidth is considerably wide. 

A number of randomised sampling schemes are examined and appropriate spectral analysis 

tools are used to furnish their salient features. The adopted periodogram-type estimators 

are tailored to each of the schemes and their statistical characteristics are assessed for 

stationary, and cyclostationary signals. Their ability to alleviate the bandwidth limitation of 

uniform sampling is demonstrated and the smeared-aliasing defect that accompanies 

randomised sampling is also quantified. 

In employing the aforementioned analysis tools a novel wideband spectrum sensing 

approach is introduced. It permits the simultaneous sensing of a number of non-

overlapping spectral subbands constituting a wide range of monitored frequencies. The 

operational sampling rates of the sensing procedure are not limited or dictated by             

the overseen bandwidth antithetical to uniform-sampling-based techniques. Prescriptive 

guidelines are developed to ensure that the proposed technique satisfies certain detection 

probabilities predefined by the user. These recommendations address the trade-off between 

the required sampling rate and the length of the signal observation window (sensing time) 

in a given scenario. Various aspects of the introduced multiband spectrum sensing 

approach are investigated and its applicability highlighted. 
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( )d
WX f   Windowed Fourier transform of a sampled ( )X t  

( , )e rX ft   Spectrum estimator of a randomly sampled signal 

ˆ ( )eX f    K  averaged ( , )e rX ft  from non-overlapping signal windows 

( )ny t    Collected noisy samples of the received signal 

0,kH    Hypothesis that signifies the idle state of the -thk  spectral subband 

1,kH     Hypothesis that indicates the presence of an activity in the channel 

( )X fΦ   Continuous-time power spectral density of signal 

( )d
X fΦ   Powered spectral density of a uniformly sampled ( )X t  

§   Section, subsection or sub-subsection in the thesis 

( )tδ    Dirac delta 

α    Average sampling rate in Hertz 

μ    Energy of the used windowing function 

0,kσ    Estimator’s standard deviation at frequency point kf  for 0,kH  

1,kσ    Estimator’s standard deviation at frequency point kf  for 1,kH  

dμ    Energy of the discretised windowing function 

nβ    Instantaneous sampling rate at nt  in Hertz 

B    Monitored frequency range(s) starting at minf  and is of width B  

( )T tε    Truncation error of the reconstruction formulas  

{ }1 2( , , ),N nx t t t tF …  Fourier Transform of with respect to nt , 2
1 2( , , ) nj ft

N nx t t t e dtπ+∞ −

−∞∫ …  

2( , )m σN   Normal distribution of mean m  and variance 2σ  
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( )n tp    Probability density function of the -thn  sample point  

( )SDF tp    Sample-point density function 

( )X fP    Continuous-time periodogram of the random process ( )X t  

rt    Initial time of the -thr signal analysis window in seconds 

( )tS    Sampling signal 

rT    -thr signal analysis window [ ]0,r r r T= +T t t  

kΔ    Maximum allowed probability of false alarm for the -thk  subband 

k    Minimum sought probability of detection for the -thk channel 

kγ    Hypothesis testing threshold for the -thk  subband 

c    One-sided Chebychev’s inequality parameter, positive integer 
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Chapter 1 

Introduction 
 
 
 
 
 
 
In today’s information driven societies, wireless communication applications are viewed as 

indispensible essentials. The overwhelming demand on wireless data transfer services has 

led to new communication paradigms emerging on a regular basis, creating new 

formidable challenges to systems designers. It is envisioned that Digital Signal Processing 

(DSP) will be a key element/player in accommodating the additional flexibility and 

features requested by the communication systems/services of the future. However, uniform 

sampling limitations can hamper, in some cases, the DSP opportunities of taking an earlier 

and more principal role in the information treatment chain. This is particularly severe when 

handling high frequency wideband signals at the data receiver end. Consequently, 

alternative sampling and processing techniques and methodologies are sought. 

This research is an investigation into the utilisation of nonuniform sampling in 

multichannel communication systems. It is shown that such a sampling approach has the 

ability to resolve a number of persistent digital signal processing problems in certain 

scenarios. This chapter highlights the impetus of this work, defines the problem tackled 

and outlines the adopted methodology. It also states the focus and scope of this research 

along with its original contributions.  

 
1.1 Motivation 
 

Traditional/classical DSP uses uniformly distributed sampling grids to collect data of the 

processed signals. Uniform sampling brings undeniable numerous benefits to the users, 

with simplicity of the signal processing algorithms being among the most popular ones. On 

the other hand, the use of uniform sampling is always accompanied by burdensome 
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aliasing effects that prevent the user from accomplishing virtually any DSP task if the 

processed frequency range is wider than half of the sampling rate. Even if the bandwidth of 

a multiband signal is less than the abovementioned limit, undesirable aliasing may still be 

present, obstructing the user from handling a given DSP problem. 

Some signal processing tasks require dealing with fairly narrowband signals placed 

somewhere within overseen frequency ranges at a priori unknown positions. Examples of 

such scenarios can be found in instrumentation (e.g. when narrowband or multiband 

signals with unknown centre frequencies are acquired and analysed, as in spectrum 

analysers) and in communication systems (e.g. when many transmitters that use various 

carrier frequencies communicate with a single receiver). Digitally processing such signals 

is not an issue when the ranges are relatively narrow as sufficiently high uniform sampling 

rates can be applied. It becomes more problematic if the processed bandwidth is 

considerably wide imposing uniform sampling rates possibly higher than the currently 

available Analogue to Digital Converters (ADCs) can cope with. Such signal processing 

tasks are still often tackled with analogue techniques or, if digital technology is to be 

deployed, the data acquisition hardware has to resort to specialised solutions. This will 

increase the implementation cost of the system. Ultimately, with the ever-expanding trend 

of higher rates and more reliable as well as complex data services, i.e. wider bandwidth 

requirements, the DSP solutions have two routes to take: 1) faster more complex 

computationally capable hardware and 2) cleverer, more tactful sampling and processing 

strategies (whenever applicable). Here the second option is pursued and its aspects as well 

as possible benefits are explored. 

Nonuniform randomised sampling and processing, i.e. randomised signal processing, is an 

alternative approach that offers economically effective solutions to many digital signal 

processing problems in wide frequency range(s) [1-7]. It relies on combining carefully 

designed sampling schemes and appropriate signal processing algorithms to mitigate the 

effects of aliasing. Nonuniform sampling is introduced intentionally to provide additional 

flexibility and opportunities. It allows sampling narrowband signal(s) residing within wide 

frequency ranges at significantly low rates, easing the sampling rate requirements of the 

digital signal processing block(s). The usage of lower sampling rates (well below the 

uniform sampling ones) means lower quantity of collected data. This can lead to 

considerable savings in the processing power, which implies more power efficient systems. 
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New emerging communication paradigms and applications have motivated our interest in 

the promising aspects and solutions of randomised signal processing. Below, two potential 

communication systems that call for the developed algorithms are highlighted. At this 

point, we emphasise that the processing techniques provided in this research are not 

tailored or do not target a particular application/system with its specific requirements. They 

are generic and can be adapted to a given scenario whenever their benefits are apparent and 

can be realised. 

 
Cognitive Radio (CR) 
 

The current spectrum allocation policies adopted by governments give exclusive rights to 

legacy users and services to operate over predetermined spectrum bands. Any attempt by 

an unlicensed service to use subscribed spectrum band(s) is not permitted and is regarded 

as a violation of the regulations. Since wireless application and services have been growing 

rapidly during the last two decades, spectrum limited resources are facing huge demands 

and becoming congested. Clearly, the current regulatory framework does not offer any 

solutions or flexibility to the growing spectrum scarcity problem. Recent surveys carried 

out by the Federal Communications Commission (FCC) in the United States, and similar 

agencies in other countries, indicated that the spectrum is hugely underutilised in a given 

time duration and/or in a certain geographical region [8-10]. For instance, a field spectrum 

measurement taken in New York City has shown that the maximum spectrum occupancy  

is only 13.1% from 30 MHz to 3 GHz [11].  This called for new spectrum management 

regulations to resolve the conflict between spectrum scarcity and its underutilisation. 

The emerging Cognitive Radio (CR) technology aims at alleviating the spectrum scarcity 

predicament [10-13] and is a key part of the envisioned Dynamic Spectrum Access (DSA) 

paradigm. It ushers in a new form of radio that is aware of its environment and can 

opportunistically use the temporary vacant spectral bands (referred to as spectral holes) 

without causing harmful interference to an inactive primary/licensed user. Figure 1.1 

exhibits the concept of spectral holes and the possibility of exploiting unutilised spectrum 

regions in a given time frame in a certain geographical region. Evidently, spectrum sensing 

has critical functionality in CR networks that allows unveiling the spectral holes for 

opportunistic access and precedes any action taken by the CR(s). This triggered an 

enormous interest in spectrum sensing techniques and their various aspects, e.g. [10, 14-
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20]. Some of these methods are addressed in Chapter 4. Cognitive radios have to 

continuously scan the spectrum to identify any spectrum opportunities that may arise or the 

presence or reappearance of the primary user. In the latter case, it must switch its 

transmission to another vacant band to avoid clashing or interfering with the licensed user. 

Therefore, a reliable spectrum sensing routine of an affordable complexity is essential for 

CR technology. 

 
Figure 1.1: A graphical illustration of the activity of certain frequency bands over time 

and frequency. Some of these bands are inactive within a certain geographical region and 
at a certain time resulting in an underutilised spectrum. 

The cognitive radio of the future will be capable of scanning a wide range of frequencies, 

i.e. in the order of several GHz [15, 17, 21-24]. Spectrum sensing regime over such wide 

bandwidths faces considerable technical challenges, especially in terms of developing 

reliable signal processing algorithms. A classical solution is to employ a bank of 

narrowband bandpass filters at the RF frontend to search one narrow frequency band at a 

time. Any of the classical detection methods can be used to determine the status of the 

subband in question, e.g. energy detector [25]. This approach requests an unfavourably 

large number of RF components whose parameters should be fine-tuned and preset. 

Alternatively, in order to simultaneously search multiple subbands, we need a wideband 

circuit utilising a single wideband RF front-end followed by premium high-speed 

acquisition device(s) and DSP. Such solutions typically involve spectrum estimation of the 

wideband incoming signal [15-20]. A major challenge lies in the prohibitively large 

sampling rates imposed by conventional spectral estimation methods that operate at or 



1.1 Motivation 
 

5 

 

above the Nyquist rate. Ultimately, the bottleneck for deploying DSP for such tasks is the 

required wideband ADC running at excessively high sampling rates, e.g. several giga-

samples per second [19, 23], accompanied with sufficiently fast DSP to accommodate the 

high rate of the data streaming. 

On the other hand, the use of considerably low rate intentional nonuniform sampling with 

suitable spectral analysis tools permits the simultaneous scanning of the spectral subbands 

that form the overseen wide frequency range(s). This noticeably relaxes the stringent 

sampling requirements on the data acquisition module(s) and the subsequent signal 

processing involved. The randomised signal processing methodology is behind such 

benefits, as demonstrated in the rest of this thesis.  

 
Wireless Sensor Networks (WSNs) 
 

A WSN is a wireless network consisting of spatially distributed devices (sensors) 

cooperatively monitoring physical or environmental conditions such as vehicle tracking 

(e.g. [26]) , energy evaluation (e.g. [27]), water quality measurements (e.g. [28]) and many 

others. These networks are normally comprised of large numbers of sensor nodes. Each 

node has wireless communication capability and some level of intelligence for signal 

processing and data networking. In many WSN applications, the network can be placed in 

a remote area where direct access to the mains is not feasible. The nodes are battery 

powered and re-charging might not be practical. Among various sensor networks 

parameters, power consumption is believed to be among the most critical ones. The 

lifetime of any node in the network is determined by the battery life, thereby requiring the 

minimisation of power expenditure. Thus there are challenges to be faced in designing 

energy efficient DSP and communication algorithms [26]. 

Sensor networks have been under intensive research where various proprietary and 

standards-based networks have emerged. Several protocols, network topologies and data 

aggregation methods are used depending on the application [29, 30]. It is agreed upon that 

communication between the network components is the highest power consumer. 

Therefore, performing data aggregation locally or within an intermediate node would save 

power by reducing the number of distant transmissions. Let’s consider a particular setup 

and applications of WSNs. The network is arranged hierarchically such that groups of 

sensor nodes are controlled by distinct components which have more computational and 
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communication resources as well as decision-making capabilities. These components, 

called the control/master nodes/hubs, communicate to the base station, perform data 

aggregation and possibly receive data. They act as gateways between sensor nodes and the 

main base station. The sensor nodes only communicate with the master node in one 

direction. Figure 1.2 demonstrates the sensor network layout discussed. 

Each of the sensor nodes can communicate to its corresponding control node over a certain 

dedicated bandwidth which is typically narrow depending on the kind of data exchange 

handled, e.g. few MHz as in [27] and [28]. As a result the bandwidth monitored by the 

control node is made up of a number of non-overlapping subbands that are each allocated 

to a given sensor. The master node has to sweep through the spectrum, identify who is 

communicating and process the data. If uniform sampling is used, the required sampling 

rates can be significantly high, especially if the number of nodes is very large. This entails 

processing large quantities of data demanding more of the scarce power resource. 

 
Figure 1.2: The layout of the discussed WSN (star topology). It comprises the base station 

and the control nodes which collect data from a number of sensing nodes. 

In applications with occasional transmissions, e.g. disaster management or fire detection, 

the number of nodes reporting concurrently to the control node or the number of control 

nodes communicating with the base station is expected to be low. Accordingly, the 

spectrum utilisation can be assumed to be low. Nonuniform sampling can exploit such 

features, unlike uniform sampling, and use low sampling rates to effectively detect active
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subband(s) and possibly recover the transmitted message(s). As a result, WSNs is a 

potential application area that can benefit from the algorithms devised in this research.  

In summary, nonuniform randomised sampling demands lower sampling rates compared to 

uniform sampling when employed in wideband multichannel communication systems that 

are characterised by low spectrum occupancy. It is noted that the latter premise becomes 

critical only when signal reconstruction is sought as illustrated below. It is strongly 

believed that nonuniform sampling can bring new opportunities and numerous benefits to 

wideband communication systems in general and to the applications discussed above in 

particular. Although the developed algorithms here do not target a particular application, 

the provided solutions can encourage designers and researchers to consider applications 

and systems that heretofore were technically or economically unviable due to the classical 

DSP limitations. 

 
1.2 Problem Formulation, Adopted Methodology, Focus and Aims 
  

The wideband multichannel communication systems investigated here comprise L  

transmitters communicating with a single receiver over non-overlapping spectral subbands. 

These systems support heterogeneous wireless devices that may adopt different wireless 

technologies for their transmissions. The system subbands (alternatively called channels) 

are assumed to be contiguous and of equal width, i.e. CB . The central frequencies of all 

channels are known, however no previous information is available on their activities or the 

characteristics of the incoming transmissions. Hence the range of frequencies monitored by 

the receiver is [ ],min minf f B= +B  where minf  is the initial frequency point in the range of 

interest, CB LB=   is the total overseen bandwidth and max minf f B= +  is the highest 

frequency possibly present in the signal. The maximum number of simultaneously active 

subbands at any time is AL , i.e. the joint width of the active channels never exceeds 

A A CB L B= , and AB B  is the maximum expected spectrum occupancy. The received 

multiband signal is: 
1

( ) ( )M
mm

x t x t
=

=∑  where AM L≤  is the unknown number of the 

concurrently active channels and ( )mx t  is the incoming transmission corresponding to the 

-thm  active subband. Figure 1.3 demonstrates an example of the described system.
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Figure 1.3: A number of transmitters operating over different carrier frequencies. The 

receiver deals with a number of concurrently active subbands constituting the multiband 
incoming signal. Six ( 6M = ) out of L  monitored channels are simultaneously active. 

Since the spectral support of the present multiband signal is a priori unknown, the use of 

classical DSP at the receiver would impose uniform sampling rates higher than Nyquist, 

i.e.  max2 f , or at least 2B . The latter can be achieved if bandpass sampling is employed for 

the entire frequency range or the signal is down-converted to baseband before sampling 

[31]. If the examined bandwidth is wide (e.g. hundreds of MHz as in CRs) the sampling 

rate constraint demands specialised data acquisition hardware and high speed DSP. 

Traditionally to avoid such onerous requirements, the signal occupying a targeted subband 

is demodulated by multiplying the incoming signal by the channel's carrier frequency. This 

positions the targeted subband near/at the origin. Subsequently, the signal is filtered and 

sampled at rates proportion to the subband's bandwidth, e.g. 2 CB  and not max2 f  where 

maxCB f<< .  In the considered systems the positions of the active subbands are unknown 

and as a result the demodulation method cannot be efficiently utilised. 

Capitalising on the potential of the randomised sampling to suppress the harmful aliasing 

phenomenon, we show here that we can survey the activity of the system subbands whilst 

operating at notably low-rate nonuniform sampling (well below the minimum permissible 

uniform sampling counterpart). This leads to exploiting the receiver (sensing device) 

resources such as power more effectively and avoiding the possible need for high-cost 

specialised fast hardware. After determining the status of all the channels (i.e. spectrum 

sensing) further processing can be requested, such as signal reconstruction to recover the 
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transmitted message (either fully or some of its characteristics). According to Landau [32], 

the minimum theoretical rate that allows the full reconstruction of the sampled signal is 

2 AB . Maintaining the sampling rate above, or arbitrarily close to Landau (if needed), does 

not undermine the benefits of the developed algorithms for low spectrum occupancy 

applications as AB B<< , e.g. in cognitive radio and some WSN applications. However, for 

uniform sampling, the sampling rate is directly proportional to AB B>>  albeit AB B . 

In this thesis, we focus on designing efficient reliable spectrum sensing algorithms 

illustrating that the operational sampling rates can be arbitrarily low for certain randomised 

sampling schemes. This stems from the fact that in some cases reconstructing the sampled 

signal might not be sought. For instance, in cognitive radio a dual-radio architecture is 

proposed [17, 33-35] where one radio chain is dedicated to spectrum monitoring and the 

other handles the data transmission/reception. The developed novel randomised-sampling-

based spectrum sensing approach relies on the spectral analysis of the incoming signal. 

This permits the simultaneous sensing of all the channels in lieu of inspecting one subband 

at a time. Sensing methods that are based on nonparametric spectral analysis are 

recognised as low complexity efficient candidates for Multiband Spectrum Sensing (MSS) 

[13, 15-19]. This approach is adopted here, noting that overseeing the activity of the 

system subbands (spectrum sensing) does not require determining the detailed spectral 

shape(s) within the monitored wide bandwidth. Thus conventional spectral analysis 

techniques, whose aim is to estimate the signal’s exact spectrum, can entail unnecessary 

complications. Accordingly, we utilise periodogram-type analysis tools to estimate a 

frequency representation of the signal. An exact estimation of the signal's spectrum, e.g. 

Power Spectral Density (PSD), is not the target and any frequency representation (e.g. 

biased windowed PSD) that facilitates detection is sufficient. We adopt estimators for a 

number of investigated randomised sampling schemes and study their behaviours as well 

as adequacy for the tackled problem, i.e. MSS and not PSD estimation. The aim of this 

research is not only to demonstrate the capability of the introduced randomised-sampling-

based multiband spectrum sensing, but also to provide the user with prescriptive practical 

recommendations for using the developed approach. This includes answering: how fast to 

sample or how long to observe the incoming signal for in a given scenario. It is noted that 

the simplicity and low computational complexity are among the main merits of the 

proposed sensing method compared to other MSS techniques. Given the scope of this 
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study, some adverse system conditions related to communication systems, for example 

interference, channel modelling and propagation loss, are not analysed in this thesis. 

 
1.3 Summary of Contributions 
 

The original contributions of this research can be summarised by: 

Chapter 3 

• Developing the analytical expressions for the statistical characteristics of adopted 

periodogram-type estimators for a number of randomised sampling schemes and wide 

sense stationary signals. The examined schemes are Total Random Sampling (TRS), 

Random Sampling on Grid (RSG) and Stratified Sampling with Equal Partitions 

(SSEP). Those formulas capture the capability of randomised sampling to suppress the 

aliasing phenomenon within a wide range of frequencies. They also determine the 

accuracy of the estimation process where the adopted spectral analysis tools are 

unbiased estimators of detectable frequency representations of the incoming signal 

albeit the used sampling rates, i.e. suitable means for the pursued low rate spectrum 

sensing routine. 

• Analysing quantitatively the levels of smeared-aliasing∗ for the studied randomised 

sampling schemes. This includes measuring the variations of the smeared-aliasing level 

of SSEP in the vicinity of the strong signal spectral components. 

• Providing analytical expressions for the spectrum dynamic range for each of the TRS, 

RSG and SSEP schemes. General guidelines on the number of required sample points 

are presented to guarantee particular dynamic range values. 

Chapter 4 

• Analysing the impact of processing cyclostationary communication signals on the 

performances of the periodogram-type estimators: 

                                                            
∗  When a bandlimited signal is periodically sampled, the spectrum of the discrete-time data consists of scaled 
replicas of the spectrum of the continuous-time signal appearing at multiples of the sampling rate.  With 
nonuniform sampling, the spectrum of the sampled data includes that of the underlying continuous-time 
signal plus a wideband bias-like component (see Figure 2.4). The latter represents the smeared-aliasing 
phenomenon whose level is dependent on the characteristics of the sampling scheme.     
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- The adopted estimators continue to be suitable tools for the spectrum sensing task. 

Their expected values contain detectable spectral components related to the present 

transmissions and are independent of the position of the time analysis window at 

certain frequency points.  

- The estimation accuracy can notably deteriorate at selected frequencies that are related 

to the nature and parameters of the modulation scheme employed at the transmitter, 

e.g. the carrier frequency and the symbol rate. 

Chapter 5 

• The development of a novel randomised-sampling-based multiband spectrum sensing 

technique. It permits using significantly low sampling rates compared to the uniform 

sampling approaches utilising the aforementioned adopted spectral analysis tools; the 

rates can be arbitrarily low for some randomised sampling schemes. 

• Demonstrating that the varying smeared-aliasing feature of stratified sampling imposes 

a limit on the minimum operational randomised sampling rate for the multiband 

spectrum sensing pursuit.  

• Reliability guidelines are derived to ensure that the proposed spectrum sensing 

technique meets the sought detection probabilities in a given scenario. They depict the 

trade-offs between the needed sampling rate and the length of the signal observation 

window for each of the TRS, RSG and SSEP schemes. 

 
1.4 Notations 
 

This section lists the definitions of a selected number of crucial notions repetitively used in 

the following chapters. 

 
Fourier Transform and Windowed Fourier Transform 

 
Fourier Transform (FT) of a continuous-time waveform ( )x t  is defined by: 

2( ) ( ) j ftX f x t e dtπ
+∞

−

−∞

= ∫  

and subsequently: 
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 2( ) ( ) j ftx t X f e dfπ
+∞

−∞

= ∫ . 

In case the waveform is analysed within a finite time window [ ]0,r r r T= +T t t  starting at 

the time instant rt  and is of width 0T , we have: 

                           
0

2 2( , ) ( ) ( ) ( ) ( )
r

r

T
j ft j ft

W rX f x t w t e dt x t w t e dtπ π
+ +∞

− −

−∞

= =∫ ∫
t

t

t  

where ( )w t  is the windowing function of width  0T   and aligned with rT .  
 

A Bandlimited Signal and its Bandwidth 
 

A signal is bandlimited to maxf  if its FT or PSD diminishes for maxf f> .  Consequently, it 

has a bandwidth of max2 f . This is well understood for Low Pass (LP) signals whilst the 

confusion normally arises for Bandpass (BP) and Multiband (MB) signals. In this case, we 

adopt the engineering notion where the single-sided bandwidth effB  of a BP/MB signal is 

the sum of the magnitude of the set of positive frequency range(s) where the signal has 

nonzero spectral components (see Figure 1.4). For the LP case maxeffB f= . 

 
Figure 1.4: Spectrum. (a) BP signal and (b) MB signal 1 2effB B B= + . 

 
Spectral Support Function 
 

The spectral support is a concept that exhibits the position(s)/location(s) of the processed 

signal spectral activity. It is a binary function that takes two values: ( ) 1SSF f =  if the 

spectrum of the signal is nonzero at f  and  ( ) 0SSF f =  otherwise. It describes the 

presence or absence of the signal’s spectral components at certain frequencies without 

giving any indication of the spectrum characteristics, e.g. magnitude or shape. 
 
Autocorrelation Function and Power Spectral Density 
 
The autocorrelation function of a real continuous-time stochastic process is defined by: 

[ ]( , ) ( ) ( )XR t t E x t x tτ τ+ = +  where τ  is the time-shift. Power Spectral Density (PSD) is 
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defined as the FT of ( , )XR t t τ+  with respect to τ . For wide sense stationary processes, 

both the autocorrelation function and PSD are independent of time. Similar terminology 

applies to discrete-time processes. All the PSDs in the sequel are double sided. 

 
1.5 Thesis Outline 
 

After highlighting the scope, objectives and contributions of this research in the current 

introductory chapter, Chapter 2 provides a brief overview of the sampling theory in its 

uniform and nonuniform branches. Selected topics that are believed to be relevant to the 

theme of this research are discussed, including randomised sampling and its processing. 

This chapter lays the foundation for the work that follows in the thesis. 

In Chapter 3, we state the aim behind conducting spectral estimation and discuss the 

related work in the literature. Spectrum estimators for a number of studied randomised 

sampling schemes are then introduced and their characteristics are examined for wide 

sense stationary signals. The detailed derivations of the developed analytical expressions 

are included in Appendix A, B and C. Whereas in Chapter 4, the impact of processing 

cyclostationary signals on the behaviour of the adopted estimators is evaluated and the 

detailed calculations are presented in Appendix D. 

The spectrum sensing problem is formulated in Chapter 5 discussing existing sensing 

methods. A novel multiband spectrum sensing approach is proposed utilising the 

periodogram-type estimators analysed in Chapters 3 and 4. Reliability guidelines are 

developed to ensure that the proposed technique for each of TRS, RSG and SSEP schemes 

meet the detection probabilities specified by the user.  

Finally, the overall contributions of this research are summarised in Chapter 6 addressing 

the potential future work related to the results presented in this thesis. 

Acronyms, abbreviations, notations, special functions or operators and principle symbols 

are given in the preface section of this document. 
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Chapter 2 

Sampling of Bandlimited            
Signals 

 
 
 
 
  
 

Although collecting the signal samples (i.e. the first step towards processing the signal 

digitally) in a uniform periodic manner is the widely utilised and known form of sampling, 

it is not the only possible technique. In some scenarios, e.g. in the studied multichannel 

communication systems, resorting to intentional nonuniform random sampling can provide 

additional flexibility and opportunities that are unavailable with uniform sampling due to 

the latter’s aliasing limitation. Before engaging in the analysis and deployment of 

randomised sampling, we give a general overview of the sampling theory in its uniform 

and nonuniform branches. The aim is not to give a review of the entire field since it has a 

vast history and various comprehensive reviews already exist for the sampling theory in 

general, e.g. [36-44],  as well as for nonuniform sampling in particular, e.g. [1, 2, 6, 45-

47], containing extensive bibliographies on related topics. We present the material that is 

believed to be most relevant to this research and serves as preliminaries for the analysis as 

well as discussions in the following chapters.  

 
2.1 Sampling Process and Spectrum of Sampled Data 
 

Any sampling process, which converts a continuous-time signal ( )x t  into its discrete-time 

representation ( )dx t , is a multiplication operation described by: 

  ( ) ( ) ( )dx t x t t= S .                        (2.1) 

The sampling signal ( )tS  comprises an infinite series of Dirac delta pulses and is given   

by (see Figure 2.1): 
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         ( ) ( )n
n

t t tδ
+∞

=−∞

= −∑S                                                   (2.2) 

where nt ’s are the sample points along the time axis. For uniform sampling, the sampling 

instants are equidistant and separated by the sampling period UST , i.e. n USt nT= . The 

multiplication in (2.1) translates into a convolution operation in the frequency domain and 

the spectrum of the sampled waveform is: 

    { }( ) ( ) ( ),dX f X f t t= ∗F S           (2.3) 

where { } 2( ) ( ), ( ) j ftX f x t t x t e dtπ+∞ −

−∞
= = ∫F , { }.,tF  is the Fourier Transform (FT) with 

respect to t  and ∗  denotes the convolution operation. In (2.3) signals ( )x t  and ( )tS  are 

assumed to be of a deterministic nature and their FTs exist.  

( ) ( )nn
t t tS δ+∞

=−∞
= −∑

( )x t ( )dx t

 
             Figure 2.1: An ideal sampler.  

Many communication signals can be modelled as random stationary or cyclostationary 

processes. The FT of one or more of their realisations or waveforms is random. 

Additionally, stationary and cyclostationary signals are not absolutely integrable, i.e.  

( )x t dt
+∞

−∞
< ∞∫ , and hence do not have a direct FT frequency representation [48]. Similar 

arguments apply to a randomised sampling signal which is a stochastic process. Power 

Spectral Density (PSD) is an alternative frequency representation that is normally utilised 

to describe the spectral content of random signals. From §1.4, the PSD is: 

{ }( , ) ( , ),X Xt f R t t τ τΦ = +F  where [ ]( , ) ( ) ( )XR t t E x t x tτ τ+ = +  is the signal’s 

autocorrelation function. For Wide Sense Stationary (WSS) processes, ( , ) ( )X XR t t Rτ τ+ =  

and 2( ) ( ) j f
X Xf R e dπ ττ τ

+∞
−

−∞

Φ = ∫ . As a result, the spectrum of the sampled signal is given by: 

           ( ) ( ) ( )d
X Sf f fΦ = Φ ∗Φ          (2.4) 
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where ( )S fΦ  is the PSD of the sampling process presumed to be WSS.  

Typically, the ensemble average, i.e. [ ].E , is obtained from the time averages by assuming 

that the processed wide sense stationary or Wide Sense Cyclostationary (WSCS) signals 

are Wide Sense Ergodic (WSE) and Wide Sense Cycloergodic (WSCE) respectively [3, 

48-50]. This stems from the fact that any practical system has access to a finite number of 

the signal’s realisations. For instance, Peebles [48, p. 189] states that: 

“Ergodicity is a very restrictive form of stationarity and it may be difficult to prove that it 
constitutes a reasonable assumption in any physical situation. Nevertheless, we shall often 
assume a process is ergodic to simplify problems. In the real world, we are usually forced 
to work with only one sample function of a process and therefore must, like it or not, derive 
mean value, correlation functions, etc., from the time waveform. By assuming ergodicity, 
we may infer the similar statistical characteristics of the process. It must be remembered 
that all our theory only serves to model real-world condition. Therefore, what difference 
do our assumptions really make provided the assumed model does truly reflect real 
conditions?” 

and Hayes [49, p.93] enunciates: 

“In most applications determining whether or not a given process is ergodic is not 
practical. Therefore, whenever a solution to a problem requires knowledge of the mean, 
the autocorrelation or some other ensemble average, the process is typically assumed to be 
ergodic and time averages are used to estimate these ensemble averages. Whether or not 
this assumption is appropriate will be determined by the performance of the algorithm that 
uses these estimates”. 

Accordingly, for WSE processes we have: 

[ ]
0

0
00

1( ) lim ( )
2

T

X T
T

m E x t x t dt
T→+∞

−

= = ∫                     (2.5) 

                                    [ ]
0

0
00

1( ) ( ) ( ) lim ( ) ( ) .
2

T

X T
T

R E x t x t x t x t dt
T

τ τ τ
→+∞

−

= + = +∫         (2.6) 

The reader is referred to Garden [51] and Papoulis [52] where the ergodicity property is 

carefully treated and rigorously analysed. 
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2.2 Classical DSP and Uniform Sampling  
 

Digital signal processing is deployed in a vast range of areas including telecommunication, 

digital control, biomedical sciences and many others. It introduced evolutionary changes to 

those fields benefiting from a well established theory and algorithms developed throughout 

the last 10 decades. The majority of widely used digital signal processing is uniform 

sampling based, i.e. classical DSP (a term used throughout the thesis). This is due to the 

simplicity of algorithms that can be defined in such environments. One might rightly think 

that handling well defined uniformly distributed data samples is easier than contending 

with randomly/irregularly spread ones whose positions are specified in a probabilistic 

sense. Martin in [2, p. 13] presented an interesting discussion pointing out that neither 

uniform nor nonuniform sampling technique is universally superior in terms of 

performance and/or the ease of applicability. Each should be evaluated in light of the 

problem tackled and its requirements. Generally, relating the samples to their underlying 

continuous process (i.e. reconstruction), going back and forth between time and frequency 

domain (duality) via processing algorithms (e.g. FFT and filtering/convolution) can be 

more challenging for nonuniform sampling compared to uniform. Nevertheless, the 

aliasing defect in the latter imposes limitations on the nature of the processed signals. This 

makes the uniform sampling approach less attractive in terms of feasibility and/or cost 

viability in certain scenarios. 

Below, we start with the classical uniform sampling theory and its famous reconstruction 

formula. As the focus of this research is exploiting the salient features of nonuniform 

sampling, the elaboration on the sampling theory is kept concise and mostly informative. 

 
2.2.1 Introduction to WKS Sampling Theorem 
 

According to Whittaker-Kotelnikov-Shannon (WKS) sampling theorem or reconstruction 

formula, a bandlimited continuous-time signal ( )x t  can be represented by:                       

             ( ) ( )sinc( )US US
n

x t x nT f t n
+∞

=−∞

= −∑                      (2.7) 

where max2USf f≥  is the uniform sampling rate, 1/US UST f=  and maxf  is the highest 

frequency present in the signal. The rate max2Nyqf f=  is known by Nyquist sampling rate 
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following the contribution of Nyquist in [53]. Some books refer to WKS simply as 

Shannon who introduced the sampling theorem in the form known nowadays [54]. An 

excellent historical review of the development of the sampling theorem and interpolation in 

general is given in [55]. 

The significance of (2.7) is that a bandlimited signal can be uniquely determined by its 

equidistant samples via an explicit formula. The bandlimited constraint implies: 

  
max

max

2 2( ) ( ) ( )
f

j ft j ft

f

x t X f e df X f e dfπ π
+∞

−∞ −

= =∫ ∫ .                   (2.8) 

WKS, named the cardinal series in some references such as [43], has been proved in 

several ways in the open literature, e.g. [2, p. 21] and [43, p.35]. We represent the one that 

is referred to as the “physical interpretation” in [43]. 

 

Figure 2.2: Spectrum of a uniformly sampled signal ( 0.667r = ). a) Continuous baseband 
bandlimited signal ( )x t  of max 500f = Hz, b) the magnitude FT of ( )x t  from the observation 
window in (a) and c) the magnitude spectrum of the sampled signal such that max3USf f= . 
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We assume that the processed signal is of a determinstic nature. Utilising the Fourier 

expansion of the periodic sampling signal ( )tS  and noting that uniform sampling is 

inherently deterministic, we obtain: { }( ), ( )US USn
t t f f nf+∞

=−∞
= −∑F S δ . The FT of (2.1) then 

yields: 

                             ( ) ( ) ( ) ( ).d
US US US US

n n
X f X f f f nf f X f nf

+∞ +∞

=−∞ =−∞

= ∗ − = −∑ ∑δ         (2.9) 

From (2.9), it can be seen that the sampled signal contains scaled replicas (aliases) of the 

original signal at multiples of the sampling frequency USf . The Nyquist rate requirement     

( US Nyqf f≥ ) ensures that the shifted images of ( )X f  in the spectrum of ( )dx t  do not 

overlap. Subsequently, the underlying continuous-time signal can be restored from its 

uniformly distributed samples by using an ideal low-pass filter whose frequency response 

is described by:  

            max

max

( )
0
US

R

T f f
H f

f f
⎧ ≤⎪= ⎨ >⎪⎩

           (2.10) 

e.g. see Figure 2.2. Thus (2.7) is proven by performing the filtering operation in the time 

domain. 

Below, the impact of limiting the number of captured samples is addressed and some of the 

WKS extensions that are relevant to the theme of this research are discussed. 

 
2.2.2 Truncation Error and WKS Extensions 
 

In practice, no technical device is able to capture and store data for an infinite duration of 

time as requested by WKS theorem in (2.7). The latter has to be truncated to encompass a 

finite set of N  samples collected within a time analysis window [ ]0,r r r T= +T t t . This 

introduces an error and it becomes important to know how accurate a signal reconstruction 

is when obtained from a truncated formula. Specifically, the magnitude of the error:  

                    
/ 2 1

/ 2
( ) ( ) ( )sinc( )

N

T US US
n N

t x t x nT tf nε
−

=−

= − −∑ .                            (2.11) 

Assessing the truncation error (2.11) is generally not a straightforward task since it 

depends on a large number of unknown signal samples. It has been noticed long ago that 
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the truncated WKS formula can provide poor reconstruction quality. There is an extensive 

literature on estimating the error ( )T tε  dating back to the 1960’s in an attempt to quantify 

its upper bound, e.g. [56-62]. Various analysis tools have been deployed for this purpose 

such as complex variables in conjunction with inequalities from theory of functions (e.g. 

[56, 60, 62]), real variable considerations (e.g. [58]) and bounds on linear systems (see [39, 

44] for reviews). It is noted that the majority of the derived truncation error bounds are 

strictly upper bounds. This is a clear message that discarding an infinite number of samples 

does not necessarily lead to an infinite truncation error. Intuitively, ( )T tε  rises quicker 

at/outside the boarders of the rT  samples interval as in the case with extrapolation.   

Several methods, e.g. [61] and [62], have essentially improved the convergence of the 

truncated sampling theorem, i.e. lower truncation error for a given N , by using 

reconstruction filters with particular shapes. They exploit the flexibility offered by 

oversampling the signal which is typical in practical systems, i.e. max / 2USf rf=  such that 

0 1r< <  (see Figure 2.2). From (2.9), the continuous-time signal can be reconstructed by 

passing the sampled signal through a filter whose frequency response is given by:  

           
max

max

max max

when 
( ) 0 when 

arbitrary when  .

US

R US

US

T f f
H f f f f

f f f f

⎧ ≤
⎪= > −⎨
⎪ ≤ ≤ −⎩

                 (2.12) 

The single-sided bandwidth RB  of the reconstruction filter can range from maxf  to 

maxUSf f− . Oversampling, i.e. the presence of an unoccupied band, gives freedom in 

shaping the reconstruction filter (2.12). This leads to an infinite number of possibilities in 

designing different reconstructions where all the relevant formulas reduce to:  

         
/ 2 1

/ 2
( ) ( ) ( )

N

US R US
n N

x t x nT h t nT
−

=−

= −∑                             (2.13) 

where ( )Rh t  is the impulse response of the filter described by (2.12). Figure 2.3 shows the 

maximum of sup( ( ) ) /
r

n T
t

t Aε
∈

=
T

E  for 1,2, 3000n = …  attained from time-limited independent 

realisations of a wide sense stationary signal bandlimited to max 500f = Hz. Bounded 25 

uniformly collected signal samples, max3USf f=  and a varying maxRB f  are considered. The 

depicted reconstruction filters which comply with (2.12) include: raised cosine as in [61] 
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and filters obtained from convolving rectangular shapes inspired by the self-truncating 

series enunciated by Helmes and Thomas in [62]. The frequency response of the latter 

filter is given by:  

, max
max max

( ) ( ) rect rect
m

R m US R
R R

f mfH f T B f
B f B f

⎫⎧⎛ ⎞ ⎛ ⎞⎪ ⎪= + ∗⎨ ⎬⎜ ⎟ ⎜ ⎟+ −⎪⎝ ⎠ ⎝ ⎠⎪⎩ ⎭
              (2.14) 

where m  is the number of the convolutions. According to [62], (1 ) /m N r eπ= −  achieves 

the lowest truncation error bound, e  is the exponential function. The filter in (2.14) that 

uses this value of m  is denoted by ,R stH . Figure 2.3 clearly demonstrates the capability of 

other reconstruction methods that utilise the available empty spectral bands of the 

oversamples signal to achieve higher rates of convergence compared to WKS. In [63], an 

experimental study is carried out on the performance of (2.13) for various reconstruction 

filters in absence as well as presence of noise. 

n
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…
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Figure 2.3: Truncation error of a number of reconstruction methods of an oversampled 

signals where max 500f = Hz, max3USf f=  and a varying reconstruction filter bandwidth RB .  

Whilst (2.13) represents straightforward variants of (2.7) under the condition max2USf f> , a 

substantial part of the sampling theory literature has been devoted to generalising the WKS 

theorem and extending it. The sampling theorem in the form represented above is tailored 

to 1-D bandlimited signals that are of a lowpass/baseband nature and is confined to the 

uniform sampling environment. WKS extensions include: bandpass, multiband and random 

signals in addition to irregular sampling patterns and many others. The review paper by 

Jerri [44] in the 70’s followed by Unser’s [39] in 2000 which was recently complemented 

by Eldar [36] citing the emerging compressive sensing trend are encyclopaedic surveys 
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outlining the developments in the sampling theory; they also contain extensive 

bibliographies. The extension of the sampling theorem to bandpass and multiband signals, 

which are of an interest in the studied communication systems, are considered in §2.2.4.  

 
2.2.3 Aliasing in Uniform Sampling 
 

The WKS theorem gives sufficient conditions for signal reconstruction; however it 

produces erroronous results when aliasing occurs. Aliasing is classically associated with 

the fact that one sinusoid (or in fact any signal) is indistinguishable from the other at the 

sample points. According to (2.9), if the processed signal ( )x t  has spectral components 

stretching outside the [ ]0.5 ,0.5US USf f−  frequency region, the replicas/aliases of the 

underlying continuous-time signal given by: ( )US USf X f nf− , n∈ ,  will overlap. This is 

also known by the aliasing phenomenon. It arises from not satisfying the sampling rate 

condition of WKS and is attributed to the presence of displaced aliases of ( )USf X f  in the 

spectrum of the discretised signal ( )dx t .  

More interestingly and departing from the above conventional definitions, aliasing in the 

frequency domain can be viewed in terms of being unable to unambiguously identify the 

spectral component(s) of the fundamental continuous-time signal from the spectrum of the 

sampled data. The spectrum of the sampled signal contains scaled identical images of the 

underlying analogue one shifted by multiples of the sampling frequency value (see    

Figure 2.2c). If the user does not have a previous knowledge of the incoming signal’s 

spectral support, he/she would have no means to identify which of the aliases represent the 

original signal. Subsequently, the user is prone to mistakenly considering the wrong 

spectral component(s) of the sampled signal and processing it/them, e.g. for detection 

and/or reconstruction purposes. Evidently, if those replicas overlap, separating them is no 

longer feasible. This interpretation of aliasing is crucial and mostly relevant when handling 

Bandpass (BP) and Multiband (MB) signals, especially the ones with unknown spectral 

support as is the case with spectrum sensing.  

Random processes, which can model communication signals, are of a paramount 

importance in this thesis. It is noted that the spectrum of a uniformly sampled random 

signal comprises scaled and shifted replicas of the underlying continuous one; spectrum in 
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this case refers to the signal’s power spectral density. For example, from (2.4) the PSD of a 

uniformly sampled wide sense stationary signal is given by: 

           ( ) ( )d
X US X US

n
f f f nf

+∞

=−∞

Φ = Φ −∑                     (2.15) 

where ( )X fΦ  is the PSD of the continuous-time stochastic process. Similarly, aliasing is 

understood as the inseparability of ( )USf nfΦ − , n∈ , replicas due to unsuitably selected 

USf . Therefore, uniform sampling DSP is inherently limited by using sufficiently high 

sampling rates in order to avoid the effects of aliasing. This prompts exploring other 

sampling options in order to mitigate such constraints. 

 
2.2.4 Sampling Bandpass and Multiband Signals  
 

A Bandpass signal is a bandlimited signal whose central frequency is not zero and resides 

in the frequency band [ ] [ ], ,U L L Uf f f f f∈ − − ∪  where U Lf f>  and its single-sided 

bandwidth is eff U LB f f= − . Such signals are commonly encountered in communication 

systems where a baseband signal is modulated over the carrier frequency Cf  (typically 

C efff B>> ), e.g. in-phase and quadrature digital modulation. If baseband sampling is 

applied where max2USf f≥ , it would result in unnecessary excessive sampling rates. 

Alternatively, the uniform sampling frequency can be chosen prudently using the bandpass 

 Figure 2.4). The latter represents the smeared-aliasing phenomenon whose level is 

dependent on the characteristics of the sampling sche 

Bandpass sampling was first introduced by Feldman & Bennett [64] and Kohlenberg [65] 

as an expansion of WKS. Good reviews which highlight the main contributions to 

bandpass sampling are presented in [31], [66, p.32] and [67, p.35]. The uniform sampling 

rate that permits signal reconstruction and guarantees the absence of the aliasing effects 

depends mainly on Uf  and effB . It is given by [31]: 

                   
2
/

U
US

U eff

ff
f B

≥
⎢ ⎥⎣ ⎦

                (2.16) 

where x⎢ ⎥⎣ ⎦  represents the largest integer less than or equal to x . It clearly specifies the 

minimum theoretically admissible uniform sampling rate as being 2 effB . In fact, the 
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equality condition in (2.16) is satisfied only for an integer band positioning, i.e. L efff nB=  

where n∈ . The interpretation of USf  in (2.16) can be misleading as not all the sampling 

frequencies higher than the specified minimum are valid [31]. Several plots have been 

produced in the literature to graphically illustrate the permissible rates, e.g. in [31] and   

[66, p.39]. A refined guideline is provided in [31, 68] where: 

     2 2
1

U L
US

f ff≤ ≤
−K K

                     (2.17) 

and K  is a positive integer not exceeding /U efff B⎢ ⎥⎣ ⎦ . Vaughan in  [31] states that: 

 “the theoretical minimum bandpass sampling rate is pathological in the sense that any 

engineering imperfections in an implementation will cause aliasing”.  

Consequently, in [31] a guard band is suggested to circumvent critical choices of the 

sampling rates. The considered real signals are not assumed to have symmetrical spectrum 

component(s) around the carrier frequency(ies), i.e. not symmetrical double sided signals. 

As a result, attempts, e.g. Brown [69], to deploy rates as low as effB  is not applicable. 

A multiband signal is a bandlimited signal that is characterised by M  disjointed spectral 

segments and whose single sided bandwidth is: 
1 m m

M
eff U Lm

B f f
=

= −∑ . Exploiting any 

redundancies in the spectrum of a multiband signal is trickier compared to the BP case, e.g. 

[70, 71]. We have to examine the class of all multiband signals whose bandwidth is effB  

and for each of these signals we check the minimum admissible uniform sampling rate. 

The smallest rate will be 2 effB  which is applicable to a small subset of the considered 

signals. Such rate is rarely achievable and is a special case rather than the rule since it 

requests the processed signal having a particular spectral support; this constraint is 

unreasonable in most practical cases. In summary, BP and MB sampling techniques have 

the potential to significantly minimise the uniform sampling rate of bandpass and 

multiband signals respectively by choosing the sampling frequencies wisely based on the 

spectral content of the signal. Nonetheless, those benefits intrinsically rely on a priori 

knowledge of the signal’s exact spectral support. The lack of such knowledge, e.g. in the 

spectrum sensing problem tackled in this research, undermines the benefits of employing 

BP/MB sampling.  
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Before closing the uniform sampling part, we point out a fundamentally important result in 

the sampling theory. Landau in [32] showed that the theoretically minimum sampling rate 

that allows perfect reconstruction of a bandlimited signal is twice the actual bandwidth of 

the signal and is given by: 2Lndu efff B= . The deployment of nonuniform sampling allows 

the sampling rates to arbitrarily approach the Landau rate, e.g. [72-74], without dictating 

the position and layout of the signal’s spectral support as in uniform sampling. This entails 

designing sampling sequences that would lead to identifying the position(s) of the signal’s 

spectral component(s) and reconstructing it. This has further encouraged researchers in the 

field to explore the possible use of nonconventional sampling schemes, i.e. nonuniform 

sampling. 
 

2.3 Nonuniform Sampling and Randomised Signal Processing 
 

Nonuniform sampling is a family of sampling techniques where the sampling points are 

separated by irregular intervals. The irregularity of the sampling points can be enforced by 

external factors that are beyond the control of the user such as: 

• Inaccessibility of the measured signals at some time intervals or within certain time 

frames. This is common in astronomy [75-77], medical applications [78, 79], 

geophysical sciences [80, 81] and many others. 

• Imperfections/deficiencies in the data acquisition hardware, for example losing samples 

from the uniform grid [82-84] or departure of samples from their nominal positions due 

to jitter [85, 86] and many other adverse effects. 

Under such conditions the nonuniformity of the sampling instants is viewed as an 

inconvenience or a nuisance that necessitates the use of counter measures. Nevertheless, 

nonuniform sampling is sometimes intentionally introduced to offer new opportunities and 

flexibility that are unavailable in the uniform sampling environments. Hence the questions: 

why and when nonuniform is/becomes beneficial? 

In this research, we explore processing digitally wide bandwidths where the spectral 

support of the present multiband signal is a priori unknown. The latter premise limits the 

ability of the bandpass or multiband sampling technique (described in §2.2.4) to offer any 

notable reduction on the needed sampling frequencies. The uniform sampling rate should 
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exceed at least twice the total monitored frequency range(s) regardless of the spectral 

activity within. If the aforementioned demands are not met, the aliasing phenomenon can 

cause irresolvable processing problems. Such stringent sampling rate requirements pose a 

principle restriction on the applicability of uniform sampling DSP to the examined scenario 

in terms of: 

- The practicality of the imposed sampling frequencies, e.g. the technical feasibility and 

cost of the dedicated hardware solution if the currently available acquisition and 

processing module(s) cannot cope. 

- The computational cost, e.g. the power consumption and memory obligations, that 

accompanies treating and storing relatively large quantities of collected data. 

Thus despite the simplicity of the classical DSP and its plethora of existing algorithms, the 

uniform-sampling-based approaches can cease to be the most viable options for dealing 

with transmissions, typically narrowband signals, residing within a considerably wide 

frequency range at previously unknown locations. 

Randomised sampling schemes, i.e. schemes with intentional irregular sampling intervals, 

offer the sought alternative to digital representation of analogue signals. They can be 

regarded as an alias repression measure which facilitates the use of remarkably low 

sampling rates. The utilisation of randomised sampling schemes along with appropriate 

algorithms to eliminate/suppress the effect of aliasing is a methodology referred to as 

Digital Alias-free Signal Processing (DASP). Few monographs on the topic exist, e.g. [1-7, 

45]. DASP involves not only designing randomised sampling schemes but also devising 

suitable processing algorithms to harness their benefits, an endeavour we undertake in this 

research.  

The sampling rates of randomised sampling are described by two notions: the average 

sampling rate 0/N Tα =  defines the samples density where N  is the number of collected 

samples within the time analysis window [ ]0,r r r T= +T t t  of duration 0T , and 

11n n nt tβ −= −  is the instantaneous sampling frequency that depicts the inverse of the 

distance separating two successive sampling instants in { } 1

N
n n

t
=

. Whilst DASP inherently 

relies on nonuniform sampling to alleviate the aliasing limitation, its benefits come at the 

expense of more specialised algorithms whose implementation in hardware can be a 
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challenging task (see e.g. [5, 6]). In answer to the last part of the question put forward at 

the beginning of this section: DASP methodology should be adopted only when uniform 

sampling DSP techniques are too costly to deploy, i.e. technically and/or economically.  

At this stage other two pressing questions arise: How do we describe randomised 

sampling? What does alias-free sampling and processing mean? Below, the probabilistic 

description of randomised sampling, the general notion of alias-free processing and a 

selected number of sampling schemes are discussed.  
  
2.3.1 Randomised Sampling and Stationary Point Processes 
 

Sequences of randomised sampling instants { }nt , n∈Z , that occur along the time axis are 

commonly considered as point processes. The statistical characteristics of such random 

processes are essential and have been analysed in the early papers on randomised 

sampling, e.g. [87-89]. They mandate the properties of the sampling signal ( )tS  and 

subsequently those of the discretised signal ( )dx t  in (2.1). For instance, if the continuous-

time signal ( )x t  is WSS, a stationary ( )tS  would guarantee the wide sense stationarity of 

( )dx t . The autocorrelation function and power spectral density of the sampled signal are 

time-invariant, i.e. ( ) ( ) ( )d
X X Sf f fΦ = Φ ∗Φ  as in (2.4) where ( )X fΦ  and ( )S fΦ  are the 

PSDs of  and ( )tS  respectively. This can significantly reduce the complexity of the 

spectral analysis. Apart from providing the latter simplification, the stationarity of  is 

one of the criteria used in the literature, e.g. in [1, 3-6], to evaluate the alias suppression 

capability of a given sampling scheme; this is addressed in the next subsection. Below, we 

define certain statistical descriptions of randomised sampling and briefly discuss one of the 

sufficient conditions for a stationary . 

The sampling instants { }nt  of a randomised sampling scheme are placed within the time 

analysis window based on their Probability Density Functions (PDFs), i.e. ( )n tp  is for the 

-thn sample. For dependent sampling instants, nt  has a joint multidimensional PDF, i.e. 

1 2 1( , , , , )n n nt t t t− −p … , however customarily and for simplicity it is referred to as , e.g. in 

[1, 3, 4, 6]. The probability of a sample instant belonging to a particular time-interval   is: 

{ }Pr ( )n nt t dt∈ = ∫ p


 . Another important statistical characteristic is the Sample-point 

Density Function (SDF) which is given by: 

( )x t

( )tS

( )tS

( )n tp
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1

( ) ( )
N

SDF n
n

t t
=

= ∑p p .           (2.18) 

The SDF of an ideal infinite duration sampling signal is duly defined. 

According to Bilinskis and Mikelsons [1], a sampling process is stationary if: 

 ( )SDF t α=p         (2.19) 

i.e. its sample-point density function is constant and equal to the average sampling rate for 

t−∞ ≤ ≤ +∞ . This implies that the probability of a sample occurring is the same 

everywhere on the time axis for a stationary sampling process.  It is noted that for some 

sampling schemes a constant SDF might not be observed until after a certain time period, 

i.e. ( )SDF t α=p  for st t≥  where st  is the elapse time. Experimental studies on the shapes of 

SDF for a number of randomised sampling techniques were conducted independently by 

Wojtiuk [3], Allay [4] and Qu [7]. Next, the notion of alias-free sampling which was linked 

in [1] to ( )SDF tp  is outlined.  

 

2.3.2 Notion of Alias-free Sampling and Processing 
 
The rational behind employing randomised sampling is to mitigate the aliasing 

phenomenon of uniform sampling where the spectrum of the sampled signal embodies 

displaced identical images/aliases of the underlying continuous-time signal (see §2.2.3). 

Alias-free sampling is a concept whose roots date back to the earliest papers on 

randomised sampling, e.g. [90]. As its name suggests, it encompasses sampling schemes 

geared to eliminate aliasing. This “alias-free” behaviour is typically related to the spectral 

analysis of a randomly sampled signal rather than signal reconstruction, e.g. estimating the 

process’s power spectral density from its nonuniformly distributed samples as in [1, 3, 4, 

90-94]. There are several criteria for assessing whether a particular sampling scheme is 

alias-free or not, and hence below we highlight the main contributions to this concept. The 

questions that are addressed here include: what makes a randomised sampling scheme 

alias-free? Does alias-free sampling or processing entails the total elimination of aliasing? 

How do we decide whether a sampling scheme is suitable for the pursued digital signal 

processing that is free from the limitations of aliasing? 
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2.3.2.1 Historical Perspective  
 
The notion of alias-free sampling was first introduced by Shapiro and Silverman in [90]. 

They based their definition of the alias-free criterion on the autocorrelation sequence:  

  [ ]( )= ( ) ( ) ( ) ( )
kn n k Xr k E x t x t R dτ τ τ

+∞

+ Δ
−∞

= ∫ p          (2.20) 

where ( )
k
τΔp  is the PDF of k n k nt t+Δ = −  ( n∈ , k∈ ) and ( )XR τ  is the autocorrelation 

function of the underlying continuous ergodic signal. In [90], the sampling scheme is 

deemed to be alias-free if there exists only one continuous process with a ( )XR τ  that would 

yield ( )r k  in (2.20). The alias-free feature implied that the exact PSD of the continuous 

stochastic process can be estimated from an infinite number of its irregularly distributed 

random samples captured at arbitrarily low rates. Additive Poisson and Bi-Poisson 

sampling schemes were found to be alias-free whilst Tri-Poisson, jittered sampling and 

additive random sampling based on uniform distribution of kΔ  are not. Beutler [91] 

extended Shapiro and Silverman concept to sampling schemes that are alias-free in relation 

to a family of spectra. A scheme being alias-free relative to the family of bandlimited 

signals Γ  stipulates that no two processes that belong to Γ  can have the same ( )r k  

sequence. 

Masry [92-94] pointed out the deficiency in the alias-free definition in [90, 91]. He 

highlighted the fact that if a finite number of signal samples are available the Shapiro and 

Silverman criterion does not guarantee a consistent estimate of the power spectral density 

of the underlying continuous-time signal. He reformulated the definition in order to 

accommodate the latter practical constraint by proposing a covariance metric. He showed 

that additive Tri-Poisson sampling is alias-free which contradicts [90]. It is noted that the 

PSD estimation consistencies in [92-94] were attained under asymptotic assumptions, i.e. 

the number of the processed samples tends to infinity.  

Most recently, Bilinskis and Mikelsons [1] enunciated a new criterion for alias-free 

sampling; a scheme is alias-free if it is stationary, i.e. it satisfies the condition in (2.19) 

they postulated. They showed that the spectrum of a randomly sampled signal approaches 

that of the underlying continuous-time one as the number of samples tends to infinity 

provided that the sampling scheme is stationary.  This can be shown by simple analysis as 
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in [7]. For example, consider the problem of estimating the Fourier transform of a 

continuous-time deterministic signal from a set of its nonuniformly distributed samples. 

Using a nonuniform discrete-time Fourier transform defined by: 

               2

1

1( ) ( ) n

N
j ft

n
n

X f x t e π

α
−

=

= ∑ .       (2.21) 

It can be noticed that: 2( ) ( ) nj ft
nx t X f e dfπ

+∞
−

−∞

= ∫  where ( )X f  is Fourier transform of the 

targeted signal. We can write: 
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Since 2 ( ) 2 ( )1 ( )n

n

j f t j f t
nE e t e dt

A
π ν π ν+∞− − − −

−∞
⎡ ⎤ =⎣ ⎦ ∫

p
p , where 

n
Ap  is a scaling factor that maintains  

( ) 1n t dt
+∞

−∞
=∫ p  for the -thn  sample. The expression in (2.22) emerges as: 

  [ ] { }( ) ( ) ( ),e SDFE X f X f t t= ∗F p        (2.23) 

where { }( ),SDF t tF p  is the FT of the sample-point density function in (2.18). If ( )pSDF t  is 

constant and equal to α , i.e. { }( ),SDF t tF p  is a Dirac delta, spectrum aliasing will be 

eradicated and ( )X f  is an unbiased estimator of ( )X f  regardless of the average sampling 

rate. However, such analysis demands sampling the signal for infinitely long periods. In [1] 

Bilinskis and Mikelsons noted that under the practical constraint of having a finite number 

of signal samples, i.e. (2.19)  is not fulfilled for t−∞ ≤ ≤ +∞ , aliasing cannot be totally 

eliminated but rather suppressed by a finite amount [1]. This fact is taken into account 

when deciding on the criterion that best serves the purpose of resolving the problems 

tackled in this research, mainly low rate wideband spectrum sensing. 

 
2.3.2.2 Adopted Criterion  
 

Here, alias-free sampling and processing simply refers to the ability of the randomised 

sampling scheme and the deployed algorithms to attenuate spectrum aliasing in ( )dx t  

within a wide frequency range(s) in lieu of totally eliminating it. As long as this 
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suppression permits the unambiguous identification of the spectral components of the 

analogue signal from that of the sampled one, the sampling process is conceived to be 

suitable for the pursued digital signal processing whose rates are not dictated by the 

processed bandwidths. Various randomised sampling schemes, despite violating the 

stationarity condition in (2.19), foster signal processing that is not limited by the aliasing 

phenomenon, i.e. digital alias-free signal processing. This is illustrated in Chapter 3. 

At this juncture, we acknowledge that the widely used alias-free sampling and processing 

terms can be misleading as a nonuniformly sampled signal can never be completely free of 

aliasing for a finite number of samples. Although randomised sampling circumvent 

aliasing in its classical sense, it introduces what is commonly known by smeared-aliasing 

[3-6]. To demonstrate this phenomenon, Figure 2.4 displays the spectrum of a sampled 

bandpass wide sense stationary signal. The PSD of the continuous stochastic process is: 

( ) 1X fΦ =  if [ ]770,800f ∈±  MHz and zero elsewhere. Uniform bandpass sampling with 

95USf = MHz which satisfies (2.17) and a randomised sampling scheme (namely total 

random sampling described in §2.3.3.1) with 95α = MHz are utilised. The spectrum is 

attained via averaging a large number of a scaled periodogram-type estimates, i.e. 
2

2
1

( ) n
N j ft

nn
x t e πα −

=∑  where 950N = . They are calculated from truncated independent 

realisations of the WSS process ( )x t ; this estimator is discussed in more details in the next 

chapter. Let’s assume that the exact spectral support of the processed narrowband signal is 

unknown and that it resides somewhere in the frequency range [ ]0.5,1f ∈± GHz, i.e. a 

conservative spectral support. It is evident from Figure 2.4b that randomised sampling 

suppressed the spectrum aliases/replicas and smeared them (apart from the fundamental 

one) to create a white-noise like component present at all frequencies. It permitted 

distinguishing the spectral component of the underlying continuous signal in the wide 

range of observed frequencies, despite the used sampling rate. For the uniform sampling 

case depicted in Figure 2.4a, the user would have no indication which of the present 

identical spectral components represents the incoming signal. This clearly exhibits the alias 

suppression potential of randomised sampling. The shape of the smeared-aliasing is 

determined by the characteristics of the sampling scheme as shown in Chapter 3. 

Martin [2, p.40] made a very important point regarding DASP techniques. He noted that 

alias-free sampling serves the purpose of analysing the signal’s spectrum and is distinct 
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from signal reconstruction. This observation was confirmed by Wojtiuk experiments in [3]. 

He demonstrated that a sampling scheme with high aliasing suppression ability does not 

generally ensure superior signal reconstruction. Accordingly, the randomised sampling and 

processing adopted here serves the purpose of identifying the spectral support of the 

processed signal, i.e. spectrum sensing. Signal reconstruction is treated separately and can 

be considered after unveiling the locations of the active spectral bands. 

 
Figure 2.4: Estimated spectrum of a WSS signal from a finite set of its samples where 

( ) 1X fΦ =  if [ ]770,800f ∈±  MHz and zero elsewhere. (a) Uniform bandpass sampling 
and  95USf = MHz. (b) Total random sampling and 95α = MHz. 

 
2.3.3 Randomised Sampling Schemes 
 

We emphasise that randomised sampling implies that the nonuniformity is introduced 

intentionally to enable alias-free processing. In this subsection, we describe a number of 

sampling schemes that are typically used to suppress the aliasing phenomenon, e.g. in [1-
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6]. Apart from additive random sampling, these schemes are employed in the following 

chapters.  

Sampling driven by the level of the processed signal, i.e. signal dependant sampling such 

as zero crossing and level crossing (e.g. [47, 95]), are excluded from the randomised 

schemes considered in this research. Besides, deterministic nonuniform sampling such as 

periodic nonuniform sampling is not analysed. 

 
2.3.3.1 Total Random Sampling (TRS) 
 

Total random sampling is viewed as a simple way of generating a set of N  nonuniform 

samples within the finite signal analysis window [ ]0,r r r T= +T t t , e.g. [96, 97]. Its concept 

is drawn from Monte-Carlo integration over a finite integral [98, 99]. All the sampling 

instants of TRS are Independent Identically Distributed (IID) random variables whose PDF 

( )n tp  takes non-zero values only within rT . For a uniform PDF across rT , we have: 

                                         01/
( )

0 elsewhere
r

n

T t
t

∈⎧
= ⎨
⎩

T
p                                          (2.24)  

where 1,2, ,n N= … . It can be easily seen from  (2.24) that TRS ensures the stationarity of 

the scheme according to the sample-point density function criterion. Nonetheless, Allay in 

[4] showed that TRS is fit for DASP even if its SDF is not constant, e.g. for some PDF 

shapes other than (2.24). 

 
2.3.3.2 Random Sampling on Grid (RSG) 
 

Random sampling on grid selects randomly N  samples out of the total gN  possible sample 

positions that can be in general arbitrarily distributed within rT  [100]. Here, these 

nominated time-locations are equally spaced. They form an underlying uniform grid whose 

sampling frequency and total number of samples are denoted by 1/g gf T=  and gN  

respectively. Any of the grid points can be selected only once with equal probability. More 

precisely, it is RSG without replacement where gN
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 possible distinct sampling sequences 

of length N  exist. Figure 2.5 exhibits a realisation of a RSG sequence. 
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The sampling points of the RSG scheme are defined by: 1
d

nt ∈  for 1,2,n N= …  where 1
d  

is the discrete sample space encompassing all the underlying uniformly distributed grid 

points, i.e. 0, ,( 1) ,g g g gkT k T N T+ … .  Consequently, the PDF of the -thn collected sampling 

instants is given by: 

          1( ) ( )
1 d

n

n
g

t t
N n τ

δ τ
∈

= −
− + ∑p



                  (2.25) 

where { }1
d d
n n nt+ = −   is the set of “unused” grid points after selecting n  sampling instants. 

For 1t  the entire sample space is considered, i.e. 1
d . The PDFs of the samples that follow 

depend on the precedent sample positions. Given the discrete nature of PDFs of random 

sampling on grid, its SPF is discrete and the stationarity condition (according to [1]) is not 

fulfilled. Nevertheless, it is shown in Chapter 3 that RSG is suitable for DASP provided an 

appropriately selected grid rate gf . The random sampling on grid scheme can be viewed as 

a modification (special case) of TRS. It aims at accommodating the practical constraint 

enforced by the technological and physical factors of the acquisition device specifying a 

minimum distance between any two samples.  

≈

 
Figure 2.5: An RSG sampling sequence (circled instants are the selected grid points). 

 
2.3.3.3 Stratified and Jittered Sampling  
 

Stratified Sampling (SS) was proposed by Masry in [98, 101] as a scheme that permits 

estimating the spectrum of a deterministic continuous-time signal with high convergence 

rates. Generally, stratification divides the analysis window into N  disjointed subintervals, 

i.e. 1 2, , , N
  … where 

1

N

n r
n=

=T


∪ . The parameter nN   is the number of the collected 

samples in n  such that 
1

N
nn

N N
=

=∑   is the total number of processed samples. Various 

methods exist for choosing the number of samples per subinterval/stratum, e.g. see [99].  

In this research and similar to [98], each stratum contains one sample with a uniform PDF. 

The probability density functions of the N  independent random samples are defined by:  
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                               (2.26) 

for 1,2, ,n N= …  where n  is the width of the stratum. Choosing n , e.g. to improve the 

spectrum estimation quality, demands a priori knowledge of the incoming signal [98, 101]. 

A practical approach is to assume equal strata, i.e. Stratified Sampling with Equal 

Partitions (SSEP). Figure 6 depicts a realisation of an SSEP sequence. Masry in [98, 101] 

showed that SS is adequate for DASP despite the fact it does not satisfy the stationarity 

condition for the majority of cases excluding SSEP. 

≈

 
Figure 2.6: An SSEP sampling sequence (crosses are the sample points). 

Another sampling scheme that is linked to SS is the widely distinguished Jittered Random 

Sampling (JRS). It is commonly expressed as the departure of the sampling instants from 

their nominal uniform sampling grid, e.g. due to imperfections in the data acquisition 

device(s). It is modelled by: 

n US nt nT τ= +                             (2.27) 

for 1,2, ,n N= …  where UST  is the mean sample interval and nτ 's are zero mean IID random 

variables with a PDF ( )tτp  and variance 2σ . Thus the PDF of the -thn  sample point is: 

                       ( ) ( )n USt t nTτ= −p p .                              (2.28) 

Controlled/intentional jitter for alias-free processing has known characteristics and differs 

from the jitter introduced by the impairments of the sampling device. The latter is viewed 

as a nuisance which is either ignored or compensated for in later processing blocks. It can 

be noticed that if the PDF of  has non-zero values within [ ]0.5 ,0.5US UST T−  and zero 

elsewhere, JRS becomes a special case of stratified sampling. 

From [3, 4], jittered random sampling is stationary if the jitter is uniformly distributed in 

the interval [ ]0.5 ,0.5US UST T−  or nτ  distribution has a relatively high variance. Various 

analytical expressions for the power spectral density of JRS, i.e. ( )S fΦ  in (2.4), are 

nτ
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derived in [2, 3, 42, 102]. All of them expose the fact that the power spectral density of a 

sampled WSS signal using JRS contains replicas of the PSD of the analogue signal shaped 

by the magnitude of the jitter characteristic function, i.e. 2( ) j ftt e dtπ
τ

+∞

−∞∫ p . Hence the ability 

of JRS to suppress aliasing is dependent on the PDF of the jitter. It was demonstrated in [3, 

4] that the form of JRS where ( ) 1/ USt Tτ =p  if [ ]0.5 ,0.5US USt T T∈ −  and zero elsewhere 

exhibits the scheme’s maximum potential to attenuate (almost equally) all the undesirable 

spectrum aliases following sampling. This form of JRS presents itself as a legitimate 

DASP tool and is identical to the stratified sampling with equal partitions scheme. 

 
2.3.3.4 Additive Random Sampling 
 

Additive Random Sampling (ARS) was first introduced by Shapiro and Silverman [90] as 

an alias-free sampling scheme whose sampling instants are described by: 

                           1n n nt t τ+ = +                        (2.29) 

0,1, ,n N= … . The nτ ’s are IID random variables with a PDF given by ( )tτp  and a variance 

of 2σ .  It is noted that the -thn  sample point is the sum of n  IID random variables and its 

PDF is given by: 

                             ( ) ( )
n

n t tτ= ∗p p          (2.30) 

where ( )
n

tτ∗p  denotes the -foldn  convolutions of ( )tτp  with itself. This implies that the 

sample-point density function of ARS will be constant, i.e. the scheme becomes stationary, 

after a certain time period as the variance of the samples grows with the index n  according 

to (2.30). The speed at which the stationarity condition in (2.19) is fulfilled depends on 2σ . 

This observations was confirmed by the analysis conducted in [1] and experimental results 

in [3, 4, 7]. Thus the ARS is asymptotically stationary, i.e. lim ( )SDFt
t α

→∞
=p .  

In order to improve the speed at which ARS achieves stationarity given the typically finite 

analysis window, Correlated Additive Random Sampling (CARS) was proposed in [1]. In 

this case, the nτ  terms in (2.29) are deliberately made correlated. The correlation between 

two successive sampling instants is assessed by the correlation coefficient defined by: 

[ ]( )2 2
1 1( , ) 1/ /n n n nEρ τ τ τ τ α σ+ += −  where 1( , ) 1n nρ τ τ + ≥ . It dictates the speed at which the
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variance of the sample points accumulates. If 1( , ) 0n nρ τ τ + > , the variance of the sample 

points of CARS increases at faster rates compared to the ARS and vice versa. It is noted 

that the width of the signal analysis window rT  of ARS and CARS schemes varies from 

one sequence to another. In a practical scenario where N  is finite, the 0T  and α  are 

specified in a probabilistic sense, e.g. their mean values are examined. Additive random 

sampling is not studied here and is presented for completeness. 

 
2.4 Summary  
 

WKS theorem provides the sufficient condition under which a uniformly sampled signal 

can be perfectly reconstructed and therefore processed in the same way as if we had access 

to the whole waveform of the continuous-time signal. It demands: 

• Sufficiently high sampling rates max2USf f≥ , i.e. above Nyquist rate. The use of rates 

lower than those recommended by WKS normally leads to a phenomenon called 

aliasing, where there is more than one signal within the class of analysed signals that 

have the same values at the sample points.  

• An infinite number of the data samples, a request which cannot be met in practice. 

Truncating the reconstruction formula introduces an error whose upper bounds have 

been extensively studied in the literature. Variations of WKS with higher convergence 

rates can be deployed to minimise the truncation error. They represent one of the many 

extensions of the classical sampling theorem. 

Uniform bandpass/multiband sampling techniques exploit the redundancies in the spectrum 

of BP/MB signals to avert aliasing. They permit the use of sampling rates well below 

Nyquist’s, especially if max efff B>> . They inherently rely on a previous knowledge of the 

signal’s exact spectral support which is not available in certain tasks. For example, in 

spectrum sensing only a conservative spectral support is known, i.e. the entire monitored 

bandwidth. Although the simplicity, availability of algorithms and ease of implementation 

are the key features of uniform sampling DSP, it is widely recognised that its foremost 

limitation is the imposed sampling rates. Violating the Nyquist or BP/MB sampling 

criterion, results in aliasing which introduces irresolvable processing problems. 
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Nonuniform randomised sampling poses as an alternative acquisition paradigm to uniform 

sampling; it is not limited by the aliasing phenomenon. Its ability to eliminate aliasing, i.e. 

alias-free sampling, has been measured by various criteria in the literature. This normally 

refers to the spectral analysis of the sampled signal not its reconstruction. Most 

importantly, not all DSP problems require the sampling scheme to completely eliminate 

spectrum aliasing which theoretically imposes an infinite number of signal samples 

collected at arbitrarily low rates. For instance, in the spectrum sensing endeavor it is 

sufficient to suppress spectrum aliasing within the overseen frequency range such that the 

spectral support of the present signal is unveiled. It is essential that we define the DSP 

problem to be solved; only then alias-free property can be analysed. In this context, we 

regard sampling schemes that permit revealing the activity of a number of monitored 

spectral subbands within in a wide range of surveyed frequencies as alias-free. This 

includes nonstationary schemes noting that the alias-free stationarity criterion cannot be 

fulfilled for a finite number of samples. It is natural to treat spectral analysis (e.g. aimed at 

spectrum sensing) and signal reconstruction (e.g. for extracting the feature(s) of the 

incoming signal) as two separate problems; the former precedes the latter in case both tasks 

are undertaken. 

Finally, the randomised sampling and processing methodology, otherwise known as digital 

alias-free signal processing, offers additional opportunities that extend rather than 

contradict the theory and practice of the classical uniform sampling DSP. It is mostly 

applicable to digitally processing narrowband signals residing in a wide frequency 

range(s). Sampling alone is not sufficient to perform DASP; suitable algorithms should be 

devised to exploit the methodology leverages. Such algorithms are explored and analysed 

in the rest of the thesis. No claim is made on the superiority of randomised processing over 

classical DSP for all scenarios. In fact, the utilisation of uniform or nonuniform sampling 

techniques is based on which of them provides better results at the minimum 

technical/economical cost. 
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Chapter 3 
 

Periodogram-type Estimators for 
Randomly Sampled Stationary Signals  

 
 
 
 
 
 
The purpose of spectrum estimation in this research differs from that in many conventional 

spectral analysis tasks. In the latter cases, the problem of establishing the spectral 

characteristics of the processed signal, e.g. the distribution of the signal’s power over 

frequency, is considered. Here, spectral analysis is utilised to facilitate conducting low rate 

wideband spectrum sensing harnessing the features/benefits of nonuniform randomised 

sampling. Determining the exact shape of the signal spectrum within the surveyed 

frequency range, e.g. Power Spectral Density (PSD), is not required. Accordingly, many 

traditional spectral analysis approaches become irrelevant and unnecessarily complicated. 

We seek a simple low complexity means that is suitable for the tackled problem, i.e. 

spectrum sensing and not PSD estimation.  

This chapter commences by restating the considered problem and stressing the intention of 

the spectral analysis endeavour. Existing estimation techniques, starting with the uniform 

sampling ones, are then discussed. This sets the scene for introducing a number of 

periodogram-type estimators each tailored to a particular randomised sampling scheme. 

We refer to this type of analysis by Spectral Analysis of Randomised Sampling (SARS). 

The adequacy of the adopted estimators for the spectrum sensing task is investigated whilst 

the operational sampling rates are not only sub-Nyquist but also sub-Landau. It is noted 

that the simplicity and ease of implementation are the main merits of periodogram-type 

methods [2, 3, 5, 15, 49, 76, 103]. Numerical examples are deployed to exhibit and verify 

the accuracy of the developed analytical expressions. 
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3.1 Introduction 
 

3.1.1 Problem Definition 
 

The pursued Multiband Spectrum Sensing (MSS) involves overseeing the activity of a 

number of non-overlapping spectral subbands/channels occupying wide range(s) of 

frequencies (see §1.2). Spectrum estimation or analysis is deployed to concurrently sense 

the activity of the monitored channels. This is distinct from MSS techniques that examine 

one subband at a time using fined-tuned and preset bandpass filtering. The sensing device 

is assumed to have no previous knowledge of the location(s) of the active subband(s) and 

limited information, if any, about the characteristics of the incoming transmission(s). 

Consequently, the conventional uniform-sampling-based spectral analysis tools demand 

sampling rates that exceed at least twice the total monitored bandwidth. Otherwise, 

spectrum aliasing would result in irresolvable detection problems. Such rates can be 

prohibitively high, especially if the surveyed bandwidth is ultra-wide.          

Here, spectral analysis methods that allow detecting the active subbands within a wide 

range of overseen frequencies are studied. They operate at substantially low sampling rates 

by utilising randomised sampling to mitigate the aliasing phenomenon (see §2.3.2). 

Subsequently, quantifying the statistical characteristics of the spectrum estimation from the 

finite set of captured signal samples becomes vital for assessing the suitability of the 

adopted estimators for the multiband spectrum sensing task (not PSD estimation). This 

entails evaluating their expected values and variances which give a clear indication of 

estimation accuracy as explained in §3.2. This is crucial for predicting the estimators’ 

performances once employed in the detection routine. Since signal reconstruction is not 

sought, it is shown below that arbitrarily low nonuniform sampling rates can be used to 

estimate a detectable frequency representation of the received multiband signal.  

 
3.1.2 Related Work 
 

Spectral analysis has a plethora of application areas including astronomy, oceanography, 

interception, biomedical applications, speech analysis, finance, and many others. It has a 

long history and has been extensively studied [49, 104-106]. Here, we only address the 

techniques that are believed to be related to the work presented in this thesis. 



3.1 Introduction  
 

41 

 

In general spectrum estimation approaches can be divided into two groups:  

 Nonparametric methods: they are independent of the processed signal. They generally 

rely on Fourier Transform (FT) analysis where Discrete-time Fourier Transform 

(DTFT) or optimised version of it, for example Fast Fourier Transform (FFT), is used to 

estimate the spectrum of the signal. Generally speaking, these techniques include 

periodogram and its various modifications [49, 105].  

 Parametric methods: they are based on parametric models of the signal incorporating a 

priori available information into the estimation process. Such methods are useful when 

the mathematical model of the analysed signal is known, e.g. in voice recognition 

applications. Models that are commonly used include: autoregressive, moving average, 

autoregressive moving average and harmonic/exponential [49, 105]. 

Due to the limited information available about the incoming signal(s) in the considered 

systems, parametric techniques are excluded in the sequel. The nonparametric ones are 

more attractive as they are generally simpler and applicable to all signals. They are widely 

viewed as efficient low complexity tools for multiband spectrum sensing [13, 15-19]. Since 

the adopted SARS tool belongs to the family of periodograms, first we briefly discuss 

uniform sampling periodograms. 

 
3.1.2.1 Uniform Sampling Periodogram 
 

Periodogram is one of the most commonly known spectrum estimators and is defined by: 

2
2

1

1( ) ( ) US

N
j fnTN

US
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P π−

=

= ∑          (3.1) 

where ( )x t  is the random signal that is typically assumed to be Wide Sense Stationary 

(WSS). Whereas, N  is the number of uniformly distributed samples captured at a rate of 

1/US USf T= . Periodogram is an asymptotically unbiased estimator of the power spectral 

density of the processed signal, provided that USf  is equal or above the Nyquist rate. We 

have: 2( ) ( ) ( )N d
XE f f W f N⎡ ⎤ = Φ ∗⎣ ⎦P  where ( ) ( )d

X US X USn
f f f nf+∞

=−∞
Φ = Φ −∑ , ∗  denotes 

the convolution operation, ( )W f  is the Fourier transform of the rectangular window 

limiting the signal analysis window and ( )X fΦ  is the PSD of ( )x t  [49]. It follows that for 

a finite number of samples a spectral leakage is introduced, producing a bias to the 
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estimate. The resolution of the estimated spectrum is determined by the length of the time 

window. Whereas, the variance of the estimator is of the same order of its expected value 

where { } 2
var ( ) ( )N d

Xf fP ⎡ ⎤≈ Φ⎣ ⎦  as N  tends to infinity [49]. Hence (3.1) has a high level of 

uncertainty regardless of the number of collected samples.  

Various tactics have been employed to enhance the periodogram performance. Bartlett 

[107] targeted reducing the periodogram variance, i.e. improving its accuracy, by 

averaging a K  number of estimates calculated from non-overlapping signal windows. If 

the data within these segments are uncorrelated, the variance decays at a rate of 1/ K . 

Welch [108] modified Bartlett method by letting the signal segments overlap in an attempt 

to reduce the estimation variance for a finite set of available samples. With regards to the 

periodogram bias, the use of windowing functions (other than the rectangular one) gives a 

new lever to reduce the spectral leakage and the bias. A comprehensive reviews on 

windowing functions and their characteristics are given in [109, 110]. 

Other nonparametric spectral analysis tools aimed at more accurate PSD estimations exist, 

e.g. Blackman-Tukey [105] and multitaper method [111]. In general, the complications 

that can accompany such approaches, e.g. [111], are not all relevant to the tackled 

spectrum sensing problem. Despite the inaccuracy of the periodogram tool (in its various 

flavours), its popularity is attributed to its simplicity, low computational complexity and 

ease of implementation [2, 3, 5, 15, 49, 103]. Such features are desired here, where a 

simple spectral analysis technique that fosters low rate reliable wideband spectrum sensing 

is pursued. 

 
3.1.2.2 Spectral Analysis of Nonuniformly Sampled Data 
 

Spectral analysis of nonuniformly sampled data is a well known research area, e.g. see [76, 

77, 104, 106]. One of the earliest and most popular analysis methods was proposed by 

Lomb [77] and Scargle [76] in the astronomical literature where the unavailability of 

measurements at certain time instants is an inherent problem. It is known by Lomb-Scargle 

or Least Squares (LS) periodogram. LS periodogram was motivated by detecting the 

presence of a sinusoidal signal contaminated with Additive White Gaussian Noise 

(AWGN). The irregular zero mean noisy observations { } 1
( ) N

n n
y t

=
 are represented by: 
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                                ( ) ( ) ,( ) cos 2 sin 2n f n f f n f n fy t a ft b ftπ ϕ π ϕ ε= − + − + .                       (3.2) 

The parameters fa  and fb  are selected as to minimise 
2

, ,12

N
n f n fn
ε ε

=
= ∑ . Using the 

standard LS solution, the reduction in the sum of the squares produces the LS periodogram  

defined by [77]: 

    
( )
( )

( )
( )

2 2

1 1

2 2
1 1

( )cos 2 ( )sin 2
( )

2 cos 2 2 sin 2

N N
n n f n n fn n

LS N N
n f n fn n

y t ft y t ft
f

ft ft

π ϕ π ϕ

π ϕ π ϕ
= =

= =

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦= +
− −

∑ ∑
∑ ∑

P .           (3.3) 

It is similar to the classical uniform sampling periodogram in (3.1) for noiseless 

environments as: [ ] [ ]2 2

1 1
( ) ( )cos(2 ) ( )sin(2 )N NN

n n n nn n
f x t ft N x t ft Nπ π

= =
= +∑ ∑P  such that 

n USt nT= . We note the non-equidistant samples, the scaling factors and the phase-shift fϕ  

in (3.3). The latter two parameters are redundant and were introduced to simplify the 

analysis of ( )LS fP , e.g. ( ) ( )2
1 1
cos 2 0.5 0.5 cos 4 2 0.5N N

n f n fn n
ft N ft Nπ ϕ π ϕ

= =
− = + − ≈∑ ∑  

where the high frequency component is considered to have a negligible value and similarly 

( )2
1
sin 2 0.5N

n fn
ft Nπ ϕ

=
− ≈∑ . This facilitates attaining the rates of successful/false 

detection of sinusoid(s) using (3.3), see Scargle [76] for more details.  

New techniques that offer more accurate estimation by utilising more advanced 

mathematical tools compared to the LS periodogram keep unfolding. For example, the 

recent iterative adaptive approach [112] uses weighted least squares fitting criterion 

yielding more accurate estimation results than the LS one. An excellent recent review of 

the emerging and existing nonuniform sampling spectral analysis methods is presented in 

[106]. Although periodograms have a poor quality of estimation compared to other means, 

they are simple and quick techniques that enable detecting the presence of the targeted 

signals in a noisy environment [76, 77]. It is a sensible attitude adopted by Scargle in his 

defence of using periodograms, i.e. it is fit for the purpose. This resonates with the theme 

of this research where spectrum estimators that permit detection rather than exact 

estimation of the underlying signal spectrum are sought. 

The aforementioned approaches consider arbitrary sampling, i.e. the user has no 

control/influence over the samples layout/distribution. On the other hand, the sampling 

studied in this research is randomised where the sampling process is prescribed by the user 

(see §2.3.3). Several spectrum estimation methods that deal with randomised sampling 
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schemes exist, e.g. [96, 98, 101], where the processed finite energy signals are of 

deterministic nature. They focus on estimating the signal’s windowed Fourier transform 

defined by: 

   0 2( , ) ( ) ( )r

r

T j ft
W rX f x t w t e dt

t

t
t π+ −= ∫                                   (3.4) 

from a finite set of N  irregular samples collected within the time analysis window 

[ ],r r r rT t t T= +  where ( )w t  is the windowing function. Targeting (3.4) in lieu of the 

signal’s exact FT, i.e. 2( ) ( ) j ftX f x t e dt
+

-
π∞ −

∞
= ∫ , was referred to the impracticality of 

requesting an infinitely long time analysis window [96, 98, 101]. Masry [98, 101] 

improved the accuracy of estimating the spectrum in (3.4) by deploying sampling schemes 

other than the total random sampling in the original paper by Tarczynski [96]. Whilst [96, 

98, 101]  prompted our interest in the use of randomised sampling techniques, the signals 

handled here are random processes (either stationary or cyclostationary). Consequently, the 

required analysis fundamentally differs from that in [96, 98, 101]. 

Although the earliest papers on randomised sampling [90-92] treated the problem of 

estimating the PSD of wide sense stationary signals, they did not resolve the predicament 

of the estimator’s accuracy for a finite number of samples. This issue was partially 

addressed by Masry in [93, 94, 104, 113] where the expressions for the estimator’s bias 

and variance are provided under the assumption that the number of processed samples 

tends to infinity. In this research, the estimation of the signal’s exact power spectral density 

is not the objective and an estimate of a frequency representation (not necessarily the exact 

PSD) that allows detecting the active spectral subbands is sufficient. We examine the 

statistical characteristics of the performed spectral analysis, such as the estimators’ 

accuracies, from a finite set of samples in contrary to [92-94, 104, 113] where asymptotic 

consistency expressions are given. Besides, randomised sampling methods other than the 

ones investigated in [90-94, 104, 113] are studied. 

Wojtiuk [3] has put a remarkable effort into assessing the PSD of randomly sampled data 

assuming that the processed and sampling signals are ergodic. The PSD of the sampled 

signal is given by: ( ) ( ) ( )d
X X Sf f fΦ = Φ ∗Φ  where ( )S fΦ  is the power spectral density of 

an infinitely long ideal sampling signal. Wojtiuk derived the analytical expressions of 

( )S fΦ  and ( )d
X fΦ  for a number of schemes, namely additive random sampling and 
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jittered random sampling. He cited other existing expressions for these schemes noting the 

discrepancies in the final formulas, e.g. by Martin [2], Marvasti [45] and Shapiro & 

Silverman [90]. However, Wojtiuk claimed that his expressions are the only ones verified 

by measured/simulated spectra by using the periodogram in (3.1) from a finite number of 

nonuniformly distributed samples. The response, characteristics and most importantly the 

accuracy of the estimation process were not scrutinised in [3] in order to validate the 

conducted measurements/simulations. Here, spectrum estimators are proposed and their 

behaviours are assessed for a finite set of samples captured at relatively low rates. An 

important observation can be made from the formulas provided in [3]. The PSD of the 

sampled signal is never equal to that of the underlying continuous-time one for a finite 

sampling frequency. This implies that aliasing is not completely eliminated by randomly 

sampling the incoming signal. It is suppressed based on the characteristics of the sampling 

scheme. This deficiency does not necessarily hinder the usefulness of the randomised 

sampling for the pursued spectrum sensing as shown in this chapter. 

 
3.2 The Adopted Periodogram-type Estimator and its Accuracy 
 

The adopted periodogram-type estimators of a detectable frequency representation of the 

received simultaneous transmissions are defined by: 

      
2

2

1
( , ) ( ) ( ) n

N
j ft

e r n n
n

X f y t w t et C π−

=

= ∑          (3.5) 

where C  is a constant dependent on the sampling scheme. Whereas, N  is the number of 

the captured samples at the irregular time instants { } 1

N
n n

t
=

 within the time analysis window 

rT  starting at rt  and is of width 0T . The windowing function ( )w t  is aligned with rT . It is 

noted that periodograms have retained their popularity in recent spectrum sensing studies 

such as [17, 18, 20, 114-118].  

The incoming multiband signal ( )x t  is assumed to be zero mean and wide sense stationary. 

It is contaminated with zero mean AWGN with variance NP , i.e. ( ) ( ) ( )n n ny t x t n t= +  for 

1,2, ,n N= …  are the collected samples of the received signal. Although communication 

signals are known to be of a cyclostationary nature, phase randomisation is a widely 

adopted technique to stationarise the process whenever its cyclic frequency is not of an 
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interest [49-51]. Assuming pseudostationarity of such signals within a short time analysis 

window is another technique that is commonly used, e.g. [16, 114]. This premise brings 

notable simplifications to the analysis of such stochastic processes. 

Martin [2, p.38] and Scargle [76] listed the deficiencies of the periodogram spectral 

analysis tool in nonuniform sampling environments, namely spectral leakage, aliasing and  

inconsistency. Nevertheless, in this research we deploy several measures to combat such 

drawbacks and appropriate periodograms to the handled problem, i.e. spectrum sensing and 

not PSD estimation. They include: 

 Windowing: a windowing function ( )w t  is introduced to minimise the spectral leakage 

originating from the use of a time analysis window of finite length.  

 Randomised sampling: selected sampling schemes are employed to enable the 

suppression of spectrum aliasing, permitting the detection of the signal(s) presence. 

 Estimate averaging: a number of (3.5) estimates calculated from a number of signal 

windows are averaged to improve the estimator’s performance, e.g. [49, 107, 108].  

The appropriateness of  (3.5) for the detection task is determined by its expected value, in 

other words: is ( , )e rX ft  an unbiased estimator of a detectable spectrum representation of 

the transmitted signal(s)? Even if the answer is positive, the estimator’s accuracy for a 

single realisation of ( )x t  should be examined. To ensure that the spectrum sensing is 

accomplished whilst meeting some predefined detection probabilities (such as success 

rates), the estimation process should be completed with certain level of confidence. 

Chebychev’s double-sided inequality states that: 

                { } 2Pr 1/XX X κσ κ− ≥ ≤           (3.6) 

where X  is a random variable, [ ]X E X= ,  2
Xσ  is the variable’s variance and 0κ > [103] . 

Hence the discrepancy in the estimation process given by: 

     [ ]( , ) ( , ) ( , )r e r e rf E X f X ft t tΛ = −           (3.7) 

is directly related to the standard deviation of (3.5). The difference in (3.7) should be 

controlled by restraining the estimator’s variance in order to predict/achieve the sought 

response of the sensing procedure.         
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Therefore, the variance gives a clear indication of the estimator's accuracy. As mentioned 

in §3.1.2, the standard deviation of a periodogram-type estimator is known to be of the 

same order as its expected value [49]. To reduce this uncertainly, we average a K  number  

of  the ( , )e rX ft  estimates calculated over K  signal windows, i.e. 
1

( , )K
e rr

X f Kt
=∑ . This 

evokes shifting rT  and the repositioning/aligning of ( )w t . 

Evidently, the behaviour of (3.5) is governed by a number of factors including: 

1)  The randomised sampling scheme and its characteristics 

2)  The power of the present signal and noise 

3)  The width of the analysis window and the windowing function 

4)  The nature of the processed random signals, e.g. stationary or nonstationary 

5) The number of averaged spectrum estimates 

In this chapter, we consider the first two points and the processed signal is assumed to be 

wide sense stationary in order to focus on the features of SARS and its suitability for 

detecting the present spectral components. In Chapter 4 we explore the impact of 

processing cyclostationary signals on ( , )e rX ft , whilst the effects of 0T  and estimate 

averaging are addressed in Chapter 5.  

In the following sections, the statistical characteristics of (3.5) for the total random 

sampling, random sampling on grid and stratified/jittered sampling schemes are derived. 

 
3.3 Total Random Sampling (TRS) 
 

The properties of the TRS scheme were outlined in §2.3.3. We consider the form of total 

random sampling where the PDF of the sample points is uniformly distributed within the 

time analysis window rT , i.e. 0( ) 1/n t Tp =  for rt T∈  and zero elsewhere. Its periodogram-

type estimator is defined by: 

2
20

,
1

( , ) ( ) ( )
( 1)

n

N
j ft

e TRS r n n
n

TNX f y t w t e
N N

t π

μ
−

=

=
− ∑          (3.8) 

where  

    2 ( )r r

r

w t dtμ = ∫
t +T

t
           (3.9) 

is the energy of the windowing function.  
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3.3.1 Estimator’s Expected Value and Accuracy for TRS 
 

Since the sample points { } 1

N
n n

t
=

 in (3.8) are Independent Identically Distributed (IID) 

random variables, it can be shown that (see Appendix A): 

             0 22 2
,

1( , ) ( ) ( ) ( ) ( , )
( 1)

r

r

T

e TRS r N W r
NE X f x t x t w t dt P X f

N
t

t
t tμ

μα μ
+⎡ ⎤⎡ ⎤ = + +⎣ ⎦ ⎢ ⎥⎣ ⎦− ∫    (3.10) 

where the average sampling rate is 0/N Tα =  and NP  is the power of the present AWGN.  

This leads to: 

                 ( ) 2
,

1( ) ( , ) ( ) ( )
( 1)TRS e TRS r S N X

NC f E X f P P f W f
N α μ

⎡ ⎤= = + + Φ ∗⎣ ⎦ −
t      (3.11) 

where 2 ( )SP E x t⎡ ⎤= ⎣ ⎦  is the signal power and 2 2( , ) ( ) ( )W r XE X f f W ft⎡ ⎤ = Φ ∗⎣ ⎦  is the 

scaled expected value of a classical continuous-time periodogram [49] such that: 

                 2( ) ( ) j ftW f w t e dtπ
+∞

−

−∞

= ∫ .        (3.12) 

It can be noticed from (3.11) that the estimator’s expected value is time-invariant and is 

independent of rt . The bias of the estimator in terms of the windowed signal PSD, i.e. the 

first term in (3.11), is constant and frequency independent. Assuming that the analysis 

period 0T  is long enough, the windowed PSD forms an identifiable feature. Consequently, 

( )TRSC f  comprises a detectable component 2( ) * ( )X f W f μΦ  plus a constant offset 

[ ]( ) ( 1)S NN P P N α+ − . The [ ]( 1)SNP N α−  term represents the phenomenon previously 

referred to as smeared-aliasing originating from the irregularly spaced samples. It is a 

white-noise-like component present at all frequencies for the TRS scheme. Therefore, 

, ( , )e TRS rX ft  given by (3.8) is an unbiased estimator of ( )TRSC f  which is a detectable 

frequency representation of the incoming signal regardless of the sampling rate. Despite 

the fact that the constant offset in (3.11) does not have a visible effect on the detectable 

feature(s) of ( )TRSC f , it causes a deterioration in the spectrum dynamic range as discussed 

in §3.6.  

Although , ( , )e TRS rX ft  is an unbiased estimator of ( )TRSC f , it will be an adequate tool for 

assessing the activity of the monitored subbands only if the difference: 
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 ,( , ) ( ) ( , )TRS r TRS e TRS rf C f X ft tΛ = −  in (3.7) is small. Below, we present the variance 

expression for , ( , )e TRS rX ft  in order to quantify its accuracy in light of (3.6) (the detailed 

derivations are shown in Appendix A). The variance is defined by:  

      { }
2 2

22 0
, ,

1
( ) var ( , ) var ( ) ( )

( 1)
n

N
j ft

e TRS e TRS r n n
n

TNf X f y t w t e
N N

πσ
μ

−

=

⎧ ⎫⎡ ⎤ ⎪ ⎪= = ⎨ ⎬⎢ ⎥−⎣ ⎦ ⎪ ⎪⎩ ⎭
∑t

 
   (3.13) 

and is independent of rt  which is omitted thereafter to simplify the notation. First let,  

       
2

2 2 2 20

1
( ) ( ) ( ) ( ) ( )n

N
j ft

WS n n WS WS
n

TX f y t w t e R f I f
N

π−

=

= = +∑           (3.14) 

where ( )WSR f  and ( )WSI f  represent the real and imaginary parts of ( )WSX f . Each of the 

zero mean ( )WSR f  and ( )WSI f  consist of the sum of N  independent identically distributed 

random variables f∀ . According to the Central Limit Theorem (CLT), they can be 

approximated by normal distribution for sufficiently large N  [52], i.e. 

( )2( ) ( ) , ( )
WSWS WS RR f E R f fN σ⎡ ⎤⎣ ⎦∼  and ( )2( ) ( ) , ( )

WSWS WS II f E I f fN σ⎡ ⎤⎣ ⎦∼ . In practice, 

moderate  values suffice for such an approximation [48, 52], e.g. 30N ≥  is perceived as 

sufficient in [15, 52, 114]. This normality requirement is reasonable as the number of the 

processed samples typically exceeds the aforementioned limit. It is shown in Appendix A 

that  ( )WSR f  and ( )WSI f  are dependent for certain frequencies. Nonetheless, they can be 

replaced with independent ones without altering (3.8) in order to ascertain that (3.14) and 

subsequently (3.8) have approximately a chi-squared distribution with two degrees of 

freedom. We can write: 
22 ( ) 2 2( ) ( ) ( ) ( )TRSj f

WS WS WS WSX f X f e R f I fθ= = + , where ( )WSR f  and  

( )WSI f  are the phase-shifted uncorrelated versions of ( )WSR f  and  ( )WSI f  respectively 

such that:  

            ( )0 1
( ) ( ) ( )cos 2 ( )N

WS n n n TRSn
R f T y t w t ft f Nπ θ

=
= −∑        (3.15) 

            ( )0 1
( ) ( ) ( )sin 2 ( )N

WS n n n TRSn
I f T y t w t ft f Nπ θ

=
= −∑ .      (3.16) 

Using the characteristics of un-normalised chi-squared distribution [103], we get:  

N
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          { }
2

2 4 4
, ,( ) var ( , ) 2 ( ) ( )

( 1) WS WSe TRS e TRS r R I
Nf X f f f

N
σ σ σ

μ
⎡ ⎤ ⎡ ⎤= = +⎢ ⎥ ⎣ ⎦−⎣ ⎦

t
      

    (3.17) 

where 

                 ( )2 2 ( ) 1( ) ( ) ( )
WS

S N WC
R WS R

P P E f Nf E R f f
N

σ λ
α

+ −⎡ ⎤= = +⎣ ⎦       (3.18)     

( )0 2
( ) ( )cos 2 ( )r

r

T

WC TRSE f w t ft f dt
t

t
π θ

+
⎡ ⎤= −⎣ ⎦∫        (3.19) 

    ( ) ( )1 2 1 2 1 2 1 2( ) ( ) ( ) ( )cos 2 ( ) cos 2 ( )
r r

R X TRS TRSf R t t w t w t ft f ft f dt dt
T T

λ π θ π θ= − − −∫ ∫      (3.20) 

     ( )2 2 ( ) 1( ) ( ) ( )
WS

S N WS
I WS I

P P E f Nf E I f f
N

σ λ
α

+ −⎡ ⎤= = +⎣ ⎦        (3.21) 

       ( )0 2
( ) ( )sin 2 ( )r

r

T

WS TRSE f w t ft f dt
t

t
π θ

+
⎡ ⎤= −⎣ ⎦∫       (3.22) 

       ( ) ( )1 2 1 2 1 2 1 2( ) ( ) ( ) ( )sin 2 ( ) sin 2 ( )
r r

I X TRS TRSf R t t w t w t ft f ft f dt dt
T T

λ π θ π θ= − − −∫ ∫     (3.23) 

such that [ ]( ) ( ) ( )XR E x t x tτ τ= +  is the autocorrelation function of the WSS process. The 

introduced phase-shift ( )TRS fθ  is defined by:    

                
2 2( ) ( )

( ) 0.5arccot
2 ( )

WS WS
TRS

TRS

E R f E I f
f

f
θ

ζ

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦⎜ ⎟=
⎜ ⎟
⎝ ⎠

.             (3.24) 

It can be easily seen that 2 ( )WSE R f⎡ ⎤⎣ ⎦  and 2 ( )WSE I f⎡ ⎤⎣ ⎦  are identical to (3.18) and (3.21) 

respectively such that ( )TRS fθ  is discarded from their corresponding terms. Whereas,  

                    
( ) 2 ( )cos(2 )sin(2 ) 1( ) ( )r

S N

TRS RI

P P w t ft ft dt Nf f
N

T
π π

ζ λ
α

+ −
= +

∫
            (3.25) 

       1 2 1 2 1 2 1 2( ) ( ) ( ) ( )cos(2 )sin(2 )
r r

RI Xf R t t w t w t ft ft dt dt
T T

λ π π= −∫ ∫ .               (3.26)           

From (3.17)-(3.23), it can be recognised that the value of 2
, ( )e TRS fσ  declines as α  

increases; in particular the parts related to the first term in each of (3.18) and (3.21). They 

debilitate upon increasing the sampling rate enhancing the accuracy of the estimator where 

there is no spectral activity related to the processed signal. On the other hand, a substantial 
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part of 2
, ( )e TRS fσ  incorporating ( )R fλ  and ( )I fλ  is unaffected by the sampling rate and is 

concentrated at the active spectral subbands. As N  tends to infinity, the estimator’s 

variance 2
, ( )e TRS fσ  does not diminish analogous to the uniform sampling periodogram in 

(3.1). A K  number of , ( , )e TRS rX ft  estimates are averaged, a measure we explore in 

Chapter 5, to control the possible perturbations/anomalies in the ( )TRSC f  estimation. The 

two parameters α  and K  are the available means to curb ( )TRS fΛ  and ensure that the 

estimation/sensing procedure is performed with a certain level of confidence. 

Below, we give numerical examples to demonstrate the accuracy of the developed 

analytical expressions for the total random sampling scheme. 

 
3.3.2 Numerical Examples on TRS 
 

Consider a multiband system operating over 20L =  disjointed contiguous spectral 

subbands occupying the frequency range min 1.45f = GHz and min 1.55f B+ = GHz, i.e. the 

monitored frequency range is [ ]min min,f f BB = + . The width of each of the system subbands 

is 5CB = MHz and their joint width (the processed bandwidth) is 100B = MHz. If no 

previous knowledge of the activity of the system subbands is available, a low valid 

uniform sampling rate that would avoid spectrum aliasing with B  is 222 MHz (using 

bandpass sampling technique). If the signal is down-converted a priori to sampling, the 

admissible uniform sampling rates are 200USf ≥ MHz. Alternatively, an average sampling 

rate of 65α = MHz is selected for the TRS scheme. A signal analysis window of width 

0 10T = µs is used where a Blackman windowing function is utilised. AWGN is present and 

the Signal-to-Noise Ratio (SNR) is 1− dB. The PSD of the continuous-time incoming 

multiband signal is depicted in Figure 3.1. Figure 3.2a shows ,( ) ( , )TRS e TRS rC f E X ft⎡ ⎤= ⎣ ⎦  

defined in (3.11) and the statistical mean obtained from 10,000 independent experiments. 

Whilst, Figure 3.2b exhibits the estimator’s variance 2
, ( )e TRS fσ  as given in (3.17)-(3.26) 

and the Mean Squared Error (MSE) attained from the aforementioned experiments. 
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Figure 3.1: The PSD of the transmitted test signal. 

 
Figure 3.2: The mean and variance of the TRS estimator from the derived analytical 

formulas (solid lines) and simulations (dotted lines). (a) ( )TRSC f  from equation (3.11) and 
the statistical/experimental mean. (b) Estimator’s variance from equations (3.17)-(3.26) 

and the MSE. 

Both Figures 3.2a and 3.2b confirm that there is good match between the theoretical 

analysis and simulations which vindicates the accuracy of derived formulas. This implies 
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that the normality assumption did not have a noticeable effect on the results. It is clear 

from Figure 3.2a that ( )TRSC f  is an adequate spectrum representation for the detection 

pursuit. If uniform sampling was deployed at a similar rate, the spectrum of the sampled 

signal would include identical displaced replicas of the spectral components of the 

underlying continuous-time one. They would emerge within B  and be indistinguishable 

from those of the analogue signal.  For example, a copy of the component with the central 

frequency 1.5425Cf = GHz would appear at 1.4775 GHz if 65USf = MHz. In this case, 

identifying the active subbands is feasible only if the signal spectral support is known. On 

the other hand, TRS suppressed aliasing in its classical sense and allowed detecting the 

presence of an activity in the corresponding subbands with a notably low sampling rate. 

This demonstrates the ability of the TRS scheme in conjunction with the adopted estimator 

to suppress aliasing. In fact, extending the monitored frequency range beyond B  would not 

affect the detectability of the active subbands unlike the uniform sampling case where USf  

grows proportional to B . Figure 3.3 shows , ( , )e TRS rE X ft⎡ ⎤⎣ ⎦  for [ ]1,2f ∈ GHz where 

1SNR = − dB, e.g. the sampling is preceded by a filter limiting the noise bandwidth. 

 
Figure 3.3:  for [ ]1,2f ∈  GHz, 1SNR = − dB and 65α = MHz. From 

equations (solid line) and simulations (dotted line). 

Increasing the sampling rate is one of the means available to restrain (to an extent) the 

( )TRSC f  estimation inaccuracies from a single realisation of the incoming signal, i.e. 

( , )TRS r ftΛ . Figure 3.4 exhibits 2
, ( )e TRS Cfσ  for a varying average sampling rate where 

1.4975 Cf = GHz is the central frequency of the middle active subband in Figure 3.1. It can 

be seen from the figure that the variance declines but does not vanish as α  increases; it 

, ( , )e TRS rE X f⎡ ⎤⎣ ⎦t
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settles to a nearly constant level. This is due to the fact that a substantial part of 2
, ( )e TRS fσ  

is unaffected by the average sampling rate. Estimate averaging is utilised later in the thesis 

to ensure that the estimation and detection procedures meets the sought performance. 

 
Figure 3.4: Variance of the TRS estimator at GHz for a varying average 

sampling rate. 
 

3.4 Random Sampling on Grid (RSG) 
 
Despite the capability of the total random sampling scheme to alleviate the spectrum 

aliasing limitations even for arbitrarily low average sampling rates, theoretically any two 

or more of its sample points can be arbitrarily close. This imposes infinitely high 

instantaneous sampling frequencies, i.e. TRS requests infinitely fast data acquisition 

device(s). Early work on randomised sampling, which was limited to power spectral 

density estimation, used sampling schemes that suffered from a similar defect, e.g. additive 

random sampling with Poisson distribution [90-94, 104, 113].  

Random sampling on grid described in §2.3.3 provides safeguards by retaining a minimum 

distance between any two points in the sampling sequence (see Figure 2.5). The possible 

sample positions are limited to an underlying uniformly distributed time locations. The 

density of the uniform grid, which encompasses gN  grid points, is set by the rate gf . Each 

of the grid points can be selected only once with equal probability. Hence RSG, unlike a 

number of randomised sampling schemes such as TRS, offers solutions that are well suited 

for practical implementation in hardware. The periodogram-type estimator for the RSG 

scheme is defined by: 

                         
2

0 2
,

1

( 1)
( , ) ( ) ( )

( 1)
n

N
g j ft

e RSG r n n
nd

N T
X f y t w t e

N N
t π

μ
−

=

−
=

− ∑        (3.27) 

1.4975 Cf =
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where   

                                                             2

1
( )

gN

d g
n

w nTμ
=

= ∑         (3.28) 

noting that the gN  nominated uniformly distributed time instants are placed within the 

time analysis window [ ]0,r r r TT t t= + . In the next subsection, we show that the estimator 

in (3.27) is a suitable tool for DASP provided an appropriately chosen grid density. The 

detailed derivations of the RSG equations are presented in Appendix B. 

   
3.4.1 Estimator’s Expected Value and Accuracy for RSG 
 

By introducing a random variable nc  which takes a value of “1” if the -n th  grid point is 

considered and “0” otherwise, it can be shown that: 

2

0 02 2
,

1

( , )( ) ( 1)
( , ) ( ) ( ) ( )

( 1) ( 1)

g dN
W rg g N

e RSG r g g
ng d g g d

X fN N T N T P
E X f x t x nT w nT

N N N N f
t

t
μ μ=

− −
⎡ ⎤ = + +⎣ ⎦ − −∑    (3.29)      

such that 

     2

1
( , ) ( ) ( )

g
g

N
j fnTd

W r g g
n

X f x nT w nT et π−

=

= ∑         (3.30)                      

is the discrete-time Fourier transform of the processed signal. Thus: 

 

2

00 0
,

( , )( ) ( 1)
( ) ( , )

( 1)

d
W rg S g N

RSG e RSG r
g g d

T E X fN N T P N T P
C f E X f

N N N

t
t

μ

⎡ ⎤
− + − ⎢ ⎥⎣ ⎦⎡ ⎤= = +⎣ ⎦ −

     (3.31)         

where 2 ( )S gP E x nT⎡ ⎤= ⎣ ⎦  and NP  are the signal and AWGN powers respectively. It can be 

noticed that ( )RSGC f  comprises a constant frequency independent component, i.e. the first 

term in (3.31), in addition to a frequency representation of the signal. Ultimately, the 

adequacy of , ( , )e RSG rX ft  for unveiling the activity of the monitored spectral subbands 

relies on the second term of (3.31). The latter is the expected value of a scaled 

conventional uniform sampling periodogram [49]. It can be shown that 
2 2( , ) ( ) ( )d d

W r XE X f f W ft⎡ ⎤ = Φ ∗⎢ ⎥⎣ ⎦
 where  ( )d

X fΦ  is the PSD of the Discrete-time (DT) 

signal and is given by: 

                  ( ) ( )d
X g X g

k
f f f kf

+∞

=−∞

Φ = Φ −∑ .                   (3.32) 
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The ( )X fΦ  is the PSD of the incoming continuous-time multiband signal ( )x t . Provided 

that gf  is chosen appropriately, , ( , )e RSG rX ft  which is an unbiased estimator of ( )RSGC f  

poses as a legitimate tool for revealing the active spectral components in the received 

signal regardless of the used average sampling rate. The grid frequency is selected such 

that only one copy of the windowed PSD of the continuous-time signal appears within the 

monitored frequency range B  according to (3.32), i.e. ( ) ( ) 0X X gf f kfΦ Φ − =  if 0k ≠  

where k∈ . If the received signal is down-converted to baseband, the grid sampling 

frequency gf  should comply with Nyquist criterion, i.e. 2gf B≥  ( B  is the bandwidth of 

the overseen spectrum range). Nonetheless, the underlying grid density can be set 

employing the bandpass sampling technique [31].  

It is noted that the estimator in (3.27) does not demand knowledge of the signal’s PSD. The 

underlying grid rate gf  is dictated by the width and the position of the examined frequency 

range which is presumed to be foreknown. 

From (3.31) and (3.32), it can be seen that the use of RSG limits the range of surveyed 

frequencies based on gf . For TRS, we do not have such a constraint due to the scheme’s 

aliasing-suppression property for all frequencies. RSG exhibits similar potential, but rather 

confined to the predefined monitored spectral subbands for a commensurate gf  value.  

We recall that the variance is a crucial factor that gives an insight into the accuracy of the 

( )RSGC f  estimation. Calculating the variance equips the user with the means to evaluate 

the estimator’s accuracy and guarantee its performance by taking the necessary measures. 

We have: 

   { } { }
2

22
, ,

( 1)
( ) var ( , ) var ( )

( 1)
g

e RSG e RSG r RG

N
f X f X f

N
σ

μ
−⎡ ⎤

= = ⎢ ⎥−⎣ ⎦
t                 (3.33) 

where 2 2 2( ) ( ) ( )RG RG RGX f R f I f= + , ( )1
( ) ( ) ( )cos 2 ( )N

RG n n n RSGn
R f y t w t ft fπ θ

=
= −∑  and 

( )1
( ) ( ) ( )sin 2 ( )N

RG n n n RSGn
I f y t w t ft fπ θ

=
= −∑ . For large N  and gN N>> , ( )RGR f  and 

( )RGI f  can be approximated by a normal distribution according to the CLT. Moderate 

values of N  are typically considered to be sufficient in practical cases [52, 103]. 

Consequently, the variance of  , ( , )e RSG rX ft  reduces to: 
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           { }
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( 1)
( ) var ( , ) 2 ( ) ( )

( 1) RG RG

g
e RSG e RSG r R I

d

N T
f X f f f

N N
σ σ σ

μ
−⎡ ⎤

⎡ ⎤= = +⎢ ⎥ ⎣ ⎦−⎣ ⎦
t     (3.34) 

utilising the unnormalised chi-squared distribution characteristics where: 

              2 2 ( )( ) ( 1)( ) ( ) ( )
( 1) ( 1)RG

d
g S dWC

R RG N R
g g g g

N N PNE f N Nf E R f P f
N N N N

σ λ
⎡ ⎤− −⎡ ⎤= = + +⎢ ⎥⎣ ⎦ − −⎢ ⎥⎣ ⎦

        (3.35) 

              2 2 ( )( ) ( 1)( ) ( ) ( )
( 1) ( 1)RG

d
g S dWS

I RG N I
g g g g

N N PNE f N Nf E I f P f
N N N N

σ λ
⎡ ⎤− −⎡ ⎤= = + +⎢ ⎥⎣ ⎦ − −⎢ ⎥⎣ ⎦

         (3.36) 

( )2 2
1

( ) ( )cos 2 ( )gNd
WC g g RSGn

E f w nT fnT fπ θ
=

= −∑                           (3.37)          
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π θ
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= − −

× −
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        ( )2 2
1

( ) ( )sin 2 ( )gNd
WS g g RSGn

E f w nT fnT fπ θ
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= −∑                      (3.39)                   
and 

    

( )

( )
1 1

( ) ( ) ( ) ( )sin 2 ( )

sin 2 ( )

g gN N
d
I X g g g g g RSG

n m

g RSG

f R nT mT w nT w mT fnT f

fmT f

λ π θ

π θ
= =

= − −

× −

∑∑               (3.40) 

such that ( )X g gR nT mT−  represents the DT autocorrelation function of the processed 

signal. The phase-shift ( )RSG fθ  is introduced into (3.34)-(3.40) such that the zero mean 

( )RGR f  and ( )RGI f  are independent f∀ , i.e. [ ]( ) ( ) 0RG RGE R f I f = . Then, 

         { }( )2 2( ) 0.5arccot ( ) ( ) 2 ( )RSG RG RG RSGf E R f E I f fθ ζ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦               (3.41) 

where 2 ( )RGE R f⎡ ⎤⎣ ⎦  and 2 ( )RGE I f⎡ ⎤⎣ ⎦  are identical to (3.35) and (3.36) respectively such that 

( )RSG fθ  is omitted from (3.37)-(3.40) as ( )1
( ) ( ) ( )cos 2N

RG n n nn
R f y t w t ftπ

=
=∑   

and ( )1
( ) ( ) ( )sin 2N

RG n n nn
I f y t w t ftπ

=
=∑ . Whereas, 
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     (3.42) 

and 
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   ( ) ( )
1 1

( ) ( ) ( ) ( )cos 2 sin 2
g gN N

d
RI X g g g g g g

n m
f R nT mT w nT w mT fnT fmTλ π π

= =

= −∑∑ .           (3.43) 

By scrutinising (3.34)-(3.36), it can be seen that a higher average sampling rate leads to 

minimising the variance of the estimator. Moreover, increasing the grid rate gf  results in 

deterioration in the estimator’s accuracy. These two observations are illustrated in the 

following numerical example where we demonstrate the suitability of , ( , )e RSG rX ft  for a 

low sampling rate spectrum sensing procedure and verify the accuracy of the derived 

expressions via simulations. For instance, we establish that the normality assumption for a 

finite  N  does not have a noticeable impact on the accuracy of the conducted analysis. 

 
3.4.2 RSG Simulations 
 

Here we study the same multiband system described in §3.3.2 where the PSD of the 

received test signal is depicted in Figure 3.1. A Hanning window of width  0 8 sT μ=  is 

utilised and the SNR is 1− dB. The signal is down-converted to baseband prior to 

sampling, i.e. baseband processing. As a result, the processed bandwidth is    

[ ]100,100f ∈ − MHz where the active spectral subbands of the analogue signal now reside 

in [ ] [ ] [ ] [ ] [ ]10,15 30,35 45,50 60,65 90,95f ∈± ∪± ∪± ∪± ∪± MHz. An average sampling 

rate of 60α = MHz is selected which is significantly lower than 200USf ≥ MHz. A grid 

sampling frequency of 250gf = MHz is applied; it is satisfactory according to (3.32) as 

( ) ( ) 0X X gf f kfΦ Φ − =  if 0k ≠  ( k  is an integer). Figure 3.5 exhibits ( )RSGC f  in (3.31) 

and 2
, ( )e RSG fσ  defined in (3.34)-(3.43) versus the estimator’s experimental/statistical mean 

and mean squared error respectively. The latter two are obtained from 10000 independent 

experiments. 

As seen in Figure 3.5, ( )RSGC f  is an adequate spectral representation for the detection 

pursuit. If uniform sampling was deployed at a similar rate, aliasing would have resulted in 

the unfolding of the active subbands replicas into the monitored bandwidth. This would 

make a correct detection decision unfeasible. RSG suppressed aliasing in its classical sense 

within the overseen frequency range and allowed exposing the activity of the system 

subbands. This demonstrates the potential of this sampling scheme to eliminate the 

spectrum aliasing constraints within a finite spectral region mandated by the grid density. 
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Besides, it can be recognised from Figures 3.5a and 3.6b that the analytical and 

experimental results coincide which ascertains the accuracy of the developed formulas. 

 
Figure 3.5: The mean and the variance of the RSG estimator from equations (solid lines) 

and simulations (dotted lines). (a) ( )RSGC f  from equation (3.31) and the experimental 
mean. (b) 2 ( )RSG fσ  from equations (3.34)-(3.43) and MSE from simulations. 

To show the effect of α  and gf  on the estimator’s accuracy, 2
, ( )e RSG Cfσ  is depicted in 

Figure 3.6 for various sampling frequencies and permissible grid densities. The frequency 

point 47.5Cf = MHz is the central frequency of the active subband located in the     

[ ]45,50 MHz range. For the RSG scheme, gf  (typically gf α>> ) should preserve the 

usefulness of ( )RSGC f  for the handled detection problem, i.e. avoids aliasing within B . It 

can be noticed from Figure 3.6 that increasing α  minimises 2
, ( )e RSG fσ , whilst increasing 

gf  results in a small growth in the estimator’s variance. Nevertheless, the rate at which the 

variance declines as α  surges decays remarkably after the sampling rate exceeds a certain 
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value, the reduction in 2
, ( )e RSG fσ  becomes insignificant. This again justifies the necessity of 

averaging a number of the periodogram-type estimates in order to control the estimation 

quality. Although the targeted spectrums of each of  and , ( , )e TRS rX ft  are 

different, RSG generally offers a better quality of estimation within the examined 

bandwidth since RSG tends to TRS as gf  approaches infinity. 

 
Figure 3.6: Variance of , ( , )e RSG r CX ft  for various average sampling rates and grid 

densities, 47.5Cf = MHz. 
 

3.5 Stratified-Jittered Sampling 
 

The studied stratified sampling entails dividing the time analysis window into a number of 

non-overlapping partitions/strata, i.e. 1 2, , , N…    as in [98]. One sampling instant is 

selected per partition and its probability density function is: ( ) 1/n ntp =   if nt∈  and zero 

elsewhere such that n  is the width of the stratum n . The purpose of deploying stratified 

sampling is to suppress spectrum aliasing where no previous knowledge of the signal 

spectral support is presumed. Accordingly, Stratified Sampling with Equal Partitions 

(SSEP) is a practical stratification technique that is applied here (see §2.3.3). However, the 

presented analysis in this chapter and the associated formulas (their detailed derivations are 

included in Appendix C) can be straightforwardly extended to stratification where the sizes 

of the strata are unequal. Unlike total random sampling and other randomised sampling 

schemes, SSEP guarantees a minimum distance between any two of its sample points as 

discussed in §3.5.3. It can also lower the data acquisition speed compared to the RSG 

scheme. 

, ( , )e RSG rX ft
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We utilise the periodogram-type tool given by:  

          
2

2
, 2

1

1( , ) ( ) ( ) n

N
j ft

e SSEP r n n
n

X f y t w t et π

μα
−

=

= ∑        (3.44) 

 to estimate a detectable frequency representation of the received signal from a finite set of 

noisy signal samples, i.e. { } 1
( ) N

n n
y t

=
, collected within rT . Whereas, μ  is the energy of the 

windowing function defined in (3.9) and 0/N Tα =  is the average sampling rate. Below, 

we show that the smeared-aliasing introduced by stratified sampling, distinct from the TRS 

and RSG cases, is not constant across the monitored frequency range B . 

 
3.5.1 Estimator’s Expected Value and Accuracy for SSEP 
 

In order to scrutinise the alias-free suppression capability of stratified sampling, the 

estimator’s expected value is examined. It is shown to be (see Appendix C): 

      ( ) 2
,

1 ( )( ) ( , ) ( ) ( )S N
SSEP e SSEP r X

P P fC f E X f f W f χ
α μ μ
+

⎡ ⎤= = + Φ ∗ −⎣ ⎦t          (3.45) 

recalling that 2( ) ( )
r

j ftW f w t e dt
T

π−= ∫ , 2 ( )SP E x t⎡ ⎤= ⎣ ⎦ , NP  is the AWGN variance and 

( )X fΦ  is the PSD of the incoming multiband signal ( )x t . Whereas,  

              2

1
( ) ( ) ( )N

X nn
f f V fχ

=
= Φ ∗∑         (3.46) 

such that 

              2( ) ( )
n

j ft
nV f w t e dtπ−= ∫ .                                            (3.47) 

It follows from (3.45) that ( )SSEPC f  consists of a detectable feature given by the windowed 

signal’s PSD, i.e. 2( ) ( ) /X f W f μΦ ∗ , plus two components that represent the smeared-

aliasing phenomenon owed to the deployment of nonuniform sampling (excluding the 

AWGN contribution, i.e. /NP α ). The frequency-independent component ( ) /S NP P α+  

merely serves as amplitude offset at all frequencies, whilst ( ) /fχ μ  minimises the latter’s 

effect in the vicinity of the signal’s spectral component(s), i.e. attenuates smeared-aliasing 

at such frequencies. To illustrate this property of stratified sampling, consider a rectangular 

( )w t  which produces 2( ) sinc( / )nj f
nV f e fπ τ α α=  and 0Tμ =  such that nτ  is the time 
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instant denoting the centre of the -thn stratum. Thus  2( ) ( ) sinc( / )Xf f fχ μ α α= Φ ∗  

and: 
2

2( ) sinc( / ) 1( ) ( ) ( )S N X
SSEP X

P P f f
C f f W f

α
α μ

+ −Φ ∗
= + Φ ∗ .       (3.48) 

If we assume that α  is considerably larger than the width of the individual system 

subband, the main-lobe of 2sinc( / )f α  will be notably wider than CB . The convolution 

outcome of 2( ) sinc( / )X f f αΦ ∗  yields a proportion of the area underneath the PSD of the 

active subbands. This is distinct from the effect of 22
0 0( ) sinc( )W f T T f=  in (3.48) which 

serves the purpose of smoothing ( )X fΦ , noting that 0 1/ CT B>  as discussed in the §5.1.3. 

Hence ( )SSEPC f  in (3.48) shows that the contribution of ( ) /fχ μ  depends on the location 

of the active subbands and their power levels as well as on 0/N Tα = . If the active 

channels are within a close proximity of each other, the outcome of the convolution 
2( ) * sinc( / )X f f αΦ  in ( ) /fχ μ  would represent more of the area underneath ( )X fΦ , i.e. 

SP , as opposed to when they are spread across the frequency range of interest. Larger α  

would have a similar impact as 2sinc( / )f α  main-lobe becomes wider, i.e. the convolution 

incorporates more of the signal’s power. Accordingly, the smeared-aliasing level for SSEP 

varies across the assessed bandwidth such that / ( ) /SP fα χ μ≥ . This aspect of stratified 

sampling along with the effect of the active subbands location on ( ) /fχ μ  is demonstrated 

in the numerical examples in the next subsection. Therefore, , ( , )e SSEP rX ft  is an unbiased 

estimator of ( )SSEPC f  which is a detectable frequency representation of the incoming 

signal. It is a suitable tool for a spectrum sensing routine where the sampling rates are 

substantially low. 

In order to assess the accuracy of the ( )SSEPC f estimation using , ( , )e SSEP rX ft  in (3.44), we 

calculate the estimator’s variance { }2
, ,( ) var ( , )e SSEP e SSEP rf X ftσ = . The rt  is discarded for 

the simplicity of the notation whenever needed. Similar to the TRS and RSG, first we start 

with: 

  2 2 2
,

1 1( , ) ( ) ( ) ( )e SSEP r SS SS SSX f X f R f I ft
μ μ

⎡ ⎤= = +⎣ ⎦                   (3.49) 
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where 2
0 1

( ) ( ) ( ) n
N j ft

SS n nn
X f T y t w t e Nπ−

=
= ∑ . Whilst the phase-shifted real and imaginary 

parts of ( )SSX f  are given by: 

    ( )0 1
( ) ( ) ( )cos 2 ( )N

SS n n n SSn
R f T y t w t ft f Nπ θ

=
= −∑                  (3.50) 

 ( )0 1
( ) ( ) ( )sin 2 ( )N

SS n n n SSn
I f T y t w t ft f Nπ θ

=
= −∑                (3.51)        

If  the zero mean ( )SSR f  and ( )SSI f  are of normal distribution, the estimator in (3.44) has 

unnormalised chi-squared distribution with two degrees of freedom f∀  provided that 

( )SSR f  and ( )SSI f  are uncorrelated [103]. Below, it is illustrated that the normality 

condition holds and 2
, ( )e SSEP fσ  is derived where ( )SSEP fθ  is selected such that 

[ ]( ) ( ) 0SS SSE R f I f = . 

Each of ( )SSR f  and ( )SSI f  are the sum of N  independent random variables which are not 

identically distributed, i.e. the classical central limit theorem does not apply. Instead, we 

prove that the Lyapunov condition [103, p.338] is satisfied. For this purpose, we assume 

that ( )x t  is not only wide sense stationary but also ( )E x t ν⎡ ⎤
⎣ ⎦  

is a constant for some 

0 2ν ν= > . Let ( )
1

( ) ( )Nj f
SS nn

X f e F fθ
=

=∑  where ( )2 ( )
0( ) ( ) ( ) nj f t f

n n nF f T y t w t e Nπ θ− −= . Now, 

we show that the Lyapunov condition given by: 
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      (3.52) 

for some 2ν >  is fulfilled, i.e. { }( )
1 1Re ( ) ( )j f

SS SSX f e R fθ σ σ=  and 

{ }( )
2 2Im ( ) ( )j f

SS SSX f e I fθ σ σ=  are jointly asymptotically normal. Each of 2
1σ  and 2

2σ  

are the asymptotic variances of ( )SSR f  and ( )SSI f  respectively. It can be easily seen that 

[ ] 0nE F = . Following the aforementioned assumption on ( )x t , we have: 2 2
2nE F α κ−⎡ ⎤ =⎣ ⎦  

and 0 0

0nE F ν ν
να κ−⎡ ⎤ =⎣ ⎦  where 2κ  and 

0ν
κ   are constants; the signal and AWGN are 

independent. Subsequently, 
00.5 1

const.lim lim =0NN N N
L ν −→∞ →∞

=  proving (3.52), i.e. 1( )SSR f σ  and 
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2( )SSI f σ  are jointly asymptotically normal. It has been observed that ( )SSR f  and ( )SSI f  

are approximately normal even for moderate values of N . This is exploited here where 

{ }2 ( ) var ( )
SSR SSf R fσ = , { }2 ( ) var ( )

SSI SSf I fσ =  are calculated for a finite number of 

collected samples.  

As a result, provided that ( )SS fθ  values guarantee [ ]( ) ( ) 0SS SSE R f I f = , we have:  

                                { }2 4 4 2
,( ) var ( , ) 2 ( ) ( )

SS SSe e SSEP r R If X f f fσ σ σ μ⎡ ⎤= = +⎣ ⎦t                  (3.53) 

according to chi-squared distribution [103] where:  

  ( )2 ( )
( ) ( ) ( )

SS

S N WC
R R R

P P E f
f f fσ χ λ

α
+

= − +                               (3.54) 

             ( )2 ( )
( ) ( ) ( )

SS

S N WS
I I I

P P E f
f f fσ χ λ

α
+

= − + .                         (3.55) 

Each of ( )WCE f , ( )WSE f , ( )R fλ  and  ( )I fλ  are defined by (3.19), (3.22), (3.20) and 

(3.23) respectively such that: 

     { }( )2 2( ) 0.5arccot 0.5 ( ) ( ) ( )SS SS SS SSf E R f E I f fθ ζ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦             (3.56) 

replaces ( )TRS fθ . Whilst,   
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f R t t w t w t ft f ft f dt dtχ π θ π θ
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.   (3.58) 

Each of 2 ( )SSE R f⎡ ⎤⎣ ⎦  and 2 ( )SSE I f⎡ ⎤⎣ ⎦  are identical to (3.54) and (3.55) respectively such that 

( )SS fθ  is omitted from their corresponding terms since 

 ( )
1
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N

SS n n n
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R f y t w t ftπ α
=

= ∑   and ( )1
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=∑ . Whereas, 
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ζ π π α χ λ= + − +∫  (3.59) 

1 2 1 2 1 2 1 21
( ) ( ) ( ) ( )cos(2 )sin(2 )

n n

N
RI Xn

f R t t w t w t ft ft dt dtχ π π
=

= −∑ ∫ ∫ 
           (3.60) 

  and ( )RI fλ  is defined in (3.26).  
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3.5.2 Numerical Examples on SSEP 
 

We revisit the system studied in the TRS and RSG cases; it operates over the frequency 

range [ ]1.45,1.55B = GHz. The SSEP average sampling rate is chosen to be 40α = MHz, 

which is well below the minimum valid admissible bandpass uniform sampling 

counterpart, i.e. 222 MHz. A Blackman window of width 0 8T = µs is used and the signal-to 

-noise ratio is -1 dB. In Figure 3.7, the derived analytical mean in (3.45) and variance in 

(3.53)-(3.60) are compared to the experimental/simulations mean and MSE respectively. 

The latter two are procured from 10000 independent experiments. The PSD of the test 

signal is exhibited in Figure 3.1 for 0f > . 

 
Figure 3.7: , ( , )e SSEP rX ft  analytical mean from equation (3.45) and variance from 

equations (3.53)-(3.60) versus the experimental ones. (a) ( )SSEPC f  from equation (solid 

line) and experimental mean (dotted line). (b) 2
, ( )e SSEP fσ  from equation (solid line) and 

mean squared error (dotted line). 
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The simulation results in Figure 3.7 confirms the accuracy of the provided mean and 

variance formulas of . It is clear from Figure 3.7a that ( )SSEPC f  is a 

detectable frequency representation of the incoming signal and hence  is a 

suitable tool for detection. To manifest the effect of ( ) /fχ μ  in (3.45), i.e. the varying 

smeared-aliasing level, Figure 3.8 shows ( )SSEPC f  for four different distributions of the 

engaged subbands and the ( ) /S NP P α+  term in (3.45). Figure 3.9 exhibits the smeared-

aliasing decay factor  for the four plots in Figure 3.8. The PSD of the present 

signal in each of these distributions is depicted in Table 3.1. 

Table 3.1: PSD of the active subbands in Figures 3.8 and 3.9, frequency is in GHz. 

( )X fΦ  Figure 3.8a Figure 3.8b Figure 3.8c Figure 3.8d 

0.6 [1.475,1480]f ∈±  [1.505,1.51]f ∈±  [1.475,1.48]f ∈±  [1.5,1.505]f ∈±  

0.85 [1.515,1.52]f ∈±  [1.515,1.52]f ∈±  [1.465,1.47]f ∈±  [1.54,1.545]f ∈±  

0.9 [1.455,1.46]f ∈±  [1.525,1.53]f ∈±  [1.45,1.455]f ∈±  [1.455,1.46]f ∈±  

0.95 [1.495,1.5]f ∈±  [1.495,1.5]f ∈±  [1.545,1.55]f ∈±  [1.49,1.495]f ∈±  

1 [1.535,1.54]f ∈±  [1.535,1.54]f ∈±  [1.535,1.54]f ∈±  [1.51,1.515]f ∈±  

0 elsewhere elsewhere elsewhere elsewhere 

 

Figures 3.8 and 3.9 demonstrate that the position of the active subbands mandates the 

contribution of ( ) /fχ μ  to ( )SSEPC f . The observations are summarised by: 

o Figure 3.8a: the influence of the smeared-aliasing reduction factor spreads across B  

where the active subbands are sparsely placed.  

o Figure 3.8b: ( ) /fχ μ  values peak near/at the frequencies of the occupied channels and 

vanish near the lowest frequencies in the examined bandwidth where the smeared-

aliasing settles to a constant level, i.e. /SP α .  

o Figure 3.8c: the ( ) /fχ μ  has its maximum values near the active channels which reside 

at the edges of B . Whereas, ( ) /fχ μ  effect diminishes as we move towards the centre 

of the monitored bandwidth where the smeared-aliasing level approaches /SP α . 

, ( , )e SSEP rX ft

, ( , )e SSEP rX ft

( ) /χ f μ
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o Figure 3.8d: the smeared-aliasing reduction factor contribution is focused near the 

middle of B  where three out of the five active subbands are present. Its values stabilise 

as we approach the edges of the overseen bandwidth. 
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Figure 3.8: ( )SSEPC f  (solid lines) for various distributions of the active subbands and  

( ) /S SP P α+  (dashed lines ). Channels locations and power levels are depicted in Table 3.1.  
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Figure 3.9: Smeared-aliasing decay factor ( ) /fχ μ  for various distributions of the active 

subbands shown in Table 3.1. For ( )SSEPC f  in Figure 3.8a (solid line), in Figure 3.8b 
(dotted line), Figure 3.8c (dashdot line) and in Figure 3.8d (dashed line). 

To further understand the parameters that influence the magnitude of the smeared-aliasing 

reduction factor and its relation to the power of the present signal, let’s consider a 

rectangular windowing function where 2( ) ( ) sinc( / )Xf f fχ μ α α= Φ ∗ . Figure 3.10 
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exhibits the PSD of a test signal along with the 2sinc( / )f α  for various average sampling 

rates (only positive frequencies are shown). The signal’s active components are clustered 

at the centre of the monitored frequency range [ ],in inf f BB = + . We recall that the 

rectangular window was assumed for simplicity and the conclusions withdrawn from the 

simulations apply to any windowing function. 

 
Figure 3.10: PSD of a continuous-time multiband signal (solid line) and 

( ) 2
0sinc ( ) /f f α−  for various average sampling rates where 0 1.5f = GHz. 

It can be noticed from Figure 3.10 that the outcome of the convolution 
2( ) sinc( / )X f f αΦ ∗  incorporates part of the total power of the present signal especially in 

the vicinity of the active signal spectral components. This is more visible when the active 

subbands are close to each other or when 2sinc( / )f α  main-lobe is wide. For example, 

consider the central frequency 1.4975Cf = GHz of the active channel residing in 

[ ]1.495,1.5 GHz. As α  increases, the convolution outcome becomes a better approximation 

of the area underneath the signal’s PSD for 0f > . Assuming inf B>> , the ( ) /fχ μ  factor 

becomes a better approximation of 0.5 /SP α . Figure 3.11a shows ( ) /Cfχ μ  and 0.5 /SP α  

for the signal in Figure 3.10 where the average sampling rate varies. Figure 3.11b depicts 

their relative error [ ]( ) / 0.5 / 0.5 /C S Sf P Pχ μ α α− . It is clear from the figure that ( ) /Cfχ μ  

declines and approaches 0.5 /SP α  as the average sampling rate increases where their 

differences becomes insignificant as the relative error reduces to under 2%.  

The varying smeared-aliasing phenomenon that accompanies stratified sampling can have 

implications on spectrum sensing that utilises SARS, this is addressed in Chapter 5. 
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Cχ(f )/μ

S0.5P /α

 
Figure 3.11: (a) ( ) /Cfχ μ  and 0.5 /SP α  where 1.4975Cf = GHz is the central frequency of 

the middle active channel in Figure 3.10. (b) Relative error [ ]( ) / 0.5 / 0.5 /C S Sf P Pχ μ α α− . 
 
3.5.3 Stratified Sampling with Two ADCs Versus Other Schemes 
 

Similar to the random sampling on grid scheme, stratified sampling with equal partitions 

maintains a minimum distant between its samples ensuring a finite data collection rate. It 

can be implemented in practice by deploying two interleaved Analogue to Digital 

Converters (ADCs). ADC1 captures the samples 1 3 5( ), ( ), ( ),y t y t y t …  lying in the partitions 

1 3 5, , ,…    and ADC2 takes the samples 2 4 6( ), ( ), ( ),y t y t y t …  belonging to the rest of the 

strata, i.e. 2 4 6, , ,…   . As a result, the minimum distance between any two SSEP samples 

captured by the same acquisition device is min 1/d α=  (see Figure 3.12). Subsequently, the 

maximum imposed instantaneous sampling rate (sampling speed of the each ADC) is α  

where 0.5 nα β α≤ ≤ . The instantaneous sampling frequency is: 11/( )n n nt tβ −= −  which 

change for each two pairs of sampling instants. The maximum nβ  of randomised sampling 

schemes such as total random sampling and Additive Random Sampling (ARS) with 

Poisson distribution can be infinitely high, i.e. they demand infinitely fast ADC(s). Thus 

SSEP can remarkably reduce the required acquisition device(s) sampling speed(s). Its rates 

are also notably lower than the minimum admissible uniform sampling ones whose 

2n USf Bβ = ≥ . 

≈

 
Figure 3.12: An SSEP sequence with two ADCs (crosses are the sample positions). 
Samples collected by ADC1 are 1,1 1,2, ,d d …  seconds apart and the ones by ADC2 are 

2,1 2,2, ,d d …  seconds apart. 
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In order to illustrate the benefits of SSEP, Table 3.2 depicts the sampling rates of uniform 

sampling, TRS, RSG, ARS and SSEP using two interleaved ADCs. We assume that the 

monitored bandwidth is of width 100B = MHz. The uniform sampling rate is bounded by 

200USf ≥ MHz (200 MHz is utilised for the RSG underlying grid density). Whilst, an 

60α = MHz is selected for the randomised schemes. Two ADCs are employed and the 

shown rates are per one ADC.  

Table 3.2: Sampling rates in MHz for a number of sampling schemes per one ADC. 

Sampling scheme  Average sampling rate Maximum nβ  

Uniform Sampling  100 100 
TRS  30 Infinity 
RSG  30 100 
ARS  30 Infinity 
SSEP  30 60 

 

It can be seen from Table 3.2 that stratified sampling can offer more savings in terms of the 

acquisition device speed compared to the random sampling on grid scheme. The latter’s 

need for an underlying uniform grid with certain density dictates its maximum 

instantaneous sampling frequency. However, SSEP varying smeared-aliasing level can 

impose a limit on the minimum usable average randomised sampling rate when conducting 

spectrum sensing as shown later in the thesis. Generally, Table 3.2 demonstrates the 

benefits gained from randomised sampling in terms of the sampling rates compared to the 

classical uniform sampling. More than two ADCs can be deployed for SSEP to further 

relax the demanded sampling rates.  

As the shapes of each of the ( )TRSC f , ( )RSGC f  and ( )SSEPC f  are distinct, comparing the 

variances/accuracies of each of the total random sampling, random sampling on grid and 

stratified sampling estimators in a fair manner is implausible. Nonetheless, the 

requirements of each of the aforementioned schemes to reliability perform spectrum 

sensing are compared in the spectrum sensing chapter. 
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3.6 Spectrum Dynamic Range (SDR) 
 

The spectrum dynamic range is defined as the ratio between the highest magnitude 

spectrum point belonging to the processed signal and the lowest magnitude spectrum value 

within the range of observed frequencies [ , ]min minf f B= +B . With uniform sampling, the 

SDR is typically high and considered to be infinity for noiseless environments. A decline 

in the SDR is usually attributed to the presence of noise or the spectral leakage originating 

from the finite time analysis window. On the other hand, the spectrum of the studied 

randomised sampling schemes comprises a smeared-aliasing component active at all 

frequencies albeit the presence or absence of noise. Thus with randomised sampling the 

dynamic range is always finite. As the examined signals are of multiband nature, the SDR 

is determined for each of the active system subbands according to: 

     
[ ]
( )

min ( )
k

k

f

C fSDR
C f

B∈

=                    (3.61) 

for 1,2, ,k M= …  where [ ]( ) ( )eC f E X f=  is the targeted frequency representation for the 

generic estimator in (3.5), kf  is the frequency of the highest spectral peak in the examined 

-thk  subband and M  is the number of simultaneously active channels. Alternatively, one 

spectrum dynamic range can be defined for the entire monitored frequency range, i.e.  

[ ] [ ]max ( ) min ( )
ff

SDR C f C f
BB ∈∈

=                    (3.62) 

or ( )
1,2, ,
max kk M

SDR SDR
=

=
…

. It is noted that ( )C f  incorporates the contributions of the present 

noise and the smeared-aliasing phenomenon, for instance see (3.11), (3.31) and (3.45).  

Let 2( ) ( ) ( )XD f f W f μ= Φ ∗  and ( )k kD D f= , we can write: , 2S k C kP B D≤  is the power in 

the -thk active subband of width CB   (double sided power spectral density is assumed). 

Utilising (3.11) for the TRS scheme, we have: 

              
[ ],

( 1)1 k
k TRS

S N

N DSDR
N P P

α−
= +

+
         (3.63) 

where SP  and NP  are the total power of the present multiband signal and the power of the 

AWGN respectively. Adopting a conservative approach, (3.63) emerges as: 
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          ( ), 1

( 1)1
2 1k TRS

k C

NSDR
N B SNR

α
φ −

−
≈ +

+
        (3.64) 

where /S NSNR P P=  is the signal-to-noise ratio and ,/k S S kP Pφ =  is the ratio of the power in 

the scrutinised subband to that of the present multiband signal. It can be noticed from 

(3.64) that as the average sampling rate increases diminishing the smeared-aliasing 

contribution, the spectrum dynamic range improves. Similarly for the RSG, we have: 

   , 1

0.5 ( 1)
1

( ) ( 1)
g C k

k RSG
g g

N N B
SDR

N N N N N SNR
α φ

−

−
≈ +

− + −
      (3.65) 

and for SSEP: 

  
1

1
, 1

0

(1 0.5 ) 0.5
(1 0.5 )

C k
k SSEP

SNR B
SDR

SNR
ϖ α φ

ϖ

−

−

⎡ ⎤− + +⎣ ⎦≈
− +

 .      (3.66) 

Each of the 00 1ϖ≤ ≤  and 10 1ϖ≤ ≤  represent the contribution of the smeared-aliasing 

reduction factor ( ) /fχ μ  at the frequency point where ( )min ( )
f

C f
B∈

 is recorded and kf  in 

(3.61) respectively. We recall from §3.5.2 that ( ) /fχ μ  is related to the total power of the 

present signal such that: ( ) / 0.5 ( ) /Sf f Pχ μ ϖ α=  where 0 ( ) 1fϖ≤ ≤  assuming inf B>>  .  

Formulas (3.64)-(3.66) clearly demonstrate that SDR for randomised sampling estimators 

is largely influenced by the nature/characteristics of the sampling scheme. It also shows 

that the smeared-aliasing phenomenon plays a cardinal role in setting the spectrum 

dynamic range of the processed signal. Table 3.3 depicts the SDR of selected active 

subbands from Figures 3.2, 3.5 and 3.8 along with the SDR in (3.62). The central 

frequency Cf  of the considered subband in Table 3.3 is identical to the kf  frequency point 

in (3.61). The table clearly exhibits the close match between the results provided by (3.64)-

(3.66) and those measured from the figures. In practice, an estimate of ( )C f  using 

( , )e rX ft  would include an estimation error which can alter the spectrum dynamic range. 

In the above analysis, a zero estimation error was presumed, e.g. averaging an infinite 

number of estimates from uncorrelated signal windows. 
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 Table 3.3: SDR of Figures 3.2, 3.5 and 3.8, Cf  is the subband’s central frequency. kSDR  
from (3.64)-(3.66) and the measured kSDR  as well as  SDR  from the figures. 

As commonly known, high spectrum dynamic range eases the requirement on the spectral 

analysis device and forms a safety margin for any inaccuracies that might be incurred. 

From (3.64)-(3.66), the spectrum dynamic range of randomised sampling can be set by 

choosing the appropriate α . Assuming that 0T  is fixed, the spectrum dynamic range 

depends on the number of samples per signal analysis window, i.e. N . For a dynamic 

range greater than or equal to ρ , i.e. ( )( ) min ( )k f
C f C f

B
ρ

∈
≥  where 1ρ > , the number of 

samples needed for the TRS scheme with regard to the -thk  active subband can be easily 

shown to be:  

( ) 1
02 1 1 1TRS C kN B T SNRφ ρ −⎡ ⎤≥ − + +⎣ ⎦         (3.67) 

, for RSG: 

           
1

0 0

0

( 1) ( 1) 0.5
0.5 ( 1)

g g g C k
RSG

g C k

N T N T SNR N B
N

N B T
ρ φ

φ ρ

−⎡ ⎤− + − +⎣ ⎦≥
+ −

      (3.68) 

and for SSEP: 

                            [ ] [ ]{ }0 0 12 (1 0.5 ) (1 0.5 )SSEP C k S N S NN B T P P P Pφ ρ ϖ ϖ≥ − + − − + .     (3.69) 

Although the adopted estimators allow detecting the active transmissions albeit the 

sampling rates, each of (3.67)-(3.69) gives the user an indication of the needed average 

sampling rate if the spectrum dynamic range is an issue. They are not necessary conditions 

for performing reliable spectrum sensing. 

Figure Sampling 
Scheme 

α 
(MHz) 

T0   
(µs) 

fC    
(GHz) 

SNR 
(dB) 

SDRk 
(dB) 

Measured 
SDRk (dB) 

Measured 
SDR (dB) 

3.2a TRS 65 10 1.4625 -1 dB 1.464 1.465 2.224 
3.2a TRS 65 10 1.5125 -1 dB 2.222 2.224 2.224 
3.2a TRS 65 10 1.5425 -1 dB 1.9538 1.9554 2.224 
3.5a RSG 60 10 0.0125 -1 dB 1.5092 1.5067 2.2820 
3.5a RSG 60 10 0.0625 -1 dB 2.281 2.2820 2.2820 
3.5a RSG 60 8 0.925 -1 dB 1.9116 2.0072 2.2820 
3.7a SSEP 40 8 1.4625 -1 dB 1.158 1.2793 1.7271 
3.7a SSEP 40 8 1.4825 -1 dB 1.5482 1.5622 1.7271 
3.7a SSEP 40 8 1.4975 -1 dB 1.5318 1.5840 1.7271 
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3.7 Summary and Final Remarks  
 

Randomised sampling in conjunction with appropriate processing algorithms facilitates 

signal processing that is not restricted by the aliasing phenomenon. The nonuniform 

sampling rate is not limited by the processed bandwidth, antithetical to the uniform 

sampling case. Three randomised sampling schemes, namely total random sampling, 

random sampling on grid and stratified/jittered sampling, were investigated. Periodogram-

type estimators, each tailored to the corresponding sampling scheme, were analysed. The 

provided analytical expressions (derived in Appendices A, B and C) capture the ability of 

these estimators to suppress the aliasing phenomenon within a wide range of monitored 

frequencies exposing the present spectral components of the incoming signal. They are 

unbiased estimators of detectable frequency representations (incorporate the signal’s power 

spectral density) of the concurrently active spectral subbands despite the used low 

sampling rates (sub-Nyquist and possibly sub-Landau). The accuracy of the estimation 

process is assessed by quantifying the estimators’ variances, which indicated that further 

measures (such as estimate averaging) are needed to combat the high uncertainty levels 

accompanying the periodogram-type estimators. The results of the conducted simulations 

concur with those obtained from the derived formulas demonstrating the analysis precision. 

The properties of each of the considered randomised sampling schemes and their spectral 

analysis are summarised in the table on the next page. With regards to the spectrum 

dynamic range of the targeted frequency representations, the developed guidelines 

guarantee that the smeared-aliasing component is constrained, i.e. the SDR conforms to a 

requested predefined level(s). In general, the spectrum dynamic range for randomised 

sampling is finite and lower than that obtained with uniform sampling.  

As noticed from the schemes summary, the nature and the shape of the obtained spectrum 

are profoundly affected by the type of the randomised sampling scheme and its properties. 

Whilst the TRS simplicity is its mean feature, its suitability for implementation in 

hardware is rather limited as it requires infinitely fast data acquisition device(s). On the 

other hand, the random sampling on grid scheme ensures that a minimum distance is 

preserved between any two sample points. It is also well-suited for FFT-like algorithm, e.g. 

the zero filling in [5, p.67], to efficiently implement the estimator. However, RSG demands 

a dense underlying uniform grid imposing an acquisition device capable of matching the 
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grid rate. Alternatively, stratified sampling with equal partitions can reduce the demands 

on the ADC(s) speed(s) by deploying two (or more) interleaved acquisition devices. It 

equates the maximum instantaneous sampling rate to the average sampling one which is 

remarkably low. This offers substantial savings in terms of the ADC(s) speed(s) compared 

to RSG. Nevertheless, the spectrum of the stratified sampling scheme has a varying 

smeared-aliasing level that can have implications on the scheme’s ability to perform 

reliable detection at arbitrarily low sampling rates. A closed form formula of the smeared-

aliasing variations is provided. 

Task Spectrum Properties and the Sampling Scheme Features 

 

 

Spectral Analysis of 
TRS using: 

, ( , )e TRS rX ft  in (3.8) 

Suppresses aliasing equally across all frequencies facilitating the 
detection of the signal’s spectral components within arbitrarily 
wide frequency ranges. 
The introduced smeared-aliasing is constant and is a white-noise-
like component present at all frequencies. 
The TRS instantaneous sampling frequency can be infinitely high 
as any two or more of the sampling points can be arbitrarily close. 

 

 

 

Spectral Analysis of 
RSG using: 

, ( , )e RSG rX ft  in (3.27) 

The aliasing suppression is confined to the monitored frequency 
range provided an adequately chosen underlying grid density. This 
limits the possible overseen frequency range(s). The grid density 
is dependent on the width and location of the surveyed bandwidth. 
The smeared-aliasing level is constant within the monitored 
frequency range(s). 
The RSG maximum instantaneous sampling rate is equal to that of 
the grid rate. 

 

 

Spectral Analysis of 
SSEP using: 

, ( , )e SSEP rX ft
 

in (3.44) 

The ability of SSEP to suppress-aliasing across all frequencies 
enables it to perform reliable detection in wide frequency ranges. 
The smeared-aliasing level varies across the overseen bandwidth 
depending on the positions and power levels of the concurrently 
active spectral subbands. The smeared-aliasing level settles to a 
constant level far away from the signal’s spectral components. 
SSEP with two ADCs (can be more) guarantee that the maximum 
required instantaneous sampling frequency is less than or equal to 
the average sampling one.  
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Whilst the studied sampling schemes present themselves as legitimate means to conduct 

spectrum sensing using significantly low sampling rates, the parameters of their spectrum 

estimators should be selected appropriately in order to meet a sought system performance, 

e.g. the probability of correct detection. This evokes choosing the width of the signal 

analysis window, the average sampling rate and the number of estimate averages. The 

latter tactic aims at confirming that the spectrum estimation process is completed with 

certain level of confidence. The selection of such parameters amid specified detection 

requirements is treated in Chapter 5.               
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Chapter 4 

        SARS Properties for 
Cyclostationary Signals 

 
 
 
 
 
 
The Spectral Analysis of Randomised Sampling (SARS) has been conducted heretofore 

under the assumption that the incoming transmissions are Wide Sense Stationary (WSS). 

This has served the purpose of gaining insight into the behaviour and characteristics of the 

periodogram tool for the examined Total Random Sampling (TRS), Random Sampling on 

Grid (RSG) and Stratified Sampling with Equal Partitions (SSEP) schemes. However, a 

wide range of digitally modulated signals are of a cyclostationary nature. Here, we revisit 

the periodogram-type estimators studied in Chapter 3 and investigate the impact of 

processing cyclostationary communication signals on their performance. 

 
4.1 The Adopted Estimators and Cyclostationarity 
 

The autocorrelation function and power spectral density of the incoming transmissions 

modelled in the next section are time-varying, e.g. see (4.6), unlike those of the previously 

considered WSS signals. Circumventing the cyclostationarity of such processes (e.g. via 

phase randomisation) is a widely adopted practice in the communications literature 

whenever the process cyclic frequency is not of interest, e.g. [13, 15, 17, 49-51, 114]. In 

[119], Gardner exposed the defects of such practices in an attempt to correct any incurred 

errors, especially when the signal includes several (more than one) periodic components 

whose periods are not integer multiples of each other, such as the symbol and carrier 

periods. To improve the estimation accuracy we will be averaging a number of spectrum 

estimates calculated from various signal windows (see §5.1.2), hence it is vital to evaluate 

the response of the employed spectral analysis tools as the time analysis window 
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[ ]0,r r r TT t t= +  changes. In this chapter, the effect of the signal’s nonstationarity is 

acknowledged and its repercussions on the spectral analysis of randomised sampling are 

explored. The two main observations are: 

 The adopted estimators continue to be suitable tools for the spectrum sensing pursuit. A 

spectral fragment within each transmission subband, referred to as the “guarded 

region”, is identified where the estimated spectrum includes detectable features that are 

independent of time.  

 A phenomenon exhibited by abrupt increases in the estimators’ standard deviations at 

selected frequency points for some modulation schemes is unveiled.  

The detailed derivations of the presented expressions in the following sections are provided 

in Appendix D. 

Upon utilising the periodogram-type estimators in the spectrum sensing procedure, a finite 

number of spectral points are calculated per monitored spectral subband to determine its 

status (we aspire to use one frequency point per channel, see §5.1.2). The estimator’s 

behaviour at those sensed frequency points, denoted by { }kf , is of particular interest. 

Establishing the appropriate positions of { }kf  given the cyclostationary nature of the 

processed signals and quantifying the estimators’ accuracy at these locations is crucial. 

 
4.2 Incoming Signal 
 

Let , ( )T mx t  be the continuous-time signal transmitted over the -thm  system active spectral 

subband by a communication source that deploys a linear digital modulation scheme. It can 

be expressed by: , , ,( ) ( ) ( )T m i m q mx t x t x t= +  where  

        , ,( ) ( )cos(2 )i m m C mx t i t f tπ=            (4.1) 

and  

              , ,( ) ( )cos(2 0.5 )q m m C mx t q t f tπ π= + .         (4.2) 

 The in-phase ( )mi t  and quadrature ( )mq t  components are baseband signals where 

, , ,( ) ( )m n m i m S mn
i t a p t nT+∞

=−∞
= +∑ , , , ,( ) ( )m n m q m S mn

q t b p t nT+∞

=−∞
= +∑ , ,C mf  is the carrier 

frequency of the -thm  subband and , ,1/S m S mf T=  is the baud rate. The coefficients { },n m n
a

∈
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and { },n m n
b

∈
 are zero mean Independent Identically Distributed (IID) random variables 

with variances of 2
,a mσ  and 2

,b mσ  respectively, they represent the transmitted symbols. The 

baseband shaping filter(s) in the in-phase and quadrature branches are , ( )i mp t  and , ( )q mp t . 

The transmission can be modelled as: 

    , , , ,( ) ( , ) ( , )m n m i m n m q m
n n

x t a s t n b s t n
+∞ +∞

=−∞ =−∞

= +∑ ∑                        (4.3) 

where 

  , , , ,( , ) ( )cos(2 ) ( )i m i m S m C m ms t n p t nT f t h tπ⎡ ⎤= + ∗⎣ ⎦          (4.4) 

and 

          , , , ,( , ) ( )cos(2 0.5 ) ( )q m q m S m C m ms t n p t nT f t h tπ π⎡ ⎤= + + ∗⎣ ⎦ .        (4.5) 

The ( )mh t  in (4.4) and (4.5) represents the impulse response of the propagation channel 

over the -thm  subband combined with any other attenuation or boosting operation of the 

power level of the incoming transmission.  

It is in the interest of the forthcoming analysis to find certain first and second order 

moments of the processed signal. It can be easily checked that [ ]( ) 0mE x t = . Since ,n ma  and 

,n mb  are independent, it is clear that , 1 , 2( ) ( ) 0i m q mE x t x t⎡ ⎤ =⎣ ⎦ . The autocorrelation function of 

the signal in (4.3) is: 

        2 2
, , , , , , ,( , ) ( , ) ( , ) ( , ) ( , )X m a m i m i m b m q m q m

n n
R t t s t n s t n s t n s t nτ σ τ σ τ

+∞ +∞

=−∞ =−∞

+ = + + +∑ ∑        (4.6) 

whilst 

 ,
1

( , ) ( , )
M

X X m
m

R t t R t tτ τ
=

+ = +∑          (4.7) 

is for the M  independent concurrently active subbands. It can be noticed that (4.6) and 

(4.7) are time-varying, such stochastic processes are commonly regarded as Wide Sense 

Cyclostationary (WSCS) including the cases when the symbol period is not an integer 

multiple of the carrier period [51].  
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4.3 Targeted Frequency Representations 
 

To assess the adequacy of , ( , )e TRS rX ft  in (3.8), , ( , )e RSG rX ft  in (3.27) and , ( , )e SSEP rX ft  

in (3.44) for the detection task, their expected values are re-evaluated for the transmissions 

in (4.3). Similar to (3.11) for the total random sampling scheme, (3.31) for random 

sampling on grid and (3.45)  for stratified sampling with equal partitions, it can be seen 

that: 

              [ ] 2
,

( ) 1( , ) ( , ) ( , )
( 1)

S r N
TRS r e TRS r W r

N P P
C f E X f E X f

N
t

t t t
α μ
+ ⎡ ⎤⎡ ⎤= = +⎣ ⎦ ⎣ ⎦−

               (4.8) 

2

,

( , )( ) ( ) ( 1)
( , ) ( , )

( 1)

dd W rg S r g N
RSG r e RSG r

g d g

E X fN N P N P
C f E X f

N f f

tt
t t

μ

⎡ ⎤
− + − ⎢ ⎥⎣ ⎦⎡ ⎤= = +⎣ ⎦ −

    (4.9) 

2

,

( , )( ) ( , )( , ) ( , )
W rS r N r

SSEP r e SSEP r

E X fP P fC f E X f
tt tt t χ

α μ μ

⎡ ⎤+ ⎣ ⎦⎡ ⎤= = + −⎣ ⎦   (4.10) 

where N  is the number of collected signal samples that are contaminated with AWGN  of 

variance NP , 2 ( )
r

w t dt
T

μ = ∫ , ( )w t  is the windowing function, the signal’s weighted power 

is: 

                            2 21( ) ( ) ( )
r

S rP E x t w t dt
T

t
μ

⎡ ⎤= ⎣ ⎦∫          (4.11)           

and 2( , ) ( ) ( )
r

j ft
W rX f x t w t e dt

T
t π−= ∫ . The 1/g gf T=  is the underlying grid rate for the RSG 

scheme, 2
1

( )gN
d gn

w nTμ
=

=∑ , 2

1
( , ) ( ) ( )g gN j fnTd

W r g gn
X f x nT w nT et π−

=
=∑ , gN  is the number of 

the grid points in rT ,  and 

         2 2

1

1( ) ( ) ( )
gN

d
S r g g

nd

P E x nT w nTt
μ =

⎡ ⎤= ⎣ ⎦∑ .                             (4.12) 

The grid rate should be high enough in order to guarantee the usefulness of ( , )RSG rC ft  as 

discussed in §3.4, i.e. ( , ) ( , ) 0W r W r gX f X f nft t − =  for 0n ≠  and n∈  which implies 

2 22( , ) ( , )d
W r g W r gn

X f f X f nft t
∈

= −∑ . Whereas, 
2

1
( , ) ( , )

n

N
r S rn

f E X fχ
=

⎡ ⎤= ⎢ ⎥⎣ ⎦∑t t  is the 

smeared-aliasing reduction factor, 2( , ) ( ) ( )
n

n

j ft
S rX f x t w t e dtt π−= ∫  and n  is the -thn  

stratum of the SSEP scheme.                       
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From (4.8)-(4.10), the estimators’ expected values consist of frequency independent 

components and the expected value of the classical continuous-time periodogram, i.e. 
2( , )W rE X ft μ⎡ ⎤

⎣ ⎦  as well as the 
2

S ( , )
n rE X ft μ⎡ ⎤

⎢ ⎥⎣ ⎦
 in the SSEP case. Whilst the 

frequency independent components represent the smeared-aliasing phenomenon (except 

for the noise contribution), they do not overshadow the distinct feature(s) of 
2( , )W rE X ft⎡ ⎤

⎣ ⎦  related to the active transmissions. Here, we demonstrate that 

2( , )W rE X ft⎡ ⎤
⎣ ⎦  facilitates detecting the M  simultaneously active subbands and is 

independent of rt  at certain frequencies.  

Define: 2( ) ( ) j ft
m mH f h t e dtπ

+∞
−

−∞

= ∫ , 2
, ,( ) ( ) j ft

i m i mP f p t e dtπ
+∞

−

−∞

= ∫  and 2
, ,( ) ( ) j ft

q m q mP f p t e dtπ
+∞

−

−∞

= ∫ . 

To simplify  the  notation,  let:  , , ,( ) ( ) ( )i m m C m i mP f H f f P f= + , , , ,( ) ( ) ( )i m m C m i mP f H f f P f= − ,  

, , ,( ) ( ) ( )q m m C m q mP f H f f P f= +  and , , ,( ) ( ) ( )q m m C m q mP f H f f P f= − . In Appendix D.1, it is 

shown that: 

        2 2 2
, , , , , ,

1
( , ) 0.25 ( , ) ( , )

M

W r a m S m i m r b m S m q m r
m

E X f f F f f F ft t tσ σ
=

⎡ ⎤ = +⎣ ⎦ ∑                 (4.13) 

where 

  
*

, , , , , ,

* *
, , , , , ,

( , ) ( ) ( )

( ) ( ) ( ) ( )

i m r i m C m i m C m S m
n

i m C m i m C m S m S m

F f P f f P f f nf

P f f P f f nf W f W f nf

t
+∞

=−∞

⎡= − − −⎣

⎤ ⎡ ⎤+ + + − ∗ −⎣ ⎦⎦

∑
  (4.14) 

and 

       
*

, , , , , ,

* *
, , , , , ,

( , ) ( ) ( )

( ) ( ) ( ) ( )

q m r q m C m q m C m S m
n

q m C m q m C m S m S m

F f P f f P f f nf

P f f P f f nf W f W f nf

t
+∞

=−∞

⎡= − − −⎣

⎤ ⎡ ⎤+ + + − ∗ −⎣ ⎦⎦

∑
   (4.15) 

assuming ,C m Cf B>>  ( CB  is the width of an individual monitored spectral subband). 

Whereas, 2( ) ( )
r

j ftW f w t e dt
T

π−= ∫ , ∗  denotes the convolution operation and *X  insinuates 

the conjugate of a complex variable X .  

The baud rate is normally related to the bandwidth ,W mB  of the baseband shaping filter(s) 

, ( )i mp t  and , ( )q mp t . It is limited by [50]:  

       , , ,0.5 W m S m W mB f B< ≤         (4.16) 
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where ,W m CB B≤ . This implies: , , ,( ) ( ) 0i m i m S mP f P f nf− =  and  , , ,( ) ( ) 0q m q m S mP f P f nf− =  if 

{ }1,0,1n∉ − . Consequently, (4.13) reduces to: 

{ }
{ }

2 22 22
, , , , , , ,

1

2 2 22
, , , , , , ,

( , ) 0.25 ( ) ( ) ( ) ( , )

( ) ( ) ( ) ( , )

M

W r a m S m i m C m i m C m i m r
m

b m S m q m C m q m C m q m r

E X f f P f f P f f W f f

f P f f P f f W f f

t t

t

σ ε

σ ε

=

⎡ ⎤⎡ ⎤ = − + + ∗ +⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − + + ∗ +⎢ ⎥⎣ ⎦

∑
    

(4.17) 

such that , ( , )i m r ftε  and , ( , )q m r ftε  are the summands in (4.14) and (4.15) respectively 

when 1n = ± . Evidently, 2( , )W rE X ft⎡ ⎤
⎣ ⎦  embodies a detectable feature depicted by the 

windowed squared magnitude of the Fourier transform of the transmission filter(s) shaped 

by the propagation channel response. According to (4.14) and (4.15), , ( , )i m r ftε  and 

, ( , )q m r ftε  are of zero values at the centre of the active system subband provided that 

(4.16) is satisfied. This affirms that 2( , )W rE X ft⎡ ⎤
⎣ ⎦  at the central part of the transmission 

band, referred to hereafter as the guarded region, is independent of rt  and poses as the 

distinguishable component in each of  ( , )TRS rC ft , ( , )RSG rC ft  and ( , )SSEP rC ft . The latter 

includes the smeared-aliasing reduction factor, i.e. 
2

1
( , ) ( , )

n

N
r S rn

f E X ft tχ μ μ
=

⎡ ⎤= ⎢ ⎥⎣ ⎦∑ , 

which is shown in Appendix D to be independent of rt  at select frequency points similar 

to 2( , )W rE X ft⎡ ⎤
⎣ ⎦ . It is noted that the expected value of the continuous-time periodogram 

represents the signal’s windowed power spectral density, i.e. 2( ) ( )X f W f μΦ ∗ , for wide 

sense stationary signals and is independent of the position of the time analysis window rT . 

Therefore, the adopted estimators are admissible tools to unveil the presence of the active 

transmissions within the overseen frequency range(s) where the examined frequency points 

{ }kf  are placed at/near the centre of the monitored subbands, i.e. within the identified 

guarded regions. Accordingly, averaging a number of spectrum estimates from various   

rT ’s to enhance the estimation accuracy does not influence the detectability of the spectral 

components of the present multiband signal since 2( , )W r kE X ft⎡ ⎤
⎣ ⎦  is independent of rt .
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4.4 Estimation Accuracy 
 

The variance expressions of the total random sampling estimator in §3.3.1, random 

sampling on grid estimator in §3.4.1 and stratified sampling with equal partitions estimator 

in §3.5.1 are restated in Appendix D.2, taking into account the cyclostationarity of the 

signal. We also develop simplified approximations of: { }2
, ,( , ) var ( , )e TRS r k e TRS r kf X ft tσ = , 

{ }2
, ,( , ) var ( , )e RSG r k e RSG r kf X ft tσ =  and { }2

, ,( , ) var ( , )e SSEP r k e SSEP r kf X ft tσ =  prior to utilising 

them in the next chapter to formulate a reliable spectrum sensing routine. Below, the 

impact of the signal’s cyclostationarity on the estimators’ accuracies is outlined where the 

detailed calculations are presented in Appendix D.3 for each of the studied sampling 

schemes. Numerical examples are given in §4.5 to demonstrate the effect of the 

transmission type on the estimators’ variances. 

 
4.4.1 Total Random Sampling Estimator 
 

We start by defining: 

( ) ( )1 2 1 2 1 2 1 2( , ) ( , ) ( ) ( )cos 2 ( , ) cos 2 ( , )
r r

R r X r rf R t t w t w t ft f ft f dt dt
T T

t t tλ π θ π θ= − −∫ ∫      (4.18) 

and 

( ) ( )1 2 1 2 1 2 1 2( , ) ( , ) ( ) ( )sin 2 ( , ) sin 2 ( , )
r r

I r X r rf R t t w t w t ft f ft f dt dt
T T

t t tλ π θ π θ= − −∫ ∫      (4.19) 

such that [ ]1 2 1 2( , ) ( ) ( )XR t t E x t x t=  is the signal’s autocorrelation function in (4.7) and  

( , )r ftθ  is the phase-shift either for TRS as in (3.24) or for SSEP as in (3.56). It is noted 

that: 

                                            ( , ) ( , ) ( , )R r I r rf f D fλ λ μ+ =t t t         (4.20) 
where 

               2( , ) ( , )r W rD f E X ft t μ⎡ ⎤= ⎣ ⎦ .         (4.21) 

 Thus we can write: 

    2 2 2 2( , ) ( , ) ( , ) ( , )R r I r D r rf f f D ft t t tλ λ η μ+ =         (4.22) 

where            

                         0.5 ( , ) 1D r ftη≤ ≤          (4.23) 
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since 2 2 2 2 2 20.5 ( , ) ( , ) ( , ) ( , )r R r I r rD f f f D ft t t tμ λ λ μ≤ + ≤ . As a result: 

[ ] ( )[ ]22
2
, 2 2

2

( ) 2 1 ( ) ( , )
( , )

( 1)

12 ( , ) ( , )

S r N S r N r k
e TRS r k

D r k r k

P P N P P D fNf
N N

Nf D f
N

t t t
t

t t

σ
α α

η

⎧ + − +⎪≈ +⎨− ⎪⎩
⎫− ⎪⎡ ⎤+ ⎬⎢ ⎥⎣ ⎦ ⎪⎭

    (4.24) 

and ( , )D r ftη  is mandated by:  

                 ( , ) ( , ) ( , )r R r I rf f ft t tλ λΓ = −         (4.25) 

 according to (4.22) and (4.23). For instance, if ( , ) ( , )R r k I r kf ft tλ λ≈ , the factor 

( , ) 0.5D r kftη ≈ . If ( , ) 0R r kftλ ≈ , i.e. ( , ) ( , )I r k r kf D ft tλ μ≈ , then ( , ) 1D r kftη ≈ . 

Deciding the value of ( , )r kftη , referred to in the sequel as the variance deterioration 

factor, is of paramount importance since it forms a substantial part of the estimator’s 

variance. Here, we illustrate that ( , )D r kftη  in (4.24) is affected by the nature of the 

incoming transmissions. 

First, we have: 1 2( , ) ( , ) ( , )R r r rf f ft t tλ ψ ψ= +  and 1 2( , ) ( , ) ( , )I r r rf f ft t tλ ψ ψ= − , i.e. 

          2( , ) 2 ( , )r rf ft tψΓ =         (4.26) 
 where 

            ( )1 , 1 2 1 2 1 2 1 2
1

( , ) 0.5 ( , ) ( ) ( )cos 2 ( )
r r

M

r X m
m

f R t t w t w t f t t dt dtψ π
=

= −∑∫ ∫T T
t      (4.27) 

and 

                2 ( , ) 2 ( , ) *
2

1
( , ) 0.25 ( , ) ( , )r r

M
j f j f

r m r m r
m

f e G f e G ft tt t tθ θψ −

=

= +∑         (4.28) 

for the M  simultaneously active subbands. Hence 2 ( , )r ftψ  sets the values of ( , )D r ftη  

owing to (4.25) and (4.26), for example ( , ) 0.5r kftη ≈  if 2 ( , ) 0r kftψ ≈ . To exhibit the 

impact of the signal’s cyclostationarity on (4.24), we assume that the Fourier transform of 

the ( )w t  reduces to a Dirac delta ( )fδ , i.e. very long time analysis window. Subsequently,  

[ ] { }
[ ] { }

222 2 2
, , , , , , , , ,

222 2 2
, , , , , , , , ,

( , )

0.125 ( ) ( ) ( ) ( 0.5 )

0.125 ( ) ( ) ( ) ( 0.5 ).

m r

S m m a m i m C m b m q m C m C m S m
n

S m m a m i m C m b m q m C m C m S m
n

G f

f H f P f f P f f f f nf

f H f P f f P f f f f nf

t

σ σ δ

σ σ δ

+∞

=−∞

+∞

=−∞

=

⎡ ⎤⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤+ + − + + −⎣ ⎦ ⎣ ⎦

∑

∑

   

    (4.29) 
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Formula (4.29) shows that 2 ( , )r ftψ  in (4.26) can have nonzero values concentrated at 

frequencies equal to shifted multiples of half of the symbol rate, i.e. , ,0.5C m S mf nf± −  

( )n∈ ,  and belong to the transmission band provided that 2 2
, , , ,( ) ( )a m i m b m q mP f P fσ σ≠ . For a 

range of modulations schemes, e.g. QAM and QPSK, this condition is not satisfied where 

typically 2 2
, ,a m b mσ σ=  and the shaping filters in the in-phase and quadrature branches are 

presumed to be identical, i.e. 
22

, ,( ) ( ) 0i m q mP f P f⎡ ⎤⎡ ⎤ − =⎣ ⎦ ⎣ ⎦ . Clearly, in this case 2 ( , ) 0r ftψ ≈  

and ( , ) 0.5D r ftη ≈  within the -thm  active subband. Any mismatch between these two 

branches, i.e. 2 2
, , , ,( ) ( ) 0a m i m b m q mP f P fσ σ− ≠ , can lead to discrepancies between ( , )R r ftλ  and 

( , )I r ftλ , which result in surges in the variance values at selected frequency points 

according to (4.22), (4.23) and (4.29). Such a mismatch can be due to implementation 

imperfections at the transmitter end. For a BPSK signal, formula (4.29) becomes: 

     
[ ] 222

, , , , , ,

2
, , , ,

( , ) 0.125 ( ) ( ) ( 0.5 )

( ) ( 0.5 ).

m r S m a m m i m C m C m S m
n

i m C m C m S m

G f f H f P f f f f nf

P f f f f nf

t σ δ

δ

+∞

=−∞

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤+ + + −⎣ ⎦

∑
    (4.30) 

It indicates that 2 ( , )r ftψ  and consequently ( , )D r ftη  acquire their maximum values, i.e. 

( , ) 1D r ftη ≈ , at/near the frequency points , ,0.5n C m S mf f nf= ± −  and n∈   such that 

, , , ,0.5 , 0.5n C m W m C m W mf f B f B⎡ ⎤∈ ± − +⎣ ⎦  for the -thm  active channel. This produces a notable 

deterioration in the estimator’s accuracy according to (4.24).  

Therefore, the performance of the periodogram-type estimator can be significantly affected 

by the signal’s cyclostationarity and any processing task that relies on the spectral analysis, 

e.g. spectrum sensing, should consider the possible presence of such phenomenon. It can 

be noticed from (4.29) that such a severe decline in the estimation accuracy can take place 

at the central part of the system channels, i.e. within the predefined guarded region. This 

can undermine the reliability of the detection technique and necessitates taking counter 

measures, especially if the spectrum at the sensed frequency points { }kf  is subject to the 

aforementioned additional inaccuracies. With regards to handling wide sense stationary 

signals as in Chapter 3, the sharp accuracy decay phenomenon is not observed and it is 

shown in Appendix D.3.4 that ( , ) 0.5D r ftη ≈  is commensurate (see also the numerical 

examples in §3.3.2, §3.4.2 and §3.5.2).  
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4.4.2 Random Sampling on Grid Estimator 
 

The variance of the RSG estimator is closely approximated in Appendix D.2 by: 

2 2

2
,

2

( 1)
( , ) ( )

( 1) ( )

2( ) ( 1)
( ) ( , ) 2 ( , ) ( , )

( 1) ( )

g gd
e RSG r k S r N

g g

g g Nd d d d
S r r k D r k r k

g g

N N N
f P P

N f N N

N N N P
P D f f D f

N f N N

t t

t t t t

σ

η

⎡ ⎤ ⎡ ⎤− −
≈ +⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤− −

⎡ ⎤+ + +⎢ ⎥ ⎣ ⎦− −⎢ ⎥⎣ ⎦

    (4.31) 

where 

          
21( , ) ( , )d d

r W r
d g

D f E X f
f

t t
μ

⎡ ⎤= ⎢ ⎥⎣ ⎦
      (4.32) 

and  
0.5 ( , ) 1.d

D r ftη≤ ≤          (4.33) 

The latter parameter stems from: ( , ) ( , ) ( , )d d d
R r I r d g rf f f D ft t tλ λ μ+ =  and  

{ } { } { }2 2 2
( , ) ( , ) ( , ) ( , )d d d d

R r I r D r d g rf f f f D ft t t tλ λ η μ+ =      (4.34) 
whilst 

( ) ( )
1 1

( , ) ( , ) ( ) ( )cos 2 ( , ) cos 2 ( , )
g gN N

d
R r X g g g g g RSG r g RSG r

n m
f R nT mT w nT w mT fnT f fmT ft t tλ π θ π θ

= =

= − −∑∑
                (4.35) 

( ) ( )
1 1

( , ) ( , ) ( ) ( )sin 2 ( , ) sin 2 ( , ) .
g gN N

d
I r X g g g g g RSG r g RSG r

n m
f R nT mT w nT w mT fnT f fmT ft t tλ π θ π θ

= =

= − −∑∑
 (4.36) 

If ( , ) 0d
R r kftλ ≈ , i.e. ( , ) ( , )d d

I r k d g r kf f D ft tλ μ≈ , thus ( , ) 1d
D r kftη ≈ . Alternatively, if 

( , ) ( , )d d
R r k I r kf ft tλ λ≈ , then ( , ) 0.5d

D r kftη ≈ . Hence the value of ( , )D r ftη  is dictated by: 

      2( , ) ( , ) ( , ) 2 ( , )d d d d
r R r I r rf f f ft t t tλ λ ψΓ = − =       (4.37) 

where 

{ }*2 ( , ) 2 ( , )
2 1

( , ) 0.25 ( , ) ( , )RSG r RSG r
M j f j fd d d

r m r m rm
f e G f e G fθ θψ −

=
⎡ ⎤= + ⎣ ⎦∑ t tt t t     (4.38)                        

and it is shown in Appendix D.3 that: 

{
}

{ }

2
2 2, 2

, , ,

2 22
, , , , ,

2 22 2
, , , , , , ,

( , ) ( ) ( )
8

( ) ( 0.5 ) ( )

( ) ( ) ( 0

S m gd
m r m g a m i m C m g

n

b m q m C m g C m S m g m g
l

a m i m C m g b m q m C m g C m

f f
G f H f nf P f f nf

P f f nf f f lf nf H f nf

P f f nf P f f nf f f

σ

σ δ

σ σ δ

+∞

=−∞

+∞

=−∞

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− − − − − − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤× + − − + − + −⎣ ⎦ ⎣ ⎦

∑

∑

t

,.5 )S m g
l

lf nf
+∞

=−∞

−∑

 (4.39) 
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assuming an infinitely long signal analysis window for simplicity. For the BPSK 

modulation scheme, (4.39) reduces to: 

2 2
2 2, ,

, , , ,

2

, , , ,

( , ) ( ) ( ) ( 0.5 )
8

( ) ( 0.5 ) .

S m g a md
m r m g i m C m g C k S k g

n l

i m C m g C m S m g
l

f f
G f H f nf P f f nf f f lf nf

P f f nf f f lf nf

t
σ

δ

δ

+∞ +∞

=−∞ =−∞

+∞

=−∞

⎧⎡ ⎤ ⎡ ⎤= − − − − − −⎨⎣ ⎦ ⎣ ⎦⎩
⎫⎡ ⎤+ + − + − − ⎬⎣ ⎦ ⎭

∑ ∑

∑
                (4.40) 

 

It can be seen from (4.31), (4.33), (4.34) and (4.39) that the random sampling on grid 

estimator, similar to the TRS one,  can be subject to abrupt increases in its variance values 

at selected frequency points due to the cyclostationarity of the signal. For instance, if the 

incoming transmission over the -thm  channel is of a BPSK type, the estimated spectrum 

suffers from additional estimation errors at  ,C kf f=  due to the fact that 2
, ( , )e RSG r kftσ  value 

surges at such frequencies since ,( , ) 1d
D r C kftη ≈  given (4.31), (4.34), (4.38) and (4.40). 

 
4.4.3 Stratified Sampling with Equal Partitions Estimator  
 

The smeared-aliasing reduction factor: 

    
2

2

1

1 1( , ) ( , ) ( ) ( )
n

N
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r r
n

A f f E x t w t e dtt t πχ
μ μ

−

=

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∑ ∫     (4.41) 

consists of: 

( ) ( )1 2 1 2 1 2 1 2
1

( , ) ( , ) ( ) ( )cos 2 ( , ) cos 2 ( , )
n n

N

R r X SS r SS r
n

f R t t w t w t ft f ft f dt dtt t tχ π θ π θ
=

= − −∑ ∫ ∫
 

 (4.42) 

( ) ( )1 2 1 2 1 2 1 2
1

( , ) ( , ) ( ) ( )sin 2 ( , ) sin 2 ( , )
n n

N

I r X SS r SS r
n

f R t t w t w t ft f ft f dt dtt t tχ π θ π θ
=

= − −∑ ∫ ∫
 

. (4.43) 

Then, 

     ( , ) ( , ) ( , )R r I r rf f A ft t tχ χ μ+ =        (4.44) 

and 

      2 2 2 2( , ) ( , ) ( , ) ( , )R r I r A r rf f f A ft t t tχ χ η μ+ =       (4.45) 

 where  

   0.5 ( , ) 1A r ftη≤ ≤          (4.46) 

is controlled by ( , ) ( , ) ( , )A r R r I rf f ft t tχ χΓ = − . On the other hand, 
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     2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R r R r I r I r DA r r rf f f f f D f A ft t t t t t tχ λ χ λ η μ+ =      (4.47) 

 and hence  
  0.5 ( , ) 1DA r ftη≤ ≤         (4.48) 

where ( , )rD ft  is defined in (4.21). As a result, we attain: 
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     (4.49) 

The behaviour of ( , )D r ftη  in (4.49) is identical to that for the TRS estimator in (4.24). 

The value of ( , )A r ftη  in (4.49) is set by ( , )A r ftΓ ; ( , )A r kftη  can reach its maximum 

values at selected frequency points for certain modulation schemes (see Appendix D.3.3). 

If either ( , ) ( , ) 0.5 ( , )R r k I r k r kf f A ft t tχ χ μ≈ ≈  or ( , ) ( , ) 0.5 ( , )R r k I r k r kf f A fλ λ μ≈ ≈t t t , we 

have:  ( , ) 0.5DA r kfη ≈t . On the contrary, if ( , ) 0R r kftλ ≈ , i.e. ( , ) ( , )I r k r kf D ft tλ μ≈ , then  

( , ) 1DA r kfη ≈t ; ( , ) 0R r kftχ ≈  or ( , ) 0I r kftχ ≈  would have an identical effect. 

 
4.4.4 Remarks on the Accuracy Deterioration Parameters 
 
Selecting the values of ( , )D r ftη , ( , )d

D r ftη , ( , )A r ftη  and ( , )DA r ftη  can seem to be a 

burdensome task that requires an exact knowledge of the processed signal. However, we 

recall that the aim behind the conducted spectral analysis is to perform spectrum sensing 

and the developed variance expressions in (4.24), (4.31) and (4.49) are utilised in the next 

chapter to formulate a reliable detection procedure. If no exact knowledge of the signal and 

its characteristics are available, the user has to resort to conservative measures, e.g. 

( , ) ( , ) ( , ) ( , ) 1d
D r k D r A r k DA r kf f f fη η η η= = = =t t t t , to avoid any unforeseen inaccuracies. If 

more information about the signal becomes available (e.g. the modulation scheme, 
2 2
, , , ,( ) ( )a m i m b m q mP f P fσ σ−  and the symbol rate) the user can make a more informed choice of 

( , )D r ftη , ( , )d
D r ftη , ( , )A r ftη  and ( , )DA r ftη . 

It is noted that the preceding estimation accuracy analysis for WSCS signals presumed an 

infinitely long signal time window to simplify the calculations. In practice, the analysis 

time window is finite and any differences between ( , )R r ftλ  and ( , )I r ftλ , ( , )d
R r ftλ  and 

( , )d
I r ftλ , or ( , )R r ftχ  and ( , )I r ftχ  do not only occur at the identified frequencies in 
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§4.4.1, §4.4.2 and §4.4.3, but also in their vicinities depending on 0T . This implies that the 

remarkable surges in the estimators’ variances for sources whose 2 2
, , , ,( ) ( )a m i m b m q mP f P fσ σ≠  

can appear in the neighbourhood of , ,0.5n C m S mf f nf= ± −  ( n∈  and nf  points belong to 

the spectral support of the transmission band). Numerical examples are given below to 

depict this fact (see Figure 4.3). To avoid such cases, the user can employ long signal 

analysis windows. They lead to longer wait times before an estimation result is obtained 

and the time needed to detect the active spectral components is significantly increased. 

This degrades the benefits of the spectrum sensing approach, especially for continuous 

real-time sensing where a number of estimates from various signal windows are averaged 

before a detection decision is made.    
 

4.5 Numerical Examples 
 

Consider a system operating over 10 non-overlapping spectral subbands residing inside 

[ ]1.45,1.55B = GHz, i.e. min 1.45f = GHz, the width of each channel is 10CB = MHz and the 

total monitored bandwidth is 100B = MHz. A Blackman window of width 0 10T sμ=  and 

an average sampling rate of 90α = MHz are used. The SNR is -1.5 dB and two 

concurrently active transmissions with equal power levels are present. The variances of the 

TRS, RSG and SSEP estimators are tested for various modulation schemes; the symbol 

rate of the active subband with the central frequency ,3 1.475Cf = GHz is ,3 6Sf = MSym/s 

and the one centred at ,7 1.515Cf = GHz has a baud rate of ,7 9Sf = MSym/s. All the 

displayed Mean Squared Errors (MSEs) are attained from 50000 independent experiments. 

In Figure 4.1, the variance 2
, ( , )e TRS r ftσ  defined in (4.24) for the entire overseen range of 

frequencies is compared against the MSE. The corresponding ( , )D r ftη  is calculated from 

(4.22), i.e. 2 2 2 2( , ) ( , ) ( , ) ( , )D r R r I r rf f f D ft t t tη λ λ μ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ . The two transmissions in 

Figure 4.1a are BPSK modulated signals and those in Figure 4.1b are 16QAM whose 
2 2
, , , ,( ) ( )a m i m b m q mP f P fσ σ= . From the former figure, it can be seen that the estimator’s 

variance grows noticeably at/near the predicted frequency points in (4.30), i.e. 

3 ,3 ,30.5n C Sf f nf= −  and 
7 ,7 ,70.5n C Sf f nf= −  such that { }1,0,1n = −  where an 

1
( , ) 1D r nftη ≈  

is recorded. In Figure 4.1b, the estimator retains its consistency within the active subbands 

where ( , ) 0.5D r fη ≈t . The close match between the analytical and simulation results in 
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both plots in Figure 4.1 confirms the accuracy of the approximation in (4.24). Figure 4.2a 

exhibits ( , )R r fλ t  and ( , )I r fλ t  for the BPSK signals in Figure 4.1a. It shows that ( , )r fΓ t  

in (4.25) peaks at { }3nf  and { }7nf  causing the considerable decay in the estimation 

accuracy. Whereas, ( , ) 0r fΓ ≈t  for the 16QAM transmission in Figure 4.2b. 

 
Figure 4.1: The variance of the TRS estimator from equation (4.24) and simulations. (a) 

For BPSK transmissions. (b) For 16QAM transmissions. 

 
Figure 4.2: ( , )R r ftλ  and ( , )I r ftλ  for the examples in Figure 4.1. (a) For BPSK 

modulations. (b) For 16QAM modulations. 
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To demonstrate the effect of the width of the time analysis window on the frequency 

region(s) that are affected by the cyclostationarity of the signal, Figure 4.3 depicts the 

variance of the TRS estimator for the BPSK transmissions in Figure 4.1a and various 0T  

values. We zoom around the occupied subband centred at ,3 1.475Cf = GHz. It can be noted 

from Figure 4.3 that the sharp decline in the estimator’s accuracy spreads to the vicinity of 

the identified frequencies { }3nf . This becomes more visible for shorter [ ]0,r r r TT t t= + . 

Nonetheless, the deterioration reaches its highest levels at { }3nf  and diminishes as we 

move away from these frequencies. 

 
Figure 4.3: 2

, ( , )e TRS r ftσ  in (4.24) for the BPSK transmissions in Figure 4.1a using various 

0T  values; zoomed around 1.475f = GHz. (a) 0 10T sμ= . (b) 0 5T sμ= . (c) 0 2T sμ= .         
(d) 0 1T sμ= . 

In Figures 4.4 and 4.5, the transmission with the carrier frequency ,3 1.475Cf = GHz is of a 

BPSK nature whilst the subband whose central frequency is ,7 1.515Cf = GHz is occupied 

by a QPSK signal. The variance of the RSG estimator 2
, ( , )e RSG r ftσ  in (4.31) is displayed in 

Figure 4.4 along with the MSE, the grid rate is 240gf = MHz. It can be observed that 
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2
, ( , )e RSG r ftσ  notably increases at/near 

3 ,3 ,30.5n C Sf f nf= −  where { }1,0,1n = −  only for the 

BPSK transmission unlike the QPSK one as anticipated. Similar observations are made for 

the SSEP case in the numerical example in Figure 4.5 despite the additional complications 

due to the smeared-aliasing reduction factor featured by ( , )A r ftη  and ( , )DA r ftη  in (4.49). 

 
Figure 4.4: RSG estimator’s variance from equation (4.31) and simulations where 

transmission with the central frequencies ,3 1.475Cf = GHz and ,7 1.515Cf = GHz are BPSK 

and QPSK respectively. 

 
Figure 4.5: SSEP estimator’s variance from equation (4.49) and simulations where the 

subbands with the central frequencies ,3 1.475Cf = GHz and ,7 1.515Cf = GHz are occupied 

by BPSK and QPSK transmissions respectively. 
 
4.6 Chapter Summary and Discussion  
 

Processing cyclostationary signals alters the behaviour and the statistical characteristics of 

the adopted periodogram tool, an influence we explored in this chapter. By placing the 
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examined frequency points { }kf  at the central parts of the monitored subbands ( i.e. in the 

revealed guarded regions) the TRS, RSG and SSEP estimators continue to be legitimate 

tools to unveil the presence of active spectral components in the surveyed range of 

frequencies. However, for certain modulation schemes such as BPSK, the estimation 

accuracy notably declines due to the variance abruptly surging at predefined frequencies 

that belong to the transmission band. These frequencies are prescribed by the transmission 

carrier frequency (which is one of the affected spectral points) and the symbol rate. If the 

latter two parameters are a priori known, the regions where the additional estimation 

performance decay occurs can be avoided. It was illustrated that increasing the width of the 

signal analysis window confines the accuracy deterioration to very narrow frequency 

regions. Although such a precaution facilitates averting the possible repercussions of 

processing cyclostationary signals on the quality of the spectrum estimation, it leads to a 

longer processing time. For other modulation schemes, e.g. QAM with matched in-phase 

and quadrature processing chains, the estimation accuracy is similar to that of the wide 

sense stationary signals where the sharp increases in the variance levels are not 

experienced. 

In the studied communication systems, no previous knowledge of either the symbol rate or 

the modulation scheme is assumed, i.e. predicting the locations of any estimation accuracy 

decline is not feasible. Furthermore, short signal analysis windows are highly desired since 

they lead to fast efficient spectrum sensing that can conform to stringent sensing time 

requirements of real-time processing. Thus placing { }kf  at the central parts of the overseen 

subbands and adopting a conservative approach towards the accuracy of the spectrum 

estimation is a reasonable approach to undertake. 
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Chapter 5 

Multiband Spectrum Sensing in 
Wideband Communication Systems 

 
 
 
 
 
 
 
Spectrum sensing involves scanning predefined part(s) of the radio spectrum in search of 

meaningful activity such as an ongoing transmission or the occurrence of an event. 

Standard communications laboratory test equipment, e.g. spectrum analysers, can perform 

similar functionality. They conventionally sweep the spectrum using a narrowband 

tuneable bandpass filter(s) and determine the energy within each of the scanned spectral 

bands. The spectral support of the present signal is displayed based on whether the attained 

energy in a given frequency band exceeds a certain noise floor. Such instruments are 

usually bulky and expensive; consequently their solutions are inadequate for the 

investigated wireless communication systems whose resources (e.g. cost, weight, size and 

power) are limited. 

Spectrum sensing has a wide diversity of application areas including astronomy [76, 77], 

interception [120], seismology [121], communication systems [15, 122] and many others. 

Notably, the conceptualised Cognitive Radio (CR) technology has recently revived and 

intensified the research into effective sensing techniques [10, 14-20, 123]. The majority of 

these methods, which deploy digital signal processing, are uniform sampling based, see 

Table 5.1. The remarkably high sampling rates imposed by classical DSP (especially for 

wideband applications) obstruct the wide spread of such promising technologies and 

restrict their applicability. 

In this chapter, we propose a Multiband Spectrum Sensing (MSS) approach that utilises 

randomised sampling and its spectral analysis to accomplish the sensing task using 
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considerably low sampling rates. Since the spectrum sensing procedure does not 

necessitate signal reconstructing, it is shown that the sampling rates can be arbitrarily low 

for some randomised sampling schemes. Most importantly, general guidelines are provided 

to ensure that the developed MSS satisfies certain detection probabilities set by the user. 

These recommendations exhibit the trade-off between the required sampling rate and the 

length of the signal observation window (sensing time) in a given scenario. Additionally, a 

number of miscellaneous system considerations are addressed. 

 
5.1 System Model 
 

5.1.1 Wideband Spectrum Sensing and Detection Probabilities 
 

We recall from §1.2 that the studied systems operate over L  non-overlapping contiguous 

spectral subbands/channels occupying the frequency range [ ]min min,f f BB = + . Each of the 

channels is of width CB  and CB LB=  is the total processed bandwidth. The incoming 

multiband signal consists of an unknown M  number of concurrently active transmissions 

and is given by:  

,
1 1

( ) ( ) ( ) ( )
M M

m T m m
m m

x t x t x t h t
= =

= = ∗∑ ∑                 (5.1) 

where ∗  denotes the convolution operation. The maximum expected number of 

simultaneously active subbands at any time is AL M≥ . Whereas, ( )mx t  and  ( )mh t  are the 

incoming signal given in (4.3)-(4.5) corresponding to the -thm  subband and the impulse 

response of its propagation channel respectively; the latter is assumed to be deterministic. 

The collected samples of the received signal ( )y t  are contaminated with Additive White 

Gaussian Noise (AWGN) with variance NP , i.e. ( ) ( ) ( )n n ny t x t n t= + . The objective is to 

devise a method that is capable of scanning the overseen frequency range B  and reliably 

identifying the active subbands. It should operate at rates significantly lower than those 

requested by uniform-sampling-based approaches where 2USf B≥ [31]; 2B  is referred to as 

Nyquist rate thereafter. 
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Figure 5.1: Illustration of the occupancy of the system subbands ( “0” indicates that no 
transmission is present over the subband and “1” signifies the presence of an activity). 

Evidently, the spectrum sensing problem boils down to choosing between the hypothesis 

(“0”), i.e. 0,kH  which represents the absence of any activity within the -thk  subband, and 

the alternative hypothesis (“1”), i.e. 1,kH  which infers the presence of a transmission. An 

example where some of the subbands are occupied is exhibited in Figure 5.1. The 

performance of a spectrum sensing technique is commonly measured by the Receiver 

Operating Characteristics (ROC) that captures the relation between the probability of false 

alarm { }, 1, 0,Prf k k kP H H=  and the probability of detection { }, 1, 1,Prd k k kP H H=  in the -thk  

system subband [10, 15, 17-20, 124]. These probabilities are typically interrelated via the 

detection threshold kγ  whose value trades ,d kP  for ,1 f kP−  and vice versa. Accordingly, the 

reliability and robustness of the proposed spectrum sensing approach is reflected by its 

ability to fulfil a set of sought detection probabilities, i.e. ,d kP  and ,f kP  for one or more of 

the monitored system channels. Here, guidelines are derived to guarantee meeting such 

demands. 

 
5.1.2 Proposed Sensing Approach  
 

Unlike methods that employ spectral analysis to estimate the subband(s) energy, e.g. the 

classical energy detector (see §5.2), the introduced sensing procedure comprises three 

steps:  

1)  Randomly sampling the incoming signal at substantially low rates    

2)  Estimating the magnitude of the signal spectrum at selected frequency point(s)  

3) Comparing the magnitude(s) with pre-calculated threshold(s)  
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Having a spectrograph that is relatively smooth would permit assessing fewer frequency 

points per system subband to determine its status. We seek to inspect one frequency point 

per channel, i.e. L  spectral points are calculated. Consequently, the spectrum sensing 

problem can be described by the conventional binary hypothesis testing: 

   0,

1,

ˆ: ( )
ˆ: ( ) , 1,2, ,

k e k k

k e k k

X f

X f k L

H
H

γ

γ

<

≥ = …
                    (5.2) 

where ˆ ( )eX f  is the estimated magnitude spectrum and kγ  is the threshold. The frequency 

points { } 1

L
k k

f
=

 are placed at the centre of the system subbands as discussed in Chapter 4.  

The standard deviations of the used periodogram-type estimators, i.e. , ( , )e TRS rX ft  in (3.8), 

, ( , )e RSG rX ft  in (3.27)  and , ( , )e SSEP rX ft  in (3.44) ,  were shown in Chapters 3 and 4 to be 

of the same order as their expected values. To control such uncertainties, we average a K  

number of estimates in (5.2). They are calculated from K  signal windows each of width 0T

, i.e. [ ]0,r r r TT t t= +  for 1,2, ,r K= … , such that: 

       
1

1ˆ ( ) ( , )
K

e e r
r

X f X f
K =

= ∑ t .          (5.3) 

This entails shifting rT  and repositioning of the windowing function ( )w t . Each of:  

  , ,
1

1ˆ ( ) ( , )
K

e TRS e TRS r
r

X f X f
K =

= ∑ t                       (5.4) 

for Total Random Sampling (TRS), 

    , ,
1

1ˆ ( ) ( , )
K

e RSG e RSG r
r

X f X f
K

t
=

= ∑          (5.5) 

for Random Sampling on Grid (RSG) and 

    , ,
1

1ˆ ( ) ( , )
K

e SSEP e SSEP r
r

X f X f
K

t
=

= ∑          (5.6) 

for Stratified Sampling with Equal Partitions (SSEP) replace the generic estimator ˆ ( )eX f  

in (5.2). Here, non-overlapping uncorrelated signal windows are considered. 
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In this chapter, we show that (5.4)-(5.6) deliver reliable spectrum sensing that meets preset 

detection probabilities provided the suitable selection of the following: the width of the 

time analysis window 0T , the average sampling rate 0/N Tα =  and  the number of estimate 

averages K . The latter two parameters are the available means to curb any perturbations or 

anomalies in the estimation process, i.e. guarantee a certain level of accuracy. Any 

recommendations on the values of α  and K  should take into account severe system 

conditions to safeguard the response of the MSS method, e.g. the maximum spectrum 

occupancy and the highest harmful effect of the smeared-aliasing phenomenon. This 

approach is adopted in this research to develop the pursued guidelines and obtain the 

analytical expressions of the threshold values in (5.2).  

 
5.1.3 Signal Analysis Window 
 

Achieving the minimum sensing time is a highly desirable feature for any spectrum 

sensing technique, particularly if sensing is a continuous real-time operation that has to 

fulfil specific time constraints, e.g. the CR IEEE 802.22 highlights such a requirement. 

Hence we aim to utilise a short time analysis window rT  where the sensing time is 0KT  

according to (5.4)-(5.6). Furthermore, since the processed signals are of stationary or 

cyclostationary nature, attaining low resolution spectrographs via a short time analysis 

window rT  facilitates minimising the number of needed frequency points per system 

subband to establish any activity within, i.e. save on computations noting that one 

frequency point per channel is examined in (5.2). Using the theorem of minimum number 

of zero-crossings of bandlimited signals as discussed in [45, p. 170] and exploiting the 

frequency-time duality characteristic [44] enables us to deploy the number of zero-

crossings per channel as a criterion to describe the resolution of the spectrum. A zero-

crossing is perceived as a notable fluctuation in the magnitude spectrum and having two 

crossings per active channel is a reasonable assumption. As a result, an indicative practical 

guideline on the width of the time window is given by:  

                       0
1

C

T
B

≥ .            (5.7) 

However, 0T  should be long enough such that the windowing effect does not overshadow 

the estimators’ detectable feature(s) in (4.8)-(4.10), e.g. 
2 2

, ,( ) ( )i m C mP f f W f− ∗  and 
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2 2
, ,( ) ( )i m C mP f f W f+ ∗ . Its value should not also introduce high levels of spectral leakage 

that can limit the performance of the multiband spectrum sensing routine. For instance, if 

we consider a rectangular window, we have: 22
0 0( ) sinc( )W f T T f= . Its first zero crossing 

is at 01/T  after which 2( )W f  decays rapidly. The 0T  specified in (5.7)  ensures that the 

leakage is kept to the minimum where the bandwidth of a transmission occupying an active 

subband is ,W m CB B≤ . Windowing functions other than the rectangular one, e.g. Blackman 

which have significantly lower side-lobes, can be employed to further limit the spectral 

leakage. For more details on the characteristics of various windowing functions, the reader 

is referred to the comprehensive reviews in [109, 110]. 

Therefore, the chosen 0T  should strike a balance between spectrum smoothness and 

usefulness of each of ,( , ) ( , )TRS r e TRS rC f E X f⎡ ⎤= ⎣ ⎦t t  in (4.8), ,( , ) ( , )RSG r e RSG rC f E X f⎡ ⎤= ⎣ ⎦t t  

in (4.9) and ,( , ) ( , )SSEP r e SSEP rC f E X f⎡ ⎤= ⎣ ⎦t t  in (4.10). Experimental results showed that 

exceeding (5.7) a number of times suffices in practice. In the sequel 0T  is presumed to be 

fixed, i.e. predefined by the user. 
 

5.2 Spectrum Sensing Methods 
 

In Table 5.1, we list a number of popular spectrum sensing techniques; review papers such 

as [10, 14-20] compare these methods stating their advantages and disadvantages. We 

divided them into two categories: parametric and nonparametric. The parametric ones rely 

on previous knowledge of the incoming signal and its characteristics. For instance, 

matched filtering (coherent detector) demands the exact signal shape whilst the 

cyclostationary detector (feature detector) requests a priori knowledge of the modulation 

scheme and its baud rate. On the other hand, nonparametric techniques are not specific to a 

particular type of signals and thus branded as generic. They are deemed to be more 

appropriate for the pursued multiband spectrum sensing where limited information about 

the incoming signal is presumed.  

Some spectrum sensing methods are intrinsically geared to deal with one frequency 

subband at a time as depicted in Table 5.1, i.e. narrowband spectrum sensing. To apply 

these methods to the multiband scenario, the incoming multiband signal should be filtered 

using a bank of fine-tuned narrowband bandpass filters to separate the concurrently active 
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transmissions into their corresponding spectral subbands. Alternatively, wideband 

spectrum sensing approaches permit the simultaneous sensing of the system channels; they 

usually involve estimating the spectrum of the received signal [10, 12, 14-19]. A major 

implementation challenge lies in the prohibitively high sampling rates required by 

conventional spectral analysis tools; they are uniform sampling based and have to operate 

at or above the Nyquist rate. Whereas, we usher in a new wideband spectrum sensing 

approach that overcomes the sampling rate limitation by resorting to the randomised 

sampling and processing methodology. 

Table  5.1: Spectrum sensing approaches. 

Recently, there has been an immense interest in the emerging Compressive Sensing or 

Sampling (CS) trend due to its ability to mitigate the bandwidth constraints of uniform 

sampling [125, 126]. It promotes the use of sub-Nyquist sampling rates exploiting the 

sparsity of the processed signal when expressed in a certain basis, e.g. Fourier and 

wavelets. Spectrum sensing methods that rely on CS principle are emerging, e.g. [23, 24, 

127, 128], where the handled radio signals are known to be sparse in the frequency 

                                                            
** The computational complexity in Table 5.1 is an indicative measure where the energy detector is used 
as a benchmark to decide whether a sensing method is of high or low complexity. Energy detector 
involves taking the FFT of the signal and averaging. A technique which entails computationally 
demanding operations, e.g. solving some optimisation problem, is considered high complexity.  
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Approach Minimum 
Sampling rate Multiband Computational 

Complexity∗∗ 

Energy detector Nyquist   Low 

Multitaper spectrum estimation Nyquist   High 

Wavelet-based detection Nyquist   Moderate 

Compressive-sensing based Sub-Nyquist  High 

Introduced Technique Sub-Nyquist  Low 

Pa
ra

m
et

ri
c Matched-filtering detection Nyquist  Low 

Cyclostationary Detector Nyquist   Moderate 

Covariance-based detector Nyquist   Moderate 
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domain. It is noted that the CS leverages come at a considerable computational cost that 

accompanies the optimisations it entails. The computational complexity is one of the 

crucial factors that need to be taken into account upon comparing various sensing 

techniques as noticed in Table 5.1. In this context, the introduced MSS approach has a 

remarkably low computational load compared to the compressive-sensing-based ones. A 

concrete scientifically comprehensive comparison between CS-based spectrum sensing and 

our approach is outside the scope of this thesis (see §6.2).  

The Energy Detector (ED) in Table §5.1 resembles the introduced MSS technique; both 

involve similar operations. Hence we briefly discuss the ED and in §5.3.3 the reliability 

recommendations for a detector closely related to the classical ED are provided; they 

guarantee that the detector delivers the specified probabilities of detection and false alarm.    
 
Energy Detector 
 

The energy detector, otherwise known as radiometer [124], is one of the simplest means to 

decide between  0,kH  (i.e. the -thk  subband is inactive) and 1,kH  (i.e. the -thk  subband is 

active) [10, 14-18]. The received signal is transformed to the frequency domain, say via 

Fast Fourier Transform (FFT), and the energy within each monitored subband is measured 

by adding the squares of the FFT bins that belong to the subband in question. We have:  

                                     0,

1, ,

: ( ) ( )
: ( ) ( ) ( ) ( ) , 1,2, ,

k k i k i

k k i k i T k i k i

Y f V f
Y f H f X f V f k L

H
H

=

= + = …
     (5.8) 

where ( )k iY f  represents the spectrum of the received signal, ( )k iV f  is the AWGN, ( )k iH f  

signifies the propagation channel gain, , ( )T k iX f  is the incoming signal and the frequency 

points { } 1

I
i i

f
=

 belong to -thk  subband. The decision is taken upon assessing 

2

1
( )I

k k ii
T Y f

=
= ∑  where : 

                                      0,

1,

:
: , 1,2, ,

k k k

k k k

T
T k L

H
H

γ

γ

<

≥ = …
                      (5.9) 

where kγ  is the decision threshold. Typically, a number of ( )k iY f  are calculated from 

several signal windows and then averaged to enhance the accuracy of the energy 

measurements [10-12, 114]. Averaging a “sufficient number” of those estimates to achieve 
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a certain level of precision is a widely adopted premise, e.g. [10, 114, 115, 117, 118]. It 

can lead to collecting unnecessarily excess amounts of data.  

Whilst the ED requests a large number of frequency points per subband to measure the 

energy within, our approach only demands calculating one spectral point per channel. It is 

noted that placing an equal I  number of FFT-bins per system subband can impose some 

restrictions on the locations of the surveyed channels, especially if the processed signal is 

not down-converted to baseband. Nonetheless, generally the computational complexity of 

the ED and the introduced method are comparable. In §5.3.3, the uniform sampling energy 

detector is modified where one frequency point per subband is examined in (5.9). Although 

the ED is commonly viewed as a simple and easily implementable technique [10, 14-20], it 

and the proposed randomised-sampling-based approach have disadvantages. Both methods 

do not differentiate between the transmitted signal, noise or any Narrowband Interference 

(NBI).  

The threshold values in (5.9) dictate the probabilities of false alarm ( ) { }, 1, 0,Prf k k k kP H Hγ =  

and those of detection ( ) { }, 1, 1,Prd k k k kP H Hγ =  in the -thk  subband. To restrain the 

maximum ( ),f k kP γ , the ED demands previous knowledge of the AWGN variance. It can 

be estimated when the overseen spectral subbands are passive [10, 14-20, 116]. To ensure 

satisfying a minimum ( ),d k kP γ , the energy detector requests prior knowledge of the power 

of the signal occupying each of the system subbands or their Power Spectral Densities 

(PSDs). They can be learnt a priori when the subbands are active [17, 114, 116, 129]. 

 
5.3 Reliable Multiband Spectrum Sensing 
 

The objective in this section is to derive prescriptive recommendations on how to choose 

the average sampling rate 0/N Tα =  and the number of estimate averages K  (i.e. the 

sensing time 0KT ) for the introduced MSS approach using (5.4)-(5.6) such that we achieve: 

   ( ),f k k kP γ ≤ Δ                      (5.10) 

and  

                ( ),d k k kP γ ≥          (5.11) 
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for the -thk  system subband. Each of kΔ  and k   refer to the maximum allowed ( ),f k kP γ  

and the minimum sought ( ),d k kP γ  respectively in the targeted channel. Acquiring (5.10) 

and (5.11) also involves determining the adequate threshold values for the detection 

criterion in (5.2). Distinctive ROC plots, i.e. ( ),d k kP γ  versus ( ),f k kP γ  for a kγ  sweep, are 

attained for every combined α  and K  values since the latter two dictate the statistical 

characteristics of the employed estimator in consonance with (4.8)-(4.10), (4.24), (4.31) 

and (4.49). Owed to nonuniform sampling, the estimated spectrum suffers from smeared-

aliasing artefact which is present at all frequencies for both hypothesises 0,kH  and 1,kH . It 

embodies a form of the signal and noise powers of all the active subbands as indicated by 

(4.8)-(4.10). The lack of an activity in subband k does not imply that noise is the only 

contributor to the estimated spectrum within the channel’s frequency range unlike the 

uniform sampling adversaries, e.g. energy detector in (5.8).  

On the other hand, the detection requirements of the system’s L  subbands can be 

compactly represented by:  

( ) ( ) ( ) ( ),1 1 ,2 2 ,, , ,
T

f f f L LP P PfP γ Δγ γ γ⎡ ⎤= ⎣ ⎦… ≺        (5.12) 

    ( ) ( ) ( ) ( ),1 1 ,2 2 ,, , ,
T

d d d L LP P PdP γ lγ γ γ⎡ ⎤= ⎣ ⎦…                   (5.13) 
for 

          [ ]1 2, , , T
Lγ γ γ γ= …         (5.14) 

where [ ]1 2, , , T
LΔ = Δ Δ Δ…  and [ ]1 2, , , T

Ll = … . Each of ≺  and  refers to an element by 

element comparison of the vectors, e.g. ( )fP γ Δ≺  implies that ( ),1 1 1fP γ ≤ Δ , ( ),2 2 2fP γ ≤ Δ , 

etc. Clearly, detecting a weak or high performance subband would necessitate more 

estimate averages and higher sampling rates compared to another channel with stronger 

power level or lower detection specifications. It entails further restraining of the 

estimator’s inaccuracies. If the user aims to fulfil the detection probabilities of more than 

one channel, he/she should survey the demands of the subbands in question and select the 

highest recommended α  and K  values. 
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5.3.1 Reliability Guidelines 
 

The pursued guidelines should consider the onerous system conditions, e.g. AL  active 

channels and the highest possible harmful effect of smeared-aliasing. If the number of the 

concurrently active subbands at a given time is AM L< , the guidelines become 

conservative. The smeared-aliasing issue is mostly relevant to the stratified sampling case 

where the varying smeared-aliasing level can obscure the detection routine if it is not taken 

into account. It is noted that an active subband with a higher power level would introduce a 

bigger error to the estimation process compared to a weaker channel. Such inaccuracies are 

observed within the frequency range allocated to the active subband as well as across B  

due to the smeared-aliasing phenomenon. Consequently, we should cater for the AL  

strongest concurrently active subbands to guarantee the response of the spectrum sensing 

technique; this group of channels is denoted by A . We assume that the total signal power 

is approximately equal in both 0,kH  and 1,kH  to simplify the formulas; however in [130, 

131] we consider the scenario where the power can vary between the two hypothesises. 

According to one-sided Chebychev’s inequality (also known by Cantelli’s inequality),   

[ ]{ } 2Pr 1 (1 )XX E X c cσ≥ + ≤ +  and [ ]{ } 2Pr 1 1 (1 )XX E X c cσ> − ≥ − +  where X  is a 

random variable with a standard deviation Xσ  and 0c ≥  [132]. From (5.10) given 

Chebychev’s inequality, the threshold levels for 0,kH  (i.e. when the -thk  subband is idle) 

are down-limited by min,k kγ γ≥  where  

                                        min, 0, 0, 0,k k k km cγ σ= +                       (5.15)            

0,
ˆ ( )k e km E X f⎡ ⎤= ⎣ ⎦ , { }0,

ˆvar ( )k e kX fσ = , 0, 1 1k k= − + Δc  and 0, 0kc ≥ . Whereas, ˆ ( )eX f  is 

the estimated spectrum in (5.2).  Noting (5.11), we have max,k kγ γ≤  for 1,kH  (i.e. when the 

targeted channel is engaged) such that: 

        max, 1, 1, 1,k k k km cγ σ= −         (5.16) 

1,
ˆ ( )k e km E X f⎡ ⎤= ⎣ ⎦ , { }1,

ˆvar ( )k e kX fσ = , 1, 1 1 (1 )k k= − + −c  and 1, 0kc ≥ . This leads to:  

           min, max,k k kγ γ γ≤ ≤                    (5.17)                     
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and by substituting (5.15) and (5.16) into (5.17), we obtain:  

1, 0, 0, 0, 1, 1,+k k k k k km m c cσ σ− ≥                     (5.18)                        

which prescribes the reliability condition of the proposed MSS procedure for the -thk  

subband. 

Although Chebychev’s inequality provides the upper and lower limits of the probability of 

a random variable exceeding certain values, it does not indicate how conservative these 

bounds are, e.g. the actual attainable probabilities can arbitrarily surpass the minimum 

specified one. As illustrated in the simulations in §5.4, Chebychev’s inequality can lead to 

over-conservative measures in terms of sampling rate and estimate averaging. Assuming 

that the estimated spectrum ˆ ( )eX f  has certain distribution is shown to produce guidelines 

with a reasonable level of conservativeness. Nevertheless, (5.15)-(5.18) applies to any 

distribution of ˆ ( )eX f  and the adopted one is a special case.  

We recall from Chapter 3 that the estimators , ( , )e TRS rX ft  in (3.8), , ( , )e RSG rX ft  in (3.27)  

and , ( , )e SSEP rX ft  in (3.44) are approximately of a chi-squared distribution with two 

degrees of freedom. Subsequently, ,
ˆ ( )e TRSX f  in (5.4), ,

ˆ ( )e RSGX f  in (5.5) and ,
ˆ ( )e SSEPX f  in 

(5.6) are similarily of chi-squared distribution but with 2K  degrees of freedom. The 

Cumulative Distribution Function (CDF) of a random variable with chi-squared 

distribution with Z  degrees of freedom can be closely approximated by a normal CDF for 

a moderately large Z [103]. Hence the CDF of ˆ ( )e kX f  can be assumed to be 

approximately equal to that of a normal distribution with the same mean and variance. 

Such approximation has insignificant repercussions on the dependability of the introduced 

sensing approach as demonstrated in the numerical examples in the next section. 

Thereupon, the probability of false alarm and that of detection are:   

( ) ( ) 0,
, 0,

0,

ˆPr ( ) k k
f k k e k k k

k

m
P X f H Q

γ
γ γ

σ
⎛ ⎞−

= ≥ = ⎜ ⎟⎜ ⎟
⎝ ⎠

          (5.19) 

and  

 ( ) ( ) 1,
, 1,

1,

ˆPr ( ) k k
d k k e k k k

k

m
P X f H Q

γ
γ γ

σ
⎛ ⎞−

= ≥ = ⎜ ⎟⎜ ⎟
⎝ ⎠

      (5.20) 

respectively where  
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     ( ) 2 / 21
2 x

Q x e dτ τ
π

+∞ −= ∫         (5.21) 

is the tail probability of a zero mean unit-variance normal random variable and is a 
monotonically nonincreasing function. Since ( ),f k k kP γ ≤ Δ , the threshold levels for 0,kH  

are defined by: 

      ( )1
min, 0, 0,k k k k km Qγ γ σ−≥ = + Δ         (5.22) 

and likewise: 

                             ( )1
max, 1, 1,k k k k km Qγ γ σ−≤ = +                    (5.23)                    

for 1,kH  given ( ),d k k kP γ ≥ . Therefore,         

         ( ) ( )1 1
1, 0, 0, 1,k k k k k km m Q Qσ σ− −− ≥ Δ −        (5.24) 

is the equivalent of the dependability condition in (5.18) for a normally distributed ˆ ( )eX f . 

Below, we utilise (5.24) to derive a combined lower limit on the required average sampling 

rate and number of estimate averages for each of the TRS, RSG and SSEP schemes. It can 

be noticed that initially ˆ ( )e kE X f⎡ ⎤⎣ ⎦  and { }ˆvar ( )e kX f  should be determined for each of the 

studied schemes.  

 
5.3.1.1 Total Random Sampling 
 

Following (4.8) and (5.4), it can be easily checked that:  

            [ ] 2
,

1ˆ ˆ( ) ( ) ( , )
( 1)TRS k e TRS k SA N W r k

NC f E X f P P E X f
N

t
α μ

⎡ ⎤⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦−
     (5.25) 

noting that 2( , )W r kE X ft⎡ ⎤
⎣ ⎦  is independent of rt  when the kf  point is in the guarded 

region recognised in §4.3. The average weighted total signal power in the observation 

window 0obsT KT=  is: 

      
1

1 ( )K
SA S rr

P P
K

t
=

= ∑                 (5.26) 

where 2 2( ) ( ) ( )
r

S rP E x t w t dt
T

t μ⎡ ⎤= ⎣ ⎦∫  in (4.11). Since the K  estimates in (5.4) are 

calculated from non-overlapping uncorrelated signal windows, the variance of the TRS 

estimator, i.e. { }2
, ,

ˆˆ ( ) var ( )e TRS k e TRS kf X fσ = , is given by:  
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   2 2
, ,2 1

1ˆ ( ) ( , )K
e TRS k e TRS r kr

f f
K

tσ σ
=

= ∑ .                 (5.27)               

To compute 2
,ˆ ( )e TRS fσ  we use the simplified variance expression in (4.24). Deciding the 

value of 0.5 ( , ) 1D r fη≤ ≤t  defined in (4.23) is of paramount importance as it stipulates a 

substantial part of the variance and reflects the effect of processing cyclostationary signals 

on the estimator’s performance. If no previous knowledge of the transmission modulation 

scheme and/or its symbol rate is available, a conservative approach is to take into account 

the worst case scenario, i.e. ( , ) 1D r kftη = . However, any prior information about the 

incoming signal can be used to set ( , )D r kfη t  and/or possibly choose the position of the 

frequency points { } 1

L
k k

f
=

 in an attempt to avoid  any undesired frequencies where the 

accuracy of the estimation process deteriorates noticeably with the aid of (4.26)-(4.29). Let 

,ˆD kη  be the average ( , )D r kftη  value across the K  signal windows. Substituting the 

individual 2
, ( , )e TRS r kftσ  into (5.27), we arrive at: 

( )( ) 222
2
, ,2 2

2 12 1ˆˆ ( ) 2
( 1)

SA N kSA SA N N
e TRS k D k k

N P P DP P P PN Nf D
N K N N

σ η
α α

⎧ ⎫− +′ + + −⎪ ⎪⎛ ⎞≈ + +⎨ ⎬⎜ ⎟− ⎝ ⎠⎪ ⎪⎩ ⎭
  (5.28) 

where 2( , ) ( , )k r k W r kD D f E X f μ⎡ ⎤= = ⎣ ⎦t t  and 

               2
1

1 ( )K
SA S rr

P P
K =

′ = ∑ t .        (5.29) 

Thus in summary: 

           
( )

( )

0, 0,

1, 1,

for
( 1)ˆ ( )

for
( 1)

k SA N k

TRS k

k SA N k k

Nm P P
N

C f
Nm P P D

N

α

α

⎧ = +⎪ −⎪= ⎨
⎪ = + +
⎪ −⎩

H

H
                  (5.30)           

( )( )

22
2
0, 0,2 2

222
2,
1, 2 2

1,

2

,

2 for
( 1)

2 1ˆ 2( )
for( 1)

1ˆ2 .

SA SA N N
k k

SA N kSA SA N Ne TRS k
k

k

D k k

P P P PN
N K

N P P DP P P PNf
N K N

N D
N

σ
α

σ σ
α α

η

⎧ ′⎛ ⎞+ +
=⎪ ⎜ ⎟− ⎝ ⎠⎪

⎪
⎪⎪ ⎧ − +′ + +≈ ⎪⎨ = +⎨⎪ − ⎪⎩⎪
⎪ ⎫− ⎪⎛ ⎞⎪ + ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎭⎩

H

H
   (5.31) 
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According to Parseval’s theorem: 22 2( ) ( ) ( , )
r

W rE x t w t dt E X f df
T

t
+∞

−∞
⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦∫ ∫ , then we can 

write: 2
A

SA C nn
P B D

∈
≤ ∑ 

 which approximates the area underneath the integral for a 

reasonably long analysis window rT . Adopting a conservative approach and substituting 

(5.30) as well as (5.31) into (5.24), we obtain: 

( ) ( )

( ) ( ) ( )

1 1

2
21 2

2 ,1 2 1

2 1
( 1)

( 1) 1 ˆ2 11
( 1) 2

C
TRS k k

k D kC
k k

C C

NBK K Q SNR
N

N SNRNB NQ SNR
N NB NB

φ
α

φ α η α
φ

α

− −

−
− −

⎧
= ≥ Δ +⎨ −⎩

⎫− + ⎛ ⎞− ⎪− + + + ⎬⎜ ⎟− ⎝ ⎠ ⎪⎭

   (5.32) 

where /SA NSNR P P=  is the signal-to-noise ratio and  

         
A

k n kn
D Dφ

∈
= ∑ 

        (5.33) 

 is the  ratio of the sum of 2( , ) /W r nE X ft μ⎡ ⎤
⎣ ⎦ , An∈ , to that of the targeted subband, i.e. 

kD . Alternatively, it can be represented by:  

              ,k SA SA kP Pφ =         (5.34) 

such that ,SA kP  is the average power of the transmission over the -thk  subband and SAP  is 

the total average power of the present multiband signal.  

Formula (5.32) gives a conservative lower bound on the number of windows that need to 

be averaged as a function of the spectrum occupancy, average sampling rate, signal-to-

noise ratio and the sought system performance. This recommendation can be used to 

decide on the required average sampling rate for a number of estimate averages possibly 

imposed by practical constraints (e.g. latency) in a continuous processing environment. It 

is a clear indication of the trade-off between the requested sampling rate and the number of 

estimate averages, i.e. sensing time, in relation to achieving certain probabilities of 

detection and false alarm. Formula (5.32) affirms that the sensing task can be reliably 

accomplished with arbitrarily low sampling rates at the expense of infinitely long signal 

observation window. Parameter kφ  can be learnt/estimated a priori when the transmissions 

are known to be present [17, 114, 116, 129], this is further discussed in §5.3.2. It is noted 

that k ALφ =  if the incoming transmissions are of equal power levels. In the next two 

subsections, we develop the equivalent of (5.32) for the RSG and SSEP schemes. 
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5.3.1.2 Random Sampling on Grid 
 

Utilising (4.9), it can be shown that: 

0 0
0, 0,

,
0 0

1, 1,

( ) ( 1)
   for

( 1)ˆ ˆ( ) ( )
( ) ( 1)

   for
( 1)

d
g SA g N

k k
g

RSG k e RSG k d
g SA g N d

k k k
g

N N T P T N P
m

N N
C f E X f

N N T P N T P
m D

N N

⎧ − + −
=⎪

−⎪⎡ ⎤= = ⎨⎣ ⎦ − + −⎪ = +⎪ −⎩

H

H
      (5.35) 

where ( , )d d
k r kD D ft= , 

2
( , ) ( , )d d

r W r d gD f E X f ft t μ⎡ ⎤= ⎢ ⎥⎣ ⎦
, 

            
1

1( ) ( )Kd d
SA r S rr

P P
K

t t
=

= ∑        (5.36) 

and 2 2
1

( ) [ ( )] ( ) /gNd
S r g g dn

P E x nT w nTt μ
=

=∑ . We note that ( , )d
r kD ft  is independent of rt  

since kf  is placed at the centre of the system subband. The underlying uniform grid rate gf  

is chosen such that ( ) ( ) 0W W gX f X f nf− =  for 0n ≠ , n∈ . By using (4.31),

{ }2
, ,

ˆˆ ( ) var ( )e RSG k e RSG kf X fσ =  reduces to: 

2 2
2 2
0, 2 2 2

0,

2 22
2 2,
1, 2 2 2

( ) 2( 1) ( 1)
for  ( 1) ( ) ( )

( ) 2( 1) ( 1)ˆ ( )
( 1) ( ) ( )

2( ) ( 1)
( 1) (

g g gd d
k SA SA N N

kg g g

g g gd de RSG k
k SA SA N N

g g g

g gd
SA

g

N N N N
P P P P

f N K N N N N

N N N Nf P P P P
f N K N N N N

N N N
P

f N K N

σ

σ σ

⎡ ⎤− − −
′= + +⎢ ⎥

− − −⎢ ⎥⎣ ⎦

⎡ ⎤− − −= ′= + +⎢ ⎥
− − −⎢ ⎥⎣ ⎦

− −
+ +

−

 H

1,2

,

 for
ˆ2

)

kd d
D k kd

N k
g

D
P D

N K
η

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ ⎡ ⎤⎡ ⎤ ⎣ ⎦⎪ +⎢ ⎥⎪ −⎢ ⎥⎣ ⎦⎩

   H

    (5.37) 

where  

                   
2

1

1 ( )
K

d d
SA SA r

r

P P
K

t
=

′ ⎡ ⎤= ⎣ ⎦∑        (5.38) 

and ,ˆd
D kη  is the average ( , )d

D r kftη  in the K  signal segments; ( , )d
D r kftη  is defined in    

(4.33). The value of ,ˆd
D kη  is mandated by the type of the incoming transmission, e.g. if the 

signal is BPSK modulated then ,ˆ 1d
D kη =  is suitable (see §4.4.2). However, if the processed 

signal is Wide Sense Stationary (WSS) then ,ˆ 0.5d
D kη = . Substituting (5.35) and (5.37) into 

the reliability condition in (5.24), we obtain: 
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    { }2
1 1 2

,ˆ( ) ( ) 2 2 d
RSG RSG k k RSG RSG D kK K K Q Q K K η− −= ≥ Δ − + +       (5.39) 

where 

     
12 ( ) ( 1)

1
( 1) ( )

C k g g
RSG

g g

B N N N N SNR
K

N N N N
φ

α

−⎡ ⎤− −
= +⎢ ⎥

− −⎢ ⎥⎣ ⎦
.      (5.40) 

Formula (5.39) exhibits the cost of using a low sampling rate in terms of sensing time 0KT ; 

the sampling frequency can be arbitrarily low. The parameter kφ  is defined in (5.33) since 

kD  and d
kD  are identical for a suitably selected gf . 

 
5.3.1.3 Stratified Sampling with Equal Partitions 
 

The estimated spectrum for stratified sampling includes the smeared-aliasing reduction 

factor ( , ) ( , )r rA f ft tχ μ=  given in (4.41); ( , )rA ft  appears in the estimator’s expected 

value in (4.10) and its variance in (4.49). Let 0, ( , )k r kA ftχ μ=  and 1, ( , )k r kA ftχ μ=  in 

0,kH  and 1,kH  respectively; kf  is placed at the centre of the subband. It was illustrated in 

§3.5 that ( , )rA ft  is related to the total power of the present multiband signal such that: 

( , ) ( , ) ( ) /r r S rA f f Pϖ α=t t t  where 0 ( , ) 1r fϖ≤ ≤t . Hence we can write: 0, 0, /k k SAA Pϖ α=  

in  and 1, 1, /k k SAA Pϖ α=  in 1,kH  where 0,0 1kϖ≤ ≤  and 1,0 1kϖ≤ ≤  for the K  averaged 

, ( , )e SSEP rX ft  in (5.6). From (4.10) and (4.49), the characteristics of ,
ˆ ( )e SSEPX f  can be 

summarised by: 
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where { }2
, ,

ˆˆ ( ) var ( )e SSEP e SSEPf X fσ = . Parameters ,ˆD kη , ,ˆA kη  and ,ˆDA kη  are the chosen values of 

, ( , )D k r kftη  in (4.23), , ( , )A k r kftη  in (4.46) and ( , )DA r kftη  in (4.48) respectively for 

,
ˆ ( )e SSEPX f . They depict the impact of processing a cyclostationary signal on the accuracy 

of the spectrum estimation. For instance, if the incoming transmission is a QPSK 

modulated signal with balanced in-phase and quadrature branches, then , ,ˆ ˆ 0.5D k A kη η= =  

(see §4.4.3 for a more detailed discussion). Nonetheless, if the modulation scheme and the 

symbol rate of the transmitted signal are not known, , ,ˆ ˆ 1D k A kη η= =  to circumvent any 

unexpected decay in the detector’s performance. 

It is noted that the contribution of ( , )rA ft  to the estimated spectrum is dictated by the 

position as well as the power level of the concurrently active subbands. As a result, the 

reliability condition in (5.24) should incorporate the highest harmful effect of the varying 

smeared-aliasing factor on the sensing routine. This evokes considering the following:      

1) the maximum possible ( )1
min, 0, 0,k k k km Qγ σ−= + Δ  in (5.22) , i.e. the maximum 0,km  

where 0, 0kϖ =  to ensure that , ( )f k k kP γ ≤ Δ  and 2) the minimum ( )1
max, 1, 1,k k k km Qγ σ−= +  

in (5.23) , i.e. minimum 1,km  where 1, 0.5kϖ =  to protect , ( )d k k kP γ ≥  assuming kf B>> . 

Subsequently, (5.24) emerges as: 
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    (5.43)                       

In practice, the probability of detection is usually 0.5k ≥  yielding 1( ) 0kQ− ≤  whereas 

the probability of false alarm is 0.5kΔ ≤  producing 1( ) 0kQ− Δ ≥ . Thus 0.5k SAD P α−  in 

(5.43) should be positive to attain a lower limit on K  since  1, 0, 0k kσ σ> ≥  . The stratified-

sampling-based MSS method is dependable if and only if: 

       0.5 0SA
k

PD
α

− > .                   (5.44) 

This imposes a lower limit on the minimum valid average sampling rate and is caused by 

the varying smeared-aliasing aspect of stratified sampling. The permissible stratified 
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sampling rates are typically well below the minimum uniform sampling ones required to 

monitor the frequency range min min[ , ]f f B= +B  where 2Bα << . Provided that (5.44) is 

satisfied, (5.43) reduces to: 

( ) ( ) ( )
21 1 12 1C k k k SSEP

SSEP
C k

B SNR Q Q K
K K

B
φ

α φ

− − −⎧ ⎫+ Δ −⎪ ⎪= ≥ ⎨ ⎬−⎪ ⎪⎩ ⎭
      (5.45) 

where 
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and kφ  is defined in (5.33) or (5.34). If we presume that the transmission is a QAM signal 

modelled by (4.3) and whose 2 2
, , , ,( ) ( ) 0a m i m b m q mP f P fσ σ− = , (5.45) simplifies to: 

( ) ( ) ( ) ( )1 1 1 12 1 2 0.5C k k k C k
SSEP

C k

B SNR Q Q B SNR
K

B

φ φ α

α φ

− − − −⎧ ⎫⎡ ⎤+ Δ − + +⎪ ⎪⎣ ⎦≥ ⎨ ⎬
−⎪ ⎪⎩ ⎭

     (5.47) 

which is also the case for wide sense stationary signals. 

Formula (5.45) states the number of windows that need to be averaged to achieve 

, ( )f k k kP γ ≤ Δ  and , ( )d k k kP γ ≥ . It exhibits the potential of the introduced MSS technique to 

accomplish the sensing task with significantly low stratified sampling rates at the expense 

of longer signal observation windows 0KT . Unlike TRS and RSG where α  can be 

arbitrarily low, stratified sampling imposes a low limit on the operational average sampling 

rates according to (5.44). 

The guidelines for TRS, RSG and SSEP employ (5.24) assuming normally distributed 

,
ˆ ( )e TRSX f , ,

ˆ ( )e RSGX f  and ,
ˆ ( )e SSEPX f . Generalising those results using the reliability 

condition that is based on Chebychev’s inequality in (5.18) can be easily realised by 

replacing 1( )kQ− Δ  with 0,kc  and 1( )kQ−  with 1,k−c  in each of (5.32), (5.39) and (5.45), e.g. 

in [133, 134].  
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5.3.2 Threshold Levels and a Discussion on the Required Parameters 
 

Although the recommendations in (5.32), (5.39) and (5.45) guarantee delivering predefined 

probabilities of detection and false alarm, they do not advise on the threshold levels in the 

hypothesis testing described in (5.2). By conforming to those guidelines, the detector’s 

receiver operating characteristics curve includes a region where ( ),f k k kP γ ≤ Δ  and 

( ),d k k kP γ ≥ . To operate in latter domain, the used threshold levels should comply with: 

( ) ( )1 1
0, 0, 1, 1,k k k k k k km Q m Qσ γ σ− −+ Δ ≤ ≤ +        (5.48) 

where ( )1
min, 0, 0,k k k km Qγ σ−= + Δ  and ( )1

max, 1, 1,k k k km Qγ σ−= + . The 0,km , 1,km ,  0,kσ  and 

1,kσ  in (5.48) are presented in (5.30) and (5.31) for TRS, in (5.35) and (5.37) for RSG and 

in (5.41)  and (5.42) for SSEP.                                                                                                                         

To demonstrate the prior knowledge needed to calculate the detection decision thresholds, 

assume that the incoming multiband signal is WSS. Consequently, it can be checked that 

for the total random sampling scheme the values of min,kγ  and max,kγ  are: 

       
( )1

min,
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( ) 1
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     (5.49) 

, for random sampling on grid:  
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and for stratified sampling with equal partitions: 
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−⎡ ⎤+⎡ ⎤= + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
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where  2 ( )S SAP P E x t⎡ ⎤= = ⎣ ⎦  and 2 ( )d d
S SA gP P E x nT⎡ ⎤= = ⎣ ⎦  are the total power of the present 

multiband signal. 
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Inspecting (5.49) and (5.51), it can be noticed that calculating min,
TRS

kγ  and min,
SSEP

kγ , which 

ensure that ( ),f k k kP γ ≤ Δ , requires knowledge of the combined signal plus noise power 

S NP P+ . The latter depends on the number of simultaneously active subbands and their 

power levels, i.e.  can dynamically vary from one sensing operation to another. 

Determining min,
RSG

kγ  demands similar information to that of the TRS and SSEP cases since 

 for gN N>>  which is a mild assumption for a typical scenario. On 

the other hand, establishing max,
TRS

kγ , max,
RSG

kγ  and max,
SSEP

kγ  requests prior awareness of 

 and d
kD  to safeguard ( ),d k k kP γ ≥ . Those magnitude spectrum 

points are the peaks of the signal’s power spectral density for WSS processes. 

Furthermore, max,
SSEP

kγ  imposes knowing the total signal power SP  and the noise power NP .  

Thresholding regimes of some widely used spectrum sensing methods, e.g. energy detector 

[10, 14-20, 116], demand previous knowledge of the noise power to stop the probabilities 

of false alarm exceeding certain levels. Additionally, they require the power levels of the 

individual transmissions or their PSDs to make sure that the probabilities of detection are 

maintained above particular values. Estimating the noise power (which varies over time) 

can be a challenging endeavour due to the necessity of separating the signal from noise 

[17, 135]. Whereas, the introduced MSS approach only demands estimating the combined 

S NP P+  power without the need to separate them to deliver ( ),f k k kP γ ≤ Δ . The S NP P+  can 

be obtained from the captured noisy samples as proposed later in §5.5. A primitive cheap 

analogue sensor can be otherwise employed at the receiver to continuously measure the 

total present energy/power of the noisy incoming multiband signal. With regards to 

( ),d k k kP γ ≥ , both the ED and our approach request similar knowledge about the spectrum 

of the continuous-time signal. Parameter  or d
kD   can be estimated a priori when the 

subbands are active as in [17, 114, 116, 129]. Such information can be used to set kφ  in 

(5.33) to determine α  and TRSK , RSGK  or SSEPK . Therefore, the previous knowledge 

required by the proposed randomised-sampling-based MSS technique is comparable (can 

be argued to be more reasonable) to that requested by other popular methods. Evidently, 

establishing min,
TRS

kγ , min,
RSG

kγ  and min,
SSEP

kγ  demands less information about the incoming signal 

S NP P+

( ) ( 1) 1g gN N N− − ≈

2( , )k W r kD E X f μ⎡ ⎤= ⎣ ⎦t

kD
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compared to max,
TRS

kγ , max,
RSG

kγ  and max,
SSEP

kγ ; this is also the case for the classical ED. It is noted 

that the above discussion and deductions apply to cyclostationary signals.   

At this juncture, it is practical to decide the values of α  and TRSK , RSGK  or SSEPK  offline 

according to (5.32), (5.39) and (5.45) to enforce ( ),f k k kP γ ≤ Δ  and ( ),d k k kP γ ≥  for the 

expected system conditions. Whereas, kγ  in (5.48) is calculated for every detection 

operation in (5.2) since min,kγ  and max,kγ  are directly related to the currently active subbands 

rather than the maximum spectrum occupancy utilised to attain (5.32), (5.39) and (5.45). 

  
5.3.3 Randomised Versus Uniform Sampling 
 

Instead of measuring the energy in each of the overseen subbands as in (5.8)-(5.9) for the 

energy detector, we can employ uniform sampling periodograms to detect the active 

transmissions via assessing the estimated spectral peaks using (5.2). This usually imposes 

less estimate averages compared to the randomised sampling schemes where the estimated 

spectrum suffers from the wideband smeared-aliasing component. If the random sampling 

on grid scheme admits all the underlying uniform grid samples, i.e. gN N= , the sensing 

approach becomes uniform-sampling-based. It can be seen from (5.39) that the number of 

estimate averages for a uniform-sampling-based multiband detection that utilises (5.2) and 

(5.3) is given by:  

  ( ) ( )
2

1 1 2 2 2 1
1

,2

2 4 4 ˆ2C k k dC k C k
US k D k

US US US

B SNR Q B SNR B SNRK K Q
f f f

φ φ φ η
− − − −

−
⎧ ⎫Δ⎪ ⎪= ≥ − + +⎨ ⎬
⎪ ⎪⎩ ⎭

     (5.52) 

where 2USf B≥  is the uniform sampling rate. The USf  is proportional to the width of the 

monitored bandwidth B  to avoid spectrum aliasing. Whereas, the randomised sampling 

average sampling rates are independent of B  and can be remarkably low. Comparing the 

efficiency of uniform and randomised sampling approaches based only on the average 

sampling rates can be regarded as partial. The detection decision in both cases relies on 

calculating a form of discrete time Fourier transform from a finite set of the signal samples, 

e.g. DFT or an optimised version whenever applicable. Therefore, the number of processed 

samples is a critical factor in deciding the MSS efficiency.  



5.4 Numerical Examples on the Reliability Recommendations 

116 

 

The corresponding total numbers of processed samples for TRS, RSG, SSEP and uniform 

sampling spectrum sensing approaches are:  

                 0TRS TRSN T Kα≥             (5.53) 

       0RSG RSGN T Kα≥              (5.54) 

       0SSEP SSEPN T Kα≥           (5.55) 

and 
                      0US US USN T f K≥            (5.56) 

respectively, where 0T  is the width of an individual signal analysis window. Generally, in 

low spectrum occupancy environments, i.e. , randomised sampling provides 

tangible savings not only on the average sampling rates but also on the overall numbers of 

processed samples. Extending the monitored bandwidth assuming a constant SNR (e.g. the 

sampling is preceded by a filter to limit the noise bandwidth/power), a fixed maximum 

number of simultaneously active subbands AL  and same detection requirements does not 

impose any additional cost on the number of collected samples for randomised-sampling-

based multiband spectrum sensing as indicated in (5.53)-(5.55). On the contrary, in such 

cases the number of requested uniformly distributed samples grows at a rate equivalent to 

USf  where 2USf B≥ . This shows that as the spectrum occupancy decreases, the benefits of 

exploiting nonuniform sampling in terms of the amount of the processed data becomes 

more visible. Low spectrum utilisation is faced in various applications for example CR 

networks and some wireless sensor networks applications as discussed in §1.1. 

 
5.4 Numerical Examples on the Reliability Recommendations 
 

Consider a communication system operating over the frequency range [ ]1.35,1.45 GHz 

which is divided into 20L =  contiguous disjointed spectral subbands, 5 MHz each (i.e. 

100CB LB= = MHz and 5CB = MHz). The sensed frequency points in (5.2) are labelled

1 2, , , Lf f f… , i.e. one per monitored subband. The maximum expected number of 

concurrently active channels at any time is two, i.e. 2AL = , 10AB = MHz and / 0.1AL L = . 

A Blackman window of width 1.25 sμ  and an average sampling rate of 56α = MHz are 

used, the SNR  is 0.25− dB. Whereas, the minimum valid bandpass uniform sampling rate 

/ 1AL L <<
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that would avoid spectrum aliasing within the overseen frequency range [ ]min min,f f B= +B , 

min 1.35f = GHz, is 224USf = MHz. The grid rate gf  of the random sampling on grid 

scheme is equal to the uniform sampling one where 224g USf f= = MHz. We assume that 

the transmissions are of equal power levels (e.g. uniform power transmission strategies are 

adopted at the source due to lack of knowledge of the propagation channel [116]). They are 

subsequently shaped by the frequency response of the propagation channel corresponding 

to each of the monitored subbands in B , it is displayed in Figure 5.2 for { } 1

L
k k

f
=

 (e.g. 

estimated in advance at the sensing device). In this section, we demonstrate the introduced 

randomised-sampling-based MSS approach with the aid of numerical examples. The plots 

in Figures 5.3, 5.4, 5.5 and 5.8 are obtained from 25000 independent simulations.  

Our objective is to achieve: ,12 12( ) 0.08fP γ ≤  (i.e. 12 0.08Δ = ) and ,12 12( ) 0.965dP γ ≥  (i.e. 

12 0.965= ) for the subband centred at 12f . It is referred to from now on as the targeted 

subband and is expected to be occupied by a BPSK modulated signal. Thus 

,12 ,12 ,12 ,12ˆ ˆ ˆ ˆ 1d
D D A DAη η η η= = = =  to revoke any deterioration in the accuracy of the employed 

periodogram-type estimators due to the type of the incoming cyclostationary signal. 

According to (5.32), (5.39) and (5.45), we need to average the following number of 

estimates: 24TRSK K= ≥  for total random sampling (i.e. ,min 24TRSK = ) in ,
ˆ ( )e TRSX f , 

21RSGK K= ≥  for random sampling on grid (i.e. ,min 21RSGK = ) in ,
ˆ ( )e RSGX f  and 

30SSEPK K= ≥  for stratified sampling with equal partitions (i.e. ,min 30SSEPK = ) in 

,
ˆ ( )e SSEPX f . Figures 5.3a, 5.4a and 5.5a exhibit the ROC plots of the targeted subband for 

the TRS, RSG and SSEP estimators respectively for AL  active subbands using various 

numbers of estimate averages and sweeping across a range of possible threshold values; 

the asterisks indicates the minimum sought ,12 12( )dP γ  and maximum permitted ,12 12( )fP γ . 

Figures 5.3b, 5.4b and 5.5b display ,12 12( )dP γ  and ,12 12( )fP γ  for the threshold values 

determined by (5.48) utilising (5.30), (5.31), (5.35), (5.37), (5.41) and (5.42). The SA NP P+  

power parameter in (5.48) is presumed to be supplied accurately by a separate block, e.g. 

an analogue power/energy sensor at the receiver. 



5.4 Numerical Examples on the Reliability Recommendations 

118 

 

 
Figure 5.2: Propagation channel squared magnitude frequency response 2( )kH f . 

 
Figure 5.3: Detection probabilities of the targeted subband with central frequency 12f  

using TRS estimator for various numbers of averaged estimates in , 12
ˆ ( )e TRSX f  and AL  

active subbands. (a) ROC for a threshold sweep, asterisk is ( )12 12,Δ . (b) ,12 12( )fP γ  and 

,12 12( )dP γ  for min,12 12 max,12γ γ γ≤ ≤  obtained from (5.48), (5.30) and (5.31). 
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Figure 5.4: Detection probabilities of the targeted subband using RSG for various K  

values and AL  active channels. (a) ROC for a threshold sweep, asterisk is ( )12 12,Δ . (b) 

,12 12( )fP γ  and ,12 12( )dP γ  for min,12 12 max,12γ γ γ≤ ≤  obtained from (5.48), (5.35) and (5.37). 

It is evident from Figures 5.3, 5.4 and 5.5 that the pursued probabilities of the targeted 

subband were acquired by following the derived recommendations in (5.32), (5.39) and 

(5.45), i.e. when min,TRSK K≥  for TRS,  min,RSGK K≥  for RSG  and min,SSEPK K≥  for TRS. 

The probabilities for min,TRSK , min,RSGK  and min,SSEPK  match to a great extent the minimum 

specified ones. This confirms the reasonable conservativeness of the provided guidelines 

and that the assumptions undertaken in the conducted analysis (including the normality 

one) did not have a noticeable effect on the accuracy of the obtained results. Figure 5.5 is 

distinct in this respect where min,SSEPK  is slightly more conservative compared to the TRS 

and RSG cases. It is due to the additional introduced precautions, i.e. 0, 0kϖ =  and 

1, 0.5kϖ = , to accommodate the SSEP varying smeared-aliasing level feature. Figures 5.3b, 
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5.4b and 5.5b show that the requested probability of detection and false alarm are delivered 

by the thresholding regime in (5.48); this vindicates its effectiveness. If the reliability 

condition in (5.18) which is based on Chebychev’s inequality was adopted in the above 

simulations, the recommended number of estimate averages would have significantly 

exceeded each of min,TRSK , min,RSGK  and min,SSEPK , e.g. 185K ≥  for the total random 

sampling case. This depicts the fact that Chebychev’s inequality can be over-conservative 

compared to the embraced normality distribution premise. 
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Figure 5.5: Detection probabilities of the targeted subband using SSEP for AL  active 

channels. (a) ROC for a threshold sweep, asterisk is ( )12 12,Δ . (b) ,12 12( )fP γ  and ,12 12( )dP γ  

for min,12 12 max,12γ γ γ≤ ≤  obtained from (5.48), (5.41) and (5.42). 

Unrecognising the effects of processing cyclostationary signals on the accuracy of the 

estimation and detection routines, i.e. , leads to: 20K ≥ , 

17K ≥  and 25K ≥  for TRS, RSG and SSEP estimators respectively. This would have 

,12 ,12 ,12 ,12ˆ ˆ ˆ ˆ 0.5d
D D A DAη η η η= = = =
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undermined the dependability of the spectrum sensing algorithm where the sought ROC 

probabilities would not have been satisfied according to Figures 5.3, 5.4 and 5.5. 

Furthermore, if the smeared-aliasing decay factor of SSEP was not considered, i.e. 1, 0kϖ =  

in (5.41), (5.42) and (5.45), the minimum required K  would have been 24, i.e. below the 

number of estimate averages demanded to reach ,12 12 12( )fP γ ≤ Δ  and ,12 12 12( )dP γ ≥  for the 

targeted subband. This exhibits the need to take the necessary measures to adapt the 

sensing method to the varying smeared-aliasing aspect of stratified sampling. 

Consequently, the desired system performance is achieved with an average sampling rate 

as low as 56 MHz, i.e. the randomised-sampling-based MSS offers a 75% saving on the 

sampling rate compared to uniform-sampling-based techniques. To gain a deeper insight 

into the benefits of our sensing approach, Table 5.2 displays the requirement of various 

sampling schemes in terms of achieving the predefined probabilities of detection and false 

alarm – formula (5.52) is used for the uniform sampling case. The table lists the maximum 

instantaneous sampling frequencies of each of the examined schemes, i.e. the maximum 

requested acquisition device(s) speed(s). Two interleaved Analogue to Digital Converters 

(ADCs) are employed and the shown rates are per one ADC.  

Table 5.2: Detection requirements for various sampling schemes per one ADC. The 
targeted subband has:  and . 

Sampling scheme  Average Sampling 
rate (MHz) 

Maximum 
nβ  (MHz) 

Sensing Time 
( sμ ) 

Uniform Sampling  112 112 10 

TRS  28 Infinity 27.5 

RSG  28 112 23.75 

SSEP  28 56 32.5 

The following observations are made from Table 5.2: 

• Uniform sampling: imposes sampling rates that exceed twice the total width of the 

monitored bandwidth despite having the shortest sensing time. 

• Total random sampling: the samples of a TRS sequence can be arbitrarily close 

requesting infinitely fast acquisition device(s) albeit offering more than 75% saving on 

the average sampling rate and more than 25% reduction on the total number of 

processed samples compared to uniform sampling. 

,12 12( ) 0.08fP γ ≤ ,12 12( ) 0.965dP γ ≥
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• Random sampling on grid: provides more than 35% savings on the total number of 

processed samples compared to uniform sampling. The necessity of having a fast 

underlying uniform grid imposes an RSG instantaneous sampling rate equal to that of 

the uniform sampling. 

• Stratified sampling with equal partitions: reduces the demanded acquisition device(s) 

speed(s) by 50% and the number of processed samples by 10% compared to uniform 

sampling.  

Therefore, RSG provides tangible savings on the total number of processed samples and 

demands acquisition devices with capabilities similar to those utilised with uniform 

sampling. On the other hand, SSEP remarkably relaxes the speed requirements of the 

ADCs and reduces the number of collected data samples compared to uniform sampling at 

the expense of longer processing time. These conclusions demonstrate the trade-offs of 

each of the studied sampling schemes and are mainly relevant to the considered numerical 

example. Each scenario should be assessed individually with the aid of the developed 

analytical expressions in (5.32), (5.39), (5.45), (5.52) and (5.53)-(5.56). 

α ( MHz )
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Figure 5.6: Required number of estimate averages to fulfil the detection probabilities of 
the targeted subband for each of TRS, RSG and SSEP estimators using various average 

sampling rates. 

Figure 5.6 exhibits the number of estimate averages needed to meet the detection 

requirements of the targeted subband centred at 12f  for TRS, RSG and SSEP versus a 

varying average sampling rate. The admissible rates for the stratified sampling case are 

approximately 11α ≥ MHz according to (5.44). It is clear from the figure that RSG 

demands the least number of estimate averages whilst SSEP requests the most number of 
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averages. The discrepancies between the three schemes diminish as α  increases. It is also 

noticed that the number of estimate averages declines as α  increases revealing the cost of 

low average sampling rates in terms of longer sensing times. TRS can demand lower 

numbers of estimate averages compared to SSEP despite the fact that stratified sampling is 

proven in [98] to always deliver more accurate FT estimation than TRS. Nevertheless, 

SSEP with two ADCs provides substantial benefits in terms of the implementation 

feasibility as depicted in Table 5.2.  

 
Figure 5.7: The number of estimate averages given by (5.45) for the targeted subband 

centred at 12f  using SSEP. (a) For 56α =  MHz and varying probabilities of detection and 
false alarm, (b) For ,12 12fP ≤ Δ   and ,12 12dP ≥  whilst  α  and SNR  vary. 
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In practice, it is desired to have probabilities of detection close to one (e.g. to avoid any 

interference with the primary user in a cognitive radio network) and probabilities of false 

alarm close to zero (e.g. to maximize the opportunistic access to underutilised spectrum in 

CRs). Figure 5.7a shows the number of SSEP estimate averages for various maximum 

probabilities of false alarm and minimum probabilities of detection, i.e. varying 12Δ  and 

12  values. It is noted that the normal distribution approximation is prone to inaccuracies at 

the tail probabilities, i.e. extreme , ( )f k kP γ  and , ( )d k kP γ  values. However, the latter 

probabilities lead to a considerable increase in the number of the summands (i.e. K ) in 

,
ˆ ( )e TRSX f  in (5.4), ,

ˆ ( )e RSGX f  in (5.5) and ,
ˆ ( )e SSEPX f  in (5.6), e.g. see Figure 5.7a. This 

compensates for the aforementioned inaccuracies and strengthens the normality 

assumption. It was observed from simulations that the extreme , ( )f k kP γ  and , ( )d k kP γ  

values do not hinder the conservative nature of the provided dependability guidelines. 

Figure 5.7b exhibits the requested number of estimate averages in ,
ˆ ( )e SSEPX f  for the 

targeted subband where the average sampling rate and the signal-to-noise ratio vary. This 

exposes the effect of various system conditions on the requirements of the spectrum 

sensing procedure. 

Let us assume that the system subband centred at 6f  whose ,6 6( ) 0.05fP γ ≤  and 

,6 6( ) 0.97dP γ ≥  is considered. It is expected to receive 16QAM modulated transmissions, 

i.e. ,6ˆ 0.5Dη =  is suitable. Figure 5.8 displays the ROC plots of the subband along with both 

sides of the reliability inequality (5.24) for the total random sampling scheme; the same 

number of estimate averages in Figure 5.3 is applied.  It can be seen from the figure that 

the sought probabilities of the channel in question are not achieved where the (5.24) 

condition is not satisfied. This is due to the fact that the system subband with the central 

frequency 6f   imposes ,min 28TRSK K≥ =  given its ROC probabilities, power level and the 

transmission modulation scheme. This demonstrates the compromise involved when a 

priority subband is specified by the user. To avert such cases, the user should survey the 

requisites of all the monitored channels and choose the highest combined K  and α  values 

to meet all the pursued , ( )f k kP γ  and , ( )d k kP γ  in the ( )fP γ  and ( )dP γ  vectors in (5.12) and 

(5.13) respectively. Equivalent analogy applies to RSG and SSEP.  
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Figure 5.8: Detection probabilities of the subband centred at 6f  using TRS estimator for 
various numbers of estimate averages and AL  active subbands. (a) ROC for a threshold 

sweep, square is ( )6 6,Δ . (b) Both sides of the reliability condition (5.24). 

To illustrate the relationship between the spectrum occupancy, i.e. /AB B  where A A CB L B= , 

and the total number of collected samples, consider the scenario where all the received 

transmissions are of equal power levels and have: ( ) 0.08fP γ ≤  and ( ) 0.965dP γ ≥ .      

Figure 5.9 exhibits the minimum required number of processed samples given by (5.53)-

(5.56) for Uniform Sampling (US), TRS, RSG and SSEP for various spectrum 

occupancies; 0.25SNR = − dB which is assumed to be constant and 56α = MHz. It is noted 

from the figure that as the spectrum occupancy decreases, i.e. either by fewer subbands 

being simultaneously active or extending the overseen bandwidth, the gains of the 

randomised-sampling-based approach become more evident in terms of the total number of 

processed samples. 
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Figure 5.9: Total number of processed samples of each of TRS, RSG, SSEP and uniform 
sampling techniques for a varying spectrum occupancy, 65α =  MHz, 0.25SNR = − dB and 

the ROC probabilities of the subband centred at 12f . 

In summary, the preceding simulation testify the accuracy and reasonable level of 

conservativeness of the derived reliability recommendations in §5.3.1. The user is 

equipped with the necessary tools to assess the possible advantages of the introduced 

multiband spectrum sensing approach. 

 
5.5 Applicability of the Introduced MSS Approach  
 

The performance of the MSS techniques has been so far evaluated in a statistical sense, i.e. 

in terms of the realised probabilities of detection and false alarm. Here, we demonstrate the 

behaviour of the introduced sensing algorithm in a given detection operation, i.e. it is 

applied to a received waveform where the estimated spectrum ˆ ( )e kX f  in (5.3) and the 

result of the hypothesis testing in (5.2) are visualised. In practice, the simultaneously active 

transmissions can either stay static during the entire duration of the sensing operation, i.e. 

for 0obsT KT=  seconds, or dynamically change. In the latter case, one or more of the 

monitored spectral subbands become active or inactive in the course of the detection 

process. The dynamic scenario is rarely investigated in the vast majority of the spectrum 

sensing studies, e.g. [10, 15, 17-20], where the subbands’ statuses are presumed to remain 

static over a certain sensing time. In this section, we explore with the aid of simulations the 

response of our MSS routine to the situation where the overseen channels come on and off 

air whilst being surveyed.   

Deciding whether the subband in question is active or not using (5.2) involves calculating 

the hypothesis testing threshold kγ . We recall that the threshold values are bounded by: 
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min, max,k k kγ γ γ≤ ≤  to satisfy , ( )f k k kP γ ≤ Δ  and , ( )d k k kP γ ≥ . The lower threshold min,kγ , 

which restrains the probabilities of false alarm, is the same for all the system subbands. It 

only requires knowledge of the combined total power of the present multiband signal plus 

noise (i.e. SN SA NP P P= + ) according to (5.48) utilising (5.30), (5.31), (5.35), (5.37), (5.41) 

and (5.42) for the corresponding sampling scheme. It is noted that for stratified sampling 

0, 0kϖ =  and for random sampling on grid ( ) ( 1) 1g gN N N− − ≈  where typically gN N>> . 

Relying on min,kγ  to set the decision threshold in (5.2) is a practical approach to adopt since 

min,kγ  is the same for all the channels and demands less prior information about the 

incoming signal compared to max,kγ . Similar thresholding strategy is commonly used in the 

literature mainly for the energy detector where min,kγ  is only a function of the noise power 

[10, 15, 17, 18]. In lieu of assuming that the SNP  is known as in §5.4 (e.g. supplied by an 

analogue sensor), here we obtain SA NP P+  from the captured nonuniformly distributed 

noisy signal samples via: 

       2

10

1( ) ( )
N

S r n n
n

P y t d
T =

= ∑t    , 1,2, ,r K= … .    (5.57) 

The { } 1

N
n n

t
=

 is the set of the N  selected irregular sampling instants per time analysis 

window [ ]0,r r r T= +T t t  arranged in an ascending order whilst nd  is the distance between 

two consecutive nt  samples, i.e. 1n n nd t t −= − . Approximation (5.57) belongs to the subject 

of integration approximation over a finite interval. An estimate of SNP  is then attained from 

the K  non-overlapping signal segments employing: 

1

1ˆ ( )
r

SN S r
r

P P
K =

= ∑ t .         (5.58)  

The averaging is expected to eliminate/suppress the additional component in (5.57), i.e. 

1

( ) ( )
N

n n n
n

x t n t d
=
∑  since ( ) ( ) 0n nE x t n t =⎡ ⎤⎣ ⎦ . The capability of this thresholding method is 

demonstrated in the simulations below. 

Now consider the multiband communication system described in §5.4 where 

[ ]1.35,1.45=B GHz, 20L = , 5CB = MHz and 100B = MHz. The subbands’ spectral peaks 
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are exhibited in Figure 5.2. An average sampling rate of 60α = MHz is chosen whereas

0 1.25 sT μ=  and 0.25SNR = − dB. In the following two examples, the static and the dynamic 

scenarios are examined separately, each with its own maximum number of concurrently 

active subbands, i.e. AL .  One frequency point is assessed per subband, it is placed at the 

centre of the channel, i.e.  are the sensed spectral points.  

 
5.5.1 Example 1: Static Situation  
 

In this example, 2AL =  and the two channels centred at 6f  and 12f  are targeted; they are 

both occupied by a QAM type transmissions and have equal sensing requirements given 

by: , ( ) 0.01f k kP γ ≤  and , ( ) 0.99d k kP γ ≥ . According to (5.32), (5.39) and (5.45), we need to 

average: 42TRSK K= ≥  estimates in ,
ˆ ( )e TRSX f , 36RSGK K= ≥  estimates in ,

ˆ ( )e RSGX f           

( 244gf = MHz) and 55SSEPK K= ≥  estimates in ,
ˆ ( )e SSEPX f . In the simulations below, the 

combined signal plus noise power SNP  is estimated by (5.57) and (5.58) to determine the 

decision threshold  in each detection operation. 

Figure 5.10 shows the outcome of ,
ˆ ( )e TRSX f , ,

ˆ ( )e RSGX f  and ,
ˆ ( )e SSEPX f  when the two 

channels centred at 6f  and 12f  are simultaneously active. The transmissions remain 

statically active for . Two independent detection experiments 

are depicted for each of the total random sampling, random sampling on grid and stratified 

sampling with equal partitions schemes where 42TRSK = ,  36RSGK =  and 55SSEPK = . The 

threshold levels obtained from the captured samples are displayed by the horizontal dashed 

line in each of the plots, whereas the asterisks indicate the active subbands. 

It is clear from Figure 5.10 that the introduced MSS approach allows distinguishing the 

two active subbands with a significantly low average sampling rate. It is noticed that only 

the spectral points of the active subbands are above the calculated threshold level in all the 

presented experiments. This verifies the effectiveness of the proposed thresholding 

technique where the required signal plus noise power is procured from the collected 

samples. It was observed from further extensive experimental results that the distribution 

of the active subbands within the examined bandwidth does not affect the dependability of 

the spectrum sensing. To establish the rate at which the active channels are detected, 

{ } 1

L
k k

f
=

min,kγ

0 0 0SSEP TRS RSGT K T K T K T> > >
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Monte-Carlo simulations have to be performed similar to the numerical examples on the 

reliability recommendations in §5.4. 

 
Figure 5.10: ˆ ( )e kX f  in (5.3) for the TRS, RSG and SSEP schemes, one frequency point 
per subband is calculated and two experiments are shown per sampling scheme. Decision 
threshold level (dashed line) using the proposed thresholding technique and (5.58), active 

subbands (asterisk). 

 
Figure 5.11: ˆ ( )e kX f  for TRS and SSEP when all the system subbands are inactive, 

decision threshold level (dashed line) using (5.58). 
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An interesting case is to assess the detection decision in case none of the channels are 

active. Figure 5.11 shows the detection results of two test experiments using ,
ˆ ( )e TRSX f , 

and ,
ˆ ( )e SSEPX f  when all the monitored subbands are ideal/silent (the system designer 

assumed 10 % spectrum utilisation). It is noted from Figure 5.11 that the MSS algorithm 

and the adopted thresholding regime is immune against such situations. 

 
5.5.2  Example 2: Dynamic Situation 
 

Four of the system subbands, i.e. the ones centred at 2f , 6f , 12f  and 18f ,  are continuously 

monitored in this example over a long period of time employing . The status of 

these channels dynamically change, i.e. their transmissions switch on and off whilst being 

surveyed. The maximum number of concurrently active subbands at any time is 3AL = . 

The channels centred at 2f ,  and  have:  and . In order 

to meet their detection requirements,  estimates should be averaged in 

, ,1
ˆ ( ) ( , )K

e TRS e TRS rr
X f X f K

=
= ∑ t . In Figures 5.12 and 5.13, we utilise minK K= . These 

figures display the status of the four scrutinised subbands (“1” is active and “0” is inactive) 

along with the detector’s decision at certain time instants marked by crosses. We perform 

sensing every min 0 8pT K T=  seconds, i.e. the detector’s decision is checked at pt nT=           

( n∈ ) time instants to establish if the subband in question is active (i.e. the cross is 

marked by “1”) or passive (i.e. the cross is marked by “0”). This is distinct from the 

preceding Example 1 where the subbands were static and a decision was taken after the 

requested K  spectrum estimates were averaged, i.e. the imposed sensing time 0KT  was 

accommodated. In Figure 5.12, the decision threshold min,k kγ γ=  of the hypothesis testing 

in (5.2) is calculated using ŜNP  in (5.58) whereas in Figure 5.13 we presume that the exact 

SA NP P+  value is available at each of the marked time instants (e.g. provided by an 

analogue energy/power sensor). 

It can be seen from Figures 5.12 and 5.13 that the detector requires some minimum elapse 

time before it can realise a change in the channels’ activity and accordingly make a correct 

decision. During this period the detector’s judgement is erroneous and unreliable. The 

aforementioned elapse time is less than or equal to the recommended min 0K T  sensing time 

,
ˆ ( )e TRSX f

6f 12f , ( ) 0.04f k kP γ ≤ , ( ) 0.98d k kP γ ≥

min 56K K≥ =
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whether SA NP P+  is previously known or estimated. With regards to the particular case 

when a transmission goes offline: 

 Utilising ŜNP  (Figure 5.12): only the decisions related to subband which went from 

being active to inactive are affected. After a certain period, i.e.  min 0K Tτ ≤   seconds, the 

change in the subband’s activity is captured and reported by the detector. 
 

 Accurate knowledge of SA NP P+  (Figure 5.13):  the detector’s judgement on the status of 

channels other than the one that witnessed the change is influenced. For example, the 

subband centred at 18f  is decided to be active for a short period (although it is not) 

following the time instant when channel 16f  went off the air.  

Hence the thresholding regime that uses the estimated power from the collected samples is 

less affected by the sudden disappearance of a transmission. This is attributed to the fact 

that once a subband becomes idle, the total signal power drops whilst some of the averaged 

estimates in ,
ˆ ( )e TRSX f  still embody data from the time when the channel was active. 

Consequently, the exact SA NP P+  can set the threshold level low leading to inactive 

channels being reported active. On the other hand, when a transmission swiftly appears, we 

observe that only the  verdicts on the status of emerged channel are swayed either if ŜNP  is 

employed (Figure 5.12) or the accurate knowledge of SA NP P+  is assumed (Figure 5.13). 

However, it is noted that detector reacts faster to the appearance of a new transmission 

when SA NP P+  is estimated from the signal samples compared to being accurately known. 

This is referred to the sudden increase in the power level of the present multiband signal 

which is not fully featured in the estimated spectrum until after averaging a number of the 

estimates whose data encompass the contribution of the new active subband. 

Therefore, estimating the required combined signal plus noise power, i.e. SA NP P+ , from 

the captured noisy signal samples is an effective strategy to calculate the hypothesis testing 

decision threshold kγ . Overall, the applicability and robustness of the introduced 

multiband spectrum sensing approach was illustrated in this section. The deductions are 

based not only on the shown two examples but also on a on a large number of simulated 

scenarios for each of the TRS, RSG and SSEP schemes.  
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Figure 5.12: The status of the four examined subbands and the detection decision in (5.2)  based on the outcome of ,
ˆ ( )e TRS kX f  and min,kγ , 

S NP P+  is estimated from the collected samples via (5.58). The time instants at which the spectrum is sensed (crosses), they are pT  seconds 

apart. Decision “1” indicated that an activity has been detected and “0” signifies the estimated spectrum is below the calculated threshold.  
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Figure 5.13: The status of the four examined subbands and the detection decision in (5.2)  based on the outcome of ,
ˆ ( )e TRS kX f  and min,kγ , the 

parameter S NP P+  is assumed to be a priori known. The time instants at which the spectrum is sensed (crosses), they are pT  seconds apart.  

Decision “1” indicated that an activity has been detected and “0” signifies the estimated spectrum is below the calculated threshold.  
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5.6 Chapter Summary and Conclusions 
 

A wideband randomised-sampling-based spectrum sensing approach was introduced in this 

chapter where simplicity and low computational complexity are among its key merits. It 

averages a number of periodogram-type estimators to reliably accomplish the sensing task 

using remarkably low average sampling rates compared to uniform-sampling-based 

techniques. Whilst the total random sampling and random sampling on grid rates can be 

arbitrarily low, there is a lower limit on the permissible stratified sampling rates depending 

on the power of the targeted spectral subband. Guidelines on the required average sampling 

rate α  and the number of estimate averages K  were developed amid sought probabilities 

of detection and false alarm for each of the TRS, RSG and SSEP schemes. They 

predetermine the amount of data and the sensing time that the MSS routine demands to 

deliver the specified detection performance. Those recommendations eliminate (or at least 

significantly reduce) the need for lengthy time-consuming Monte-Carlo simulations 

typically employed to check and refine the response of a particular detection method. They 

also equip the user with the necessary means to assess the possible advantages or 

disadvantages of the sensing technique and its requirements. The guidelines show that 

using lower sampling rates comes at the expense of longer signal observation window, i.e. 

sensing time. It is a trade-off that the user can evaluate by substituting the design 

parameters into the derived fairly compact and simple equations. Another factor that sheds 

light on the efficiency of randomised-sampling-based MSS is the total number of collected 

samples per detection operation. It is affected by the spectrum occupancy, i.e. the 

maximum expected number of concurrently active subbands at any time. In general, as the 

spectrum occupancy increases, the furnished savings in terms of the total number of 

processed samples diminish; this is regardless of the substantial reductions on the used 

averaged sampling rates. 

The effect of processing cyclostationary signals on the performance of the adopted spectral 

analysis tools is embedded in the provided guidelines; it is represented by the design 

parameters ,ˆD kη , ,ˆd
D kη , ,ˆA kη  and ,ˆDA kη  for each of the examined randomised sampling 

schemes. This enables the user to countermeasure for any possible decline in the spectrum 

estimation accuracy due to nature of the received signal. If no information is available on 

the modulation schemes and the symbol rates of the incoming transmissions, more 
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spectrum estimates should be averaged, i.e. , , , ,ˆ ˆ ˆ ˆ 1d
D k D k A k DA kη η η η= = = = ,  to guarantee that 

the sought probabilities of detection and false alarm are achieved. For instance, BPSK 

modulated signals cause notable deteriorations in the estimation accuracy as concluded in 

Chapter 4. 

The introduced multiband spectrum sensing procedure demands some prior knowledge of 

the sensed environment. We divide these prerequisites into two groups: 1) the ones 

required to establish a lower bound on α  and K  for given detection probabilities and 2) 

parameters requested to determine the thresholds for the hypothesis testing in (5.2). The 

attained reliability recommendations in (5.32), (5.39) and (5.45) take into account onerous 

system conditions, e.g. maximum spectrum occupancy. Accordingly, a practical approach 

is to calculate the required α  and K  offline; if the user becomes aware of any changes in 

the system environment, he/she can refine or recalculate the α  and K  values. In Group 1 

the design parameter that can be viewed as a limiting factor for the applicability of our 

MSS technique is the ratios of the power levels of the transmissions in the monitored 

subbands or the ratios of the peaks of their continuous-time spectrum, i.e. kφ  in (5.33) or 

(5.34). Various detection techniques in the literature demand such knowledge, e.g. the 

widely used energy detector. Those spectral peaks are assumed to be learnt/estimated in 

practice during the calibration stage of the system, e.g. when  the overseen subbands are 

known to be definitely active [17, 114, 116, 129]. Hence knowing kφ  is not an extravagant 

request. With regards to Group 2, the detector imposes knowledge of the present combined 

signal plus noise power SA NP P+  which is mandated by the number of concurrently active 

channels at the time the sensing is performed. Estimating SA NP P+  from the collected noisy 

signal samples was demonstrated to be an effective strategy to determine the decision 

threshold. Alternatively, a primitive cheap analogue sensor can be employed at the receiver 

to keep track of the present energy/power. This can be viewed as an advantage over the 

popular ED. The latter demands knowing the noise power which changes over time, i.e. 

noise should be separated from the signal. Consequently, the design parameters requested 

by the introduced multiband spectrum sensing approach are reasonable and can be obtained 

in practice. 

It is noted that correlated or overlapping signal windows scenario can be easily 

incorporated  into our approach whenever the effect of correlation or overlapping on the 
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variance reduction following averaging is known, e.g. Welch periodograms [49, 108].  

Moreover, the multiband joint detection reported in [116] to optimise the threshold vector 

γ  in (5.14) for cognitive radio is applicable to the devised MSS technique. Cooperating 

among a number of sensing devices to collect spatial diversity, combat the shadow-fading 

effects and alleviate hidden terminal problems, e.g. [17, 18, 116, 129], may be 

implemented at a network level higher than the studied physical level. 
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Chapter 6 

 Conclusions and Future Work 
 
 
 
 
 
 
The results presented in this thesis demonstrate the promising potential of nonuniform 

randomised sampling and its applicability to selected problems in wideband 

communication systems, namely spectrum sensing. This sampling paradigm goes against 

the common wisdom in data acquisition; conventionally uniform sampling is employed 

and is viewed as the natural option for many practitioners in the digital signal processing 

fraternity. However, uniform sampling DSP is adversely limited by the aliasing 

phenomenon. It imposes stringent requirements on the data acquisition model(s) whenever 

the handled task involves processing wide frequency ranges. Alternatively, the adopted 

digitisation and processing methodology, i.e. randomised sampling and processing, is 

shown throughout this research to provide more efficient processing algorithms. We 

focused on exploiting the aliasing suppression capabilities of randomised sampling to ease 

the onerous sampling rate demands of multiband spectrum sensing performed over wide 

bandwidths. Numerical examples and simulations verified the conducted analysis and 

drawn conclusions. Unveiling the spectral support of the present multiband signal clearly 

facilitates further processing, e.g. signal reconstruction.  

The contributions of this research serve the purpose of better understanding the practice 

and limitations of randomised sampling in communication systems. Whilst the introduced 

solutions targeted spectrum sensing and were formulated within a generic multichannel 

communication system setup, it is strongly believed that they offer a framework for further 

generalisations and encourage/prompt researchers in the field to consider problems that 

could not be previously tackled due to the uniform sampling rate constraint. Consequently, 

much remains to be investigated. Below, we summarise the key contributions of this work 

and outline future research directions. 
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6.1 Summary  
 

The expanding trend of an increased reliance on wireless communication services (with 

higher rates and thereby wider bandwidth requirements in most cases) is the catalyst for the 

continuously emerging communication paradigms and developing applications, e.g. 

Cognitive Radio (CR) and Wireless Sensor Networks (WSNs) discussed in Chapter 1. 

They call for digital signal processing that is capable of dealing with considerably wide 

bandwidths with emphasis on scenarios where the processed narrowband signals reside at a 

priori unknown locations within a wide range of overseen frequencies. Since the uniform 

sampling rates imposed by classical DSP in such cases exceed at least twice the total 

monitored bandwidth, they pose a major technical challenge. The motivation behind 

embracing the randomised sampling and processing methodology was its ability to 

mitigate the spectrum aliasing limitation. This allows the use of significantly low sampling 

rates compared to the uniform sampling counterpart. The tackled Multiband Spectrum 

Sensing (MSS) problem, which entails overseeing the activity of a number of predefined 

non-overlapping spectral subbands, was then described in Chapter 1. Accordingly, the need 

for spectral analysis tools that permits detection rather than exact spectrum estimation was 

acknowledged.   

At this juncture, it was necessary to give a concise review of the sampling theory with 

Chapter 2 focusing on topics related to the theme of this research. For instance, the aliasing 

phenomenon of uniform sampling was identified and uniform bandpass and multiband 

sampling techniques were outlined. The limited applicability of the latter methods to the 

MSS problem was highlighted; they inherently depend on previous knowledge of the 

signal’s spectral support, which is not available in the studied systems. Nonuniform 

randomised sampling was then suggested as an alternative sampling approach whose 

utilisation in conjunction with suitable processing algorithms is commonly known as 

Digital Alias-free Signal Processing (DASP). The various criteria for defining the alias-

free characteristic were recognised noting their relevance to the spectral analysis of the 

signal rather than reconstruction. Subsequently, the DASP notion adopted in this thesis was 

stated, i.e. sampling and processing that facilitates detecting the present spectral 

components of the incoming signal without being limited by the processed bandwidth. This 

is attributed to the fact that for a finite number of captured samples the spectrum aliasing
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phenomenon is never completely eliminated. Instead it is suppressed by a finite amount 

where a wideband component is introduced to the spectrum of the sampled signal and is 

referred to as smeared-aliasing. 

The spectral analysis of three randomised sampling schemes, i.e. Total Random Sampling 

(TRS), Random Sampling on Grid (RSG) and Stratified Sampling with Equal Partitions 

(SSEP), using periodogram-type estimators was studied in Chapter 3 for wide sense 

stationary signals. It was shown that these periodograms are unbiased estimators of 

detectable frequency representations of the received multiband signals. They permit the 

unveiling of the active spectral components albeit the used sampling rates, i.e. they are 

adequate tools for the pursued DASP-based multiband spectrum sensing. Undertaking 

several measures to appropriate the periodogram-type estimators to the considered 

problem, i.e. spectrum sensing and not PSD estimation, was discussed. They included 

employing windowing functions to minimise spectral leakage due to the finite time 

analysis windows and averaging a number of estimates calculated from various signal 

windows. The latter aims at enhancing the estimation accuracy since periodograms 

standard deviations are known to be of the same order as their expected values. The 

analytical expressions of the mean and variance of the TRS, RSG and SSEP spectrum 

estimators were developed for a finite number of processed samples. This led to 

quantifying the level of smeared-aliasing for each of the examined schemes. For example, 

the smeared-aliasing level of SSEP varies across the monitored frequency range depending 

on the position of the signal’s strong spectral components, whilst that of TRS and RSG 

remains constant within the surveyed bandwidth.  

An important observation from the above analysis was that the characteristics of the 

sampling scheme have a profound impact on the shape and nature of the obtained 

spectrum. Accordingly, it was necessary to assess each of the schemes independently to 

establish its own merits. Whilst the smeared-aliasing components (their levels are inversely 

proportional to the used average sampling rate) do not hamper the detectability of the 

active monitored subbands, they cause deterioration in the dynamic range of the estimated 

spectrum. Formulas were derived in the last part of Chapter 3 to measure the Spectrum 

Dynamic Range (SDR) for each of the TRS, RSG and SSEP schemes. Additionally, 

guidelines on the required number of samples were provided to ensure that the SDR 

exceeds certain value, e.g. mandated by the user. 
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Although the stationarity assumption simplified the analysis in Chapter 3 and enabled 

concentrating on the characteristics of the adopted estimators, it was noted that a wide 

range of digitally modulated communication signals are cyclostationary stochastic 

processes. As a result, the behaviour of the periodogram-type estimators was re-evaluated 

in Chapter 4 for linearly modulated communication signals. It was shown that the total 

random sampling, random sampling on grid and stratified sampling with equal partitions 

estimators continue to be suitable tools for the spectrum sensing task. A spectrum region 

within each of the active transmission bands, i.e. named the guarded region, was 

identified. The estimated spectrum in the guarded regions embodies detectable frequency 

representation of the present transmissions and is independent of the position of the time 

analysis window. Nonetheless, it was illustrated that the estimation accuracy of the 

periodogram-type estimators can notably decline at/near selected frequencies within the 

active spectral subband for certain modulation schemes. The transmission’s modulation 

type, baud rate and carrier frequency dictate these frequency points. Since no prior 

knowledge of the modulation scheme or its parameters is presumed, conservative measures 

can be taken to avert the potential additional high inaccuracy levels of the periodogram-

type estimators for cyclostationary signals. The detailed calculations of the 

cyclostationarity effects were included in Appendix D. 

A novel multiband spectrum sensing approach was introduced in Chapter 5 using the 

spectral analysis results in Chapters 3 and 4. Its operational average sampling rates can be 

arbitrarily low for the total random sampling and random sampling on grid schemes. 

Whereas for stratified sampling, a lower bound on the permissible rates was specified, it is 

still well below the minimum uniform sampling counterpart. Such a limitation is due to the 

scheme’s varying smeared-aliasing level. The ability of stratified/jittered sampling to 

reduce smeared-aliasing in the vicinity of the signal’s strong spectral components is 

viewed in the literature as an advantage, e.g. in [3, 5]. Besides, stratified sampling is 

proposed in [98] as a scheme that offers more accurate Fourier transform estimation of 

deterministic signals with higher rates of convergence compared to TRS. Here, it was 

shown that stratified sampling suffers from its smeared-aliasing reduction feature in the 

context of spectrum sensing and does not necessarily lead to a more efficient sensing 

technique compared to total random sampling. Generally, the substantially low sampling 

rates of the introduced MSS approach compared to uniform-sampling-based techniques 
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effectively ease the stringent sampling rate requirements of wideband spectrum sensing. It 

enables a more efficient use of the sensing device(s) resources, e.g. power, and avoids the 

possible need for a high cost dedicated premium DSP. 

Ensuring the reliably of the spectrum sensing, i.e. it delivers predefined probabilities of 

detection and false alarm for one or more of the overseen spectral subbands, was one of the 

key targets and contributions of our approach. This entails performing spectrum estimation 

with a certain level of confidence where the needed resources are a priori known. The 

uncertainties in the estimation process, which originate from the randomness of the 

sampling process and that of the sampled signal in addition to the present noise, were 

captured in Chapter 3 and 4 by the variance metric for each of the TRS, RSG and SSEP 

schemes. Averaging a  K  number of the estimates calculated from non-overlapping signal 

windows, each of width 0T , was admitted as an additional means alongside the average 

sampling rate to improve the estimators’ performance. Specifying the required sampling 

rate and the sensing time 0KT  are of paramount importance to the efficiency of the MSS 

procedure in lieu of assuming that the desired estimation accuracy is available from 

“sufficient estimate averaging” as in the majority of multiband spectrum sensing studies, 

e.g. [10, 21, 23, 24, 114, 115, 117, 118, 127, 128, 136]. 

In fact, papers on randomised sampling dating from the 1960’s, e.g. Silverman and Shapiro 

[90], revealed that the signal’s power spectral density can be estimated from an infinitely 

long sampling sequence captured at arbitrarily low sampling rates. Quantifying the 

relationship between the operational randomised sampling rate and the length of the signal 

observation window, which is finite in practice (unlike [90] and many papers that 

followed),  is a problem that was resolved here in the context of the spectrum sensing. In 

Chapter 5, prescriptive recommendations were provided for each of TRS, RSG and SSEP 

to guarantee that the multiband spectrum sensing approach meets preset probabilities of 

detection and those of false alarm for one or more of the monitored subbands. Such 

guidelines depict the trade-off between the sampling rate and the length of the signal 

observation window (sensing time). They equip the user with the necessary means to 

predict the prerequisites and efficiency of the sensing technique. Those guidelines clearly 

show the amount of data required before the sought level of detection accuracy is achieved. 

This circumvents the downfall of processing unnecessarily excessive amounts of data and 
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the need for checking the method’s performance via lengthy time-consuming Monte-Carlo 

simulations.  

The analytical expressions for the threshold levels needed in the detection operation were 

developed in Chapter 5 and the prior knowledge demanded by our MSS approach was 

discussed. It was concluded that the latter is comparable to the previous information 

requested by other widely used existing methods. A technique to estimate the threshold 

levels from a set of collected samples was proposed and its effectiveness was 

demonstrated. The response of the introduced MSS approach to static and dynamic (i.e. 

subbands coming on and off air) system conditions was checked by simulations in    

Chapter 5. They depicted the ability of the detection procedure to detect the active 

channels utilising the set of collected noisy signal samples and highlighted the scope for 

future improvements (see §6.2). It was noted that the dynamic situations are the weak point 

of virtually all algorithms that deal with spectrum sensing. Typically, there is an indirect 

assumption that the situation, i.e. the simultaneously active subbands, stays static over a 

certain detection time. In our case, this time period is the sensing time 0KT .  

Although each of TRS, RSG and SSEP facilitates detecting the active spectral subbands 

within the monitored bandwidth at remarkably low average sampling rates, their 

requirements in terms of implementation in hardware notably vary. Whilst the simple 

mathematical description of total random sampling is one of its main merits, the interest in 

its applicability in practice is rather limited since any two of its samples can be arbitrarily 

close. On the contrary, a minimum distance is maintained between any two points in any 

random sampling on grid sampling sequence. This distance is equal to the underlying 

uniform grid period that can still be high to reserve the usefulness of the estimator for the 

MSS task. This imposes fast ADC(s) that can match the demanded underlying grid rate 

despite the RSG potential to offer significant savings on the total number of processed 

samples. Stratified sampling with equal partitions with two ADCs (or more) equates the 

maximum instantaneous sampling rate to the average sampling rate providing a substantial 

saving in terms of the ADC(s) speed in addition to the average sampling rate. There have 

been several studies on implementing randomised samplers similar to the ones examined in 

this research, e.g. [1, 137-140]. They give good indications of the applicability of the 

devised technique in practice. Randomised sampling and nonuniform sampling have been 

lately gaining more prominence in the DSP community due to the increasing interest in 
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compressive sensing that employs irregular sampling in several studies, e.g. 

implementation examples are reported in [141-144]. 

  
6.2 Suggestions for Future Work and Outlook 
 

Since this research sets a framework for applying randomised sampling and its processing 

to wideband spectrum sensing, there is plenty of scope for future research - some of which 

can be an extension of the results contained in this thesis. Below, we give an overview of 

the future work related to the subject and contributions of this research.  

 
Applicability, Parameters Estimation and Dynamic Conditions 
 

Applying the introduced multiband spectrum sensing approach to a particular application 

environment to demonstrate its efficiency is of an interest, e.g. CR in the TV channels 

spectral bands in IEEE 802.22 as in [116, 145]. In such environments, some knowledge of 

the system parameters is available, e.g. the permitted sensing time, propagation channel 

conditions and the power level of the transmitted signals, etc. This helps with calibrating 

and tailoring the sensing method to the needs of the monitored environment. Evaluating the 

performance of our MSS approach for modulation schemes other than the linearly 

modulated ones can identify schemes that might suit or challenge the detection procedure. 

This will strengthen the obtained results and extend their scope.  

Creating a dependable methodology for estimating the parameters required by the devised 

sensing technique necessitates further investigation. For instance, the inaccuracies in 

estimating the present combined signal plus noise power, either obtained from the 

collected noisy samples or an analogue sensor that continuously records the present 

energy/power, can be added to the total uncertainties of the spectrum estimation routine.  

Consequently, conservative measures can be taken, e.g. more estimate averages, to ensure 

the reliability of the multiband spectrum sensing. 

Deeper analysis of the effects of dynamic system situations (i.e. when transmissions come 

on and off the air, possibly during a sensing operation) on the detection performance would 

give a better insight into the robustness and tolerance of the introduced MSS approach to 

such conditions. This can lead to adaptively changing the number of estimate averages 

based on the level of measured signal plus noise power in a given sensing operation. Any 
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sudden drop in the measured power would indicate that fewer channels are concurrently 

active and hence the number of needed estimate averages can be reduced.  

  
Signal Reconstruction 
 

Signal reconstruction from nonuniform sampling data is a mature domain with more results 

than we can list here. In fact, this was a key factor in our decision to focus on the spectrum 

sensing task where few results (barely any) on randomised-sampling-based MSS were 

available in the open literature at the time this research commenced. 

Generally, the necessary condition for perfect signal reconstruction is operating at 

sampling rates higher than twice the joint bandwidth of the concurrently active spectral 

subbands, i.e. above Landau rate. For some communication systems, e.g. cognitive radio 

and some WSN applications, the spectrum occupancy is typically low. Capitalising on this 

premise, signal reconstruction, which is preceded by determining the signal’s spectral 

support, can yet be achieved while the sampling rates are considerably lower than those 

requested by uniform sampling. We anticipate using existing numerically stable 

reconstruction algorithms that are geared to deal with communication signals, e.g. 

reconstruction based on exponential basis functions in [146] or band splitting with 

recursive least squares in [4] and many others. It is also believed that the unfolding results 

on compressive sensing can provide effective reconstruction techniques for the 

nonuniformly sampled data. Most importantly, any adopted method should be able to 

handle the moving signal analysis window efficiently. 

The possibility of accomplishing the reconstruction task accurately would allow 

interpolating the signal on a uniform grid. This enables departing from the nonuniform 

sampling environment and moving to the familiar uniform sampling one where a plethora 

of further processing algorithms are available.  

 
Alternative Randomised Sampling Schemes  
 

Analysing the Additive Random Sampling (ARS) scheme and its behaviour is yet to be 

considered. Its practical aspect in terms of implementation in hardware has been promoted 

by various researchers in the field, e.g. [5, 147]. Although results on power spectral density 

estimation using certain types of ARS have been published, e.g. [113], employing such 
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results for spectrum sensing requires further research. Additionally, randomised sampling 

schemes, which present themselves as straightforward extensions of those studied in this 

work, can be assessed. They include: stratified sampling on grid [148], the modified 

stratified sampling in [148] and antithetical sampling in [101]. 
 
Compressive Sensing and Other Spectrum Sensing Techniques 
 

Some multiband spectrum sensing techniques, e.g. [23, 24, 127, 128], utilise the 

compressive sensing methodology to operate at sub-Nyquist sampling rates exploiting the 

spectrum sparsity of the processed signals. Such methods assume that the signal’s 

empirical correlation matrix obtained from the collected samples estimate very accurately 

the signal’s actual correlation matrix. If there are errors in the estimation of the 

aforementioned matrix, there is no technique known to the author (apart from time-

consuming Monte-Carlo simulations) that would provide an indication on how reliable the 

whole approach is. The frequency-domain functions ( , )TRS rC ft , ( , )RSG rC ft  and 

( , )SSEP rC ft  that our estimators aim to approximate are very smooth. If they are known 

exactly, one can easily determine the level of the smeared-aliasing plus noise across all 

subbands and anything that is above the latter level would signify an active transmission. 

However, one of the goals of this research is to avoid extremely long averaging processes 

and instead estimate ( , )TRS rC ft , ( , )RSG rC ft  and ( , )SSEP rC ft  from a finite and well-

defined amount of data. The algorithms controlling the resultant uncertainties are then put 

in place in order to provide a mechanism for guaranteeing the performance of the overall 

system in terms of probabilities of detection and false alarm. Consequently, our main 

contributions could not be immediately compared to CS-based methods. In order to deliver 

a scientifically meaningful comparison, a considerable amount of mathematical analysis, 

e.g. spectrum estimation accuracy, combined with a variety of simulations would have to 

be made. They should take into account the various sampling schemes and various 

optimisation algorithms used in CS. This would contribute to an interesting discussion on 

whether periodograms or compressive sensing is the better tool for detecting the activity of 

the monitored channels.  

Investigating the possibility of deriving reliability recommendations for the spectrum 

sensing techniques discussed in §5.2 is of an interest, e.g. the required quantity of data to 
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achieve certain probabilities of detection and false alarm. Only then the requirements of the 

introduced MSS procedure can be compared to those of the other methods. 

 
Cyclic-spectral Estimator  
 

An extension to the proposed approach in this thesis is to explore the possibility of 

employing a cyclic-spectral estimator to exploit the cyclostationarity of the processed 

signals as in [16, 51, 120, 149]. Estimating the spectral correlation function from 

nonuniformly sampled data can lead to a randomised-sampling-based feature detector, 

which is immune against the adverse effects of stationary noise and interference. Since the 

feature detector senses one subband at a time, i.e. a narrowband spectrum sensing 

technique, it can be used to refine preliminary results attained from coarse sensing 

performed by the introduced multiband spectrum sensing approach. 
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Appendix A 

           Spectral Analysis of Total 
Random Sampling  

 
 
 
 
 
 
Here we derive the estimator’s expected value , ( , )e TRS rE X f⎡ ⎤⎣ ⎦t  and its variance 

{ },var ( , )e TRS rX ft  noting that the TRS sampling instants { } 1

N
n n

t
=

 are IID random variables. 

Their PDF is defined by: 0( ) 1/n t T=p  for rt∈T  and zero elsewhere. 

 
A.1 Estimator’s Expected Value for TRS 
 

We start with, 
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The estimator can be expressed by: 
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Given that the components in the double summation in (A.2) are IID random variables: 
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Since the signal and the zero mean AWGN of variance NP  are independent where 

( ) ( ) ( )n n ny t x t n t= + , we obtain: 
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Noting that [ ]( ) ( ) ( ) ( ) ( )n n nE x t w t x t w t t dt
+∞

−∞
= ∫ p , (A.4) reduces to: 
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where ( ) ( ) ( )
r

WX f x t w t dt= ∫T . The processed WSS signal has a second moment, i.e. power, 

2 ( )SP E x t⎡ ⎤= ⎣ ⎦  whilst the expected value of a windowed continuous-time periodogram is : 
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where ( )X fΦ  is the PSD of ( )x t  and 2( ) ( )
r

j ftW f w t e dtπ−= ∫T . Subsequently, (A.5) emerges 

as: [ ] [ ] 2( ) ( 1) ( ) * ( )TRS S N XC f N P P N f W fα μ= + − + Φ  proving (3.11). 

 
A.2 Estimator’s Variance for TRS 
 

The variance of , ( , )e TRS rX ft  is given by: 
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The parameter rt  is discarded to simplify the notations. Each of ( )WSR f  and  ( )WSI f  are 

the sum of N  independent identically distributed random variables. They are assumed to 

be of a normal distribution according to the central limit theorem, e.g. 30N ≥  is 
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satisfactory in [15, 52, 114]. As a result, 
2

,( )WS rX ft  have approximately a chi-squared 

distribution with two degrees of freedom if ( ) ( ) ( ) 0TRS WS WSf E R f I fζ ⎡ ⎤= =⎣ ⎦  where  
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Similar to (A.2)-(A.4), we obtained:  
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where ( ) ( ) ( )cos(2 )
r

WR f x t w t ft dtπ= ∫T  and ( ) ( ) ( )sin(2 )
r

WI f x t w t ft dtπ= ∫T . This leads to 

(3.25): ( ) ( )2( ) ( )cos(2 )sin(2 ) 1 ( )
r

TRS S N RIf P P w t ft ft dt N f Nζ π π α λ= + + −∫T , i.e. ( )WSR f  

and ( )WSI f  are not independent f∀ . These two random variables are approximately of 

normal distribution and hence being uncorrelated is a sufficient condition for being 

independent [103]. They can be replaced with uncorrelated ones without altering 

, ( , )e TRS rX ft  since 
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          ( ) ( )( ) sin ( ) ( ) cos ( ) ( )WS TRS WS TRS WSI f f R f f I fθ θ= − +                      (A.13) 

which produces: 
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By rearranging (B.14), we attain { }( )2 2( ) 0.5arccot ( ) ( ) 2 ( )TRS WS WS TRSf E R f E I f fθ ζ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦  

defined in (3.24). Similar to (A.2)-(A.5), (A.10) and (A.11) each of 2 ( )WSE R f⎡ ⎤⎣ ⎦  and 

2 ( )WSE I f⎡ ⎤⎣ ⎦   can be determined. For example:  
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which leads to: 
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and then: 
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Analogously, 
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WS WSe TRS R If N f f Nσ σ σ μ⎡ ⎤= + −⎣ ⎦ .  

Noting that  ( )WSR f  and ( )WSI f  are zero mean, the formulas for 2 2( ) ( )
WSR WSf E R fσ ⎡ ⎤= ⎣ ⎦  and 

2 2( ) ( )
WSI WSf E I fσ ⎡ ⎤= ⎣ ⎦  are identical to (A.17) and (A.18) respectively such that the phase-

shift ( )TRS fθ  is introduced to ( )WCE f , ( )R fλ , ( )WSE f and ( )I fλ  as depicted in (3.19), 

(3.20), (3.22) and (3.23). 
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Appendix B 

     Spectral Analysis of Random 
Sampling on Grid  

 
 
 
 
 
 
The mean and variance of the random sampling on grid spectrum estimator , ( , )e RSG rX ft  

are calculated in this appendix. Recall that each of the underlying grid point can be 

selected only once with an equal probability for the studied RSG without replacement. We 

introduce a random variable nc  which is equal to “1” if the -thn  grid point is considered in 

 and “0” otherwise. It can been seen that: { }Pr 1 /n gc N N= =  whilst 

{ } ( )Pr 0 /n g gc N N N= = − . Consequently, we have:  

     [ ] /n gE c N N=                             (B.1) 

whereas 

         [ ]
/ for

1 for
1

g

n m

g g

N N n m

E c c N N n m
N N

=⎧
⎪

⎛ ⎞= −⎨ ≠⎜ ⎟⎪ ⎜ ⎟−⎝ ⎠⎩

                    (B.2) 

 and { }var 1 /n g gc N N N N⎡ ⎤= −⎣ ⎦ . The starting initial time instant rt  of the analysis 

window [ ]0,r r r T= +T t t  is discarded from the equations below to simplify the notation 

whenever needed. 

 
B.1 Estimator’s Expected Value for RSG 
 

By splitting the summation in , ( , )e RSG rX ft , we have: 

   

, ( , )e RSG rX ft
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0 2 2 2
,

1

2 ( )

1 1

( 1)
( , ) ( ) ( )

( 1)

( ) ( ) ( ) ( )

g

g g
g

m n

N
g

e RSG r n g g
nd

N N
j fT n m

n m g g g g
n m

N T
X f c y nT w nT

N N

c c y nT w nT y mT w mT e π

μ

≠

=

− −

= =

⎧− ⎪= ⎨− ⎪⎩
⎫⎪+ ⎬
⎪⎭

∑

∑∑

t

          (B.3)       

where the sample instants in (B.3) encompass all the underlying grid points and are no 

longer random. However, the randomness of the sampling scheme is depicted by the set of 

random variables { } 1
gN

n n
c

=
.  Using (B.1) and (B.2), the estimator’s conditional expectation is 

given by: 

     

0 2 2
,

1

2 ( )

1 1

( 1)
( , ) ( ) ( ) ( )

( 1)

1 ( ) ( ) ( ) ( )
1

g

g g
g

m n

N
g

e RSG r g N g
nd g

N N
j fT n m

g g g g
n mg g

N T NE X f x t x nT P w nT
N N N

N N x nT w nT x mT w mT e
N N

π

μ

≠

=

− −

= =

⎧− ⎪⎡ ⎤ ⎡ ⎤= +⎨ ⎣ ⎦⎣ ⎦ − ⎪⎩
⎫⎛ ⎞− ⎪+ ⎜ ⎟ ⎬⎜ ⎟− ⎪⎝ ⎠ ⎭

∑

∑∑

t

        (B.4) 

as the zero mean AWGN and the signal are independent. Manipulating (B.4) to form the 

signal’s discrete-time Fourier transform 2

1
( , ) ( ) ( )g gN j fnTd

W r g gn
X f x nT w nT e π−

=
= ∑t , we reach: 

2

00 02 2
,

1

( , )( ) ( 1)
( , ) ( ) ( ) ( )

( 1) ( 1)

g dN
W rg g N

e RSG r g g
ng d g g d

T X fN N T N T P
E X f x t x nT w nT

N N N N Nμ μ=

− −
⎡ ⎤ = + +⎣ ⎦ − −∑

t
t

 
(B.5)      

and the ,( ) ( , )RSG e RSG rC f E X f⎡ ⎤= ⎣ ⎦t  in (3.31) is subsequently attained. 

  
B.2 Estimator’s Variance for RSG 
 

The estimator under scrutiny can be expressed by: 

0 2 2
,

( 1)
( , ) ( ) ( )

( 1)
g

e RSG r RG RG
d

N T
X f R f I f

N N μ
−

⎡ ⎤= +⎣ ⎦−
t                              (B.6) 

where ( )1
( ) ( ) ( )cos 2 ( )N

RG n n n RSGn
R f y t w t ft fπ θ

=
= −∑ , 

( )1
( ) ( ) ( )sin 2 ( )N

RG n n n RSGn
I f y t w t ft fπ θ

=
= −∑  and ( )RSG fθ  is selected such that the latter 

two are uncorrelated, i.e. [ ]( ) ( ) 0RG RGE R f I f =  (they are zero mean). Similar to the TRS, 

the , ( , )e RSG rX ft  variance is obtained by utilising chi-squared distribution characteristics 

making use of the central limit theorem. For gN N>> , ( )RGR f  and ( )RGI f  are assumed to 
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be normally distributed according to the CLT for sufficiently large N , typically moderate 

values of N  suffice in practice. Thus we attain the variance formula in (3.34) where 

[ ]2 22 4 4
, 0( ) 2 ( 1) ( ) ( ) ( 1)

RG RGe RSG g R I df N T f f N Nσ σ σ μ⎡ ⎤⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ . Here we show how to 

determine each of 2 2( ) ( )
RGR RGf E R fσ ⎡ ⎤= ⎣ ⎦ , 2 2( ) ( )

RGI RGf E I fσ ⎡ ⎤= ⎣ ⎦  and the introduced phase-

shift ( )RSG fθ .  

By splitting the summation analogous to (B.3) and (B.4), we can write:  

    

( )

[ ] ( )

( )

2 2 2 2 2

1
2

1

2 2 2

1

( ) ( ) ( ) ( )cos 2 ( )

( ) ( )cos 2 ( )

( ) ( )cos 2 ( )

g

g

g

N

RG k g N g g RSG
n

N

k l g g g RSG
n

N

g g g RSG
n

E R f x t E c x nT P w nT fnT f

E c c x nT w nT fnT f

x nT w nT fnT f

π θ

π θ

π θ

=

=

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦⎣ ⎦

⎧⎡ ⎤⎪+ −⎨⎢ ⎥
⎪⎣ ⎦⎩

⎫⎪− − ⎬
⎪⎭

∑

∑

∑

              (B.7) 

such that k l≠ . Using (B.1) and (B.2), we reach: 

( )

( )

( )

2 2 2 2

1

2 2

1

2

1

1( ) ( ) ( ) ( )cos 2 ( )
1

( )cos 2 ( )

1 ( ) ( )cos 2 ( ) .
1

g

g

g

N

RG g g g RSG
ng g g

N
N

g g RSG
ng

N

g g g RSG
ng g

N N NE R f x t x nT w nT fnT f
N N N

NP w nT fnT f
N

N N x nT w nT fnT f
N N

π θ

π θ

π θ

=

=

=

⎡ ⎤⎛ ⎞−⎡ ⎤ = − −⎢ ⎥⎜ ⎟⎣ ⎦ ⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

+ −

⎛ ⎞ ⎡ ⎤−
+ −⎜ ⎟ ⎢ ⎥⎜ ⎟− ⎣ ⎦⎝ ⎠

∑

∑

∑

      (B.8) 

Since ( )( ) ( ) ( )X g g gR m n T E x nT x mT⎡ ⎤− = ⎣ ⎦  is the discrete-time autocorrelation function of 

the WSS processed signal, (B.8) emerges as: 

        

( )

( )

2 2 2

1

2

1

( )
( ) ( )cos 2 ( )

( 1)

1 ( ) ( )cos 2 ( )
1

g

g

N
g

RG S N g g RSG
ng g

N

g g g RSG
ng g

N NNE R f P P w nT fnT f
N N

N N E x nT w nT fnT f
N N

π θ

π θ

=

=

⎡ ⎤−
⎡ ⎤ = + −⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

⎛ ⎞ ⎡ ⎤−
+ −⎜ ⎟ ⎢ ⎥⎜ ⎟− ⎣ ⎦⎝ ⎠

∑

∑
            (B.9) 

proving (3.35), (3.37) and (3.38). Likewise, the 2 2( ) ( )
RGI RGf E I fσ ⎡ ⎤= ⎣ ⎦  formula in (3.36) and 

its components can be found. Noting that: 

     ( ) ( )( ) ( )cos ( ) ( )sin ( )RG RG RSG RG RSGR f R f f I f fθ θ= +                  (B.10) 
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 as ( )1
( ) ( ) ( )cos 2N

RG n n nn
R f y t w t ftπ

=
=∑  and ( )1

( ) ( ) ( )sin 2N
RG n n nn

I f y t w t ftπ
=

=∑  whilst 

     ( ) ( )( ) ( )cos ( ) ( )sin ( )RG RG RSG RG RSGI f I f f R f fθ θ= −  .    (B.11) 

It can be easily seen that by stipulating [ ]( ) ( ) 0RG RGE R f I f =  we obtain ( )RSG fθ  in (3.41). 

It is a function of  2 ( )RGE R f⎡ ⎤⎣ ⎦ , 2 ( )RGE I f⎡ ⎤⎣ ⎦  and ( )RSG fζ . The former two are identical to 

2 ( )RGE R f⎡ ⎤⎣ ⎦  and 2 ( )RGE I f⎡ ⎤⎣ ⎦  respectively following the elimination of ( )RSG fθ . Whilst 

( ) ( ) ( )RSG RG RGf E R f I fζ ⎡ ⎤= ⎣ ⎦ can be derived as follows: 

[ ]

2 2 2

1

1 1

( ) ( ) ( ) ( ) ( )cos(2 )sin(2 )

( ) ( ) ( ) ( )cos(2 )sin(2 )

g

g g

m n

N

RG RG n g N g g g
n

N N

n m g g g g g g
n m

E R f I f x t E c x nT P w nT fnT fnT

E c c x nT w nT x mT w mT fnT fmT

π π

π π
≠

=

= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎣ ⎦

+

∑

∑∑
     (B.12) 

which reduces to:  

        2 2

1

1 1

( ) ( ) ( )

1
( ) ( )cos(2 )sin(2 )

1

1 ( ) ( ) ( ) ( )cos(2 )sin(2 ).
1

g

g g

RG RG

N
g g

g N g g g
ng g g

N N

g g g g g g
n mg g

E R f I f x t

N N NN x nT P w nT fnT fnT
N N N N

N N x nT w nT x mT w mT fnT fmT
N N

π π

π π

=

= =

⎡ ⎤
⎣ ⎦

⎛ ⎞ ⎡ ⎤− −
= +⎜ ⎟ ⎢ ⎥⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎣ ⎦

⎛ ⎞−
+ ⎜ ⎟⎜ ⎟−⎝ ⎠

∑

∑∑

  (B.13) 

in a similar manner to (B.7) and (B.8). By taking the expectation of (B.13) with respect to 

the processed signal, we reach (3.42).  
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Appendix C 

                Spectral Analysis of Stratified 
Sampling   

 
 
 
 
 
 
We derive the formulas for the mean and the variance of the periodogram-type estimator 

that deploys stratified sampling with equal partitions. The sample points { } 1

N
n n

t
=

 of the 

SSEP are independent random variables whose PDFs are defined by: ( ) 1/n nt =p   if nt ∈  

and zero elsewhere where n  is the width of the subinterval n .  

 
C.1 Estimator’s Expected Value for SSEP 
 

We can write:              

         

{ }2 2 2
, 2

1

2 2

1 1

1( , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )n m

m n

N

e SSEP r n n n
n

N N
j ft j ft

n m n m
n m

E X f x t E x t n t w t x t

E x t x t w t w t e e x tπ π

μα

≠

=

−

= =

⎧ ⎡ ⎤⎡ ⎤ = +⎨⎣ ⎦ ⎣ ⎦⎩
⎫⎪⎡ ⎤+ ⎬⎣ ⎦
⎪⎭

∑

∑∑

t

    (C.1) 

which leads to 

1 2

2
2 2 2

,
1 1

2 2
1 1 1 2 2 2

1 1

1( , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n

n m

N N
j ft

e SSEP r N
n n

N N
j ft j ft

n m

E X f x t x t P w t dt x t w t e dt

x t w t e dt x t w t e dt

π

π π

α
μα

α

−

= =

−

= =

⎧⎡ ⎤ ⎡ ⎤= + −⎨ ⎣ ⎦⎣ ⎦ ⎩
⎫

+ ⎬
⎭

∑ ∑∫ ∫

∑ ∑∫ ∫

t
 

 

(C.2) 

noting that 1/n α=  for stratified sampling with equal partitions. It follows that: 

22 2 2
2

,
1

( ) ( ) ( ) 1( , ) ( ) ( ) ( )r

n

NN W j ft
e SSEP r

n

x t w t dt P X f
E X f x t x t w t e dtπ

μ

μα μ μ
−

=

+
⎡ ⎤ = + −⎣ ⎦

∫
∑ ∫Tt



.    (C.3) 
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It can be noticed that the second term in (C.3) and the summands in the third one represent 

a windowed classical continuous-time periodograms [103]. Subsequently, the estimator 

expected value reduces to: ( ) 2( ) ( ) * ( ) ( )SSEP S N XC f P P f W f fα μ χ μ= + + Φ −  in  (3.45)  

where 2

1
( ) ( ) ( )N

X nn
f f V fχ

=
= Φ ∗∑ ,  2( ) ( )

n

j ft
nV f w t e dtπ−= ∫  and ( )X fΦ  is the power 

spectral density of the incoming analogue signal. 

 
C.2 Estimator’s Variance for SSEP 
                                            

According to (3.49)-(3.51): 

  { }2 2 2
, 2

1( ) var ( ) ( )e SSEP SS SSf R f I fσ
μ

= +                                      (C.4) 

recalling that ( )1
( ) ( ) ( )cos 2 ( )N

SS n n n SSn
R f y t w t ft fπ θ α

=
= −∑   and  

( )1
( ) ( ) ( )sin 2 ( )N

SS n n n SSn
I f y t w t ft fπ θ α

=
= −∑  are asymptotically normally distributed.  

The phase shift ( )SS fθ  defined in (3.56) is selected such that [ ]( ) ( ) 0SS SSE R f I f =  in order 

to ensure that , ( , )e SSEP rX ft  is approximately of a chi-squared distribution f∀ . 

Consequently, the variance of , ( , )e SSEP rX ft  is given in (3.53)-(3.55). For example, 

consider 2 2( ) ( )
SSI SSf E I fσ ⎡ ⎤= ⎣ ⎦   in (3.55). Similar to (C.1) and (C.2), we have:  

 

{ } ( )

( ) ( )

2 2 2 2 2
2

1

1 1

1( ) ( ) ( ) ( ) ( )sin 2 ( ) ( )

( ) ( )sin 2 ( ) ( ) ( ) ( )sin 2 ( ) ( )
m n

N

SS n n n n SS
n

N N

n n n SS m m m SS
n m

E I f x t E x t n t w t ft f x t

E x t w t ft f x t E x t w t ft f x t

π θ
α

π θ π θ
≠

=

= =

⎧ ⎡ ⎤⎡ ⎤ = + −⎨⎣ ⎦ ⎣ ⎦⎩
⎫⎪⎡ ⎤ ⎡ ⎤+ − − ⎬⎣ ⎦ ⎣ ⎦
⎪⎭

∑

∑∑
 (C.5) 

which results in: 

( )

( ) ( )

2 2 2 2
2

1

2
1 1 1 1 2 2 2 2

1 1

1( ) ( ) ( ) ( )sin 2 ( )

( ) ( )sin 2 ( ) ( ) ( )sin 2 ( ) .

n

n m
m n

N

SS n N SS
n

N N

n SS SS
n m

E I f x t x t P w t ft f dt

x t w t ft f dt x t w t ft f dt

π θ
α

π θ π θ
≠

=

= =

⎧⎡ ⎤ ⎡ ⎤= + −⎨ ⎣ ⎦⎣ ⎦ ⎩
⎫⎪+ − − ⎬
⎪⎭

∑ ∫

∑∑ ∫ ∫



 





  (C.6) 

Then, 



Appendix C: Spectral Analysis of Stratified Sampling 

157 

 

 
( )

( ) ( )

2 2 2 2

22

1

1( ) ( ) ( ) ( )sin 2 ( )

( ) ( )sin 2 ( ) ( ) ( )sin 2 ( )

r

r n

SS N SS

N
SS SSn

E I f x t x t P w t ft f dt

x t w t ft f dt x t w t ft f dt

π θ
α

π θ π θ
=

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦⎣ ⎦

+ − − −

∫

∑∫ ∫

T

T 

     (C.7) 

that yields: 

 [ ] ( )2 2 2( ) ( )sin 2 ( ) ( ) ( )
r

SS S N SS I IE I f P P w t ft f dt f fπ θ α λ χ⎡ ⎤ = + − + −⎣ ⎦ ∫T            (C.8) 

where ( ) ( )1 2 1 2 1 2 1 2( ) ( ) ( ) ( )sin 2 ( ) sin 2 ( )
r r

I X SS SSf R t t w t w t ft f ft f dt dtλ π θ π θ= − − −∫ ∫T T
, 

( ) ( )1 2 1 2 1 2 1 21
( ) ( ) ( ) ( )sin 2 ( ) sin 2 ( )

n n

N
I X SS SSn

f R t t w t w t ft f ft f dt dtχ π θ π θ
=

= − − −∑ ∫ ∫ 
 and 

( )XR τ  is the autocorrelation function of the WSS processed signal. Similarly, each of  

2 2( ) ( )
SSR SSf E R fσ ⎡ ⎤= ⎣ ⎦ , 2 ( )SSE R f⎡ ⎤⎣ ⎦ , 2 ( )SSE I f⎡ ⎤⎣ ⎦  and ( ) ( ) ( )SS SS SSf E R f I fζ ⎡ ⎤= ⎣ ⎦  can be 

calculated.  
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Appendix D 

               Cyclostationary Signals and 
Periodogram-type Estimators   

 
 
 
 
 
 
In this appendix, we give the detailed derivations of 2( , )W rE X f⎡ ⎤

⎣ ⎦t  for the signals in 

§4.3. The variance expressions for each of the TRS, RSG and SSEP estimators are restated 

and simplified approximations are developed. Additionally, the calculations for the 

parameters that affect the spectrum estimation quality for the class of examined 

cyclostationary signals are presented.  

For the simplicity of the notation, the analysis in Sections D.1 and D.3 is conducted for a 

single active subband. The subscripts, which index the active channels, are accordingly 

discarded. Some useful identities that are frequently used in the following sections are 

listed at the end of the appendix. 

We recall that the incoming signal is modelled by: 

( ) ( )( ) , ,n i n qn n
x t a s t n b s t n+∞ +∞

=−∞ =−∞
= +∑ ∑       (D.1) 

, ( ) [ ], ( )cos(2 ) ( )i i S Cs t n p t nT f t h tπ= + ∗  and ( ), ( )cos(2 0.5 ) ( )q q S Cs t n p t nT f t h tπ π⎡ ⎤= + + ∗⎣ ⎦ . 

Whereas, Cf  is the carrier frequency, 1/S Sf T=  is the baud rate and  denotes the 

impulse response of the propagation channel over the assessed spectral subband. The 

coefficients { }n n
a

∈
 and { }n n

b
∈

  represent the transmitted symbols. They are zero mean 

IID random variables with variances of 2
aσ  and 2

bσ  respectively. The autocorrelation 

function of ( )x t  is given by: 

2 2( , ) ( , ) ( , ) ( , ) ( , )X a i i b q qn n
R t t s t n s t n s t n s t nτ σ τ σ τ+∞ +∞

=−∞ =−∞
+ = + + +∑ ∑         (D.2) 

( )h t
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D.1 Estimators’ Expected Values 
 

We note that: 

 2 2( , ) ( , ) ( ) ( ) j f
W r XE X f R t t w t w t e d dtπ ττ τ τ

+∞ +∞
−

−∞ −∞

⎡ ⎤ = + +⎣ ⎦ ∫ ∫t                    (D.3) 

can be written as: 2 2( , ) ( ) ( , ) ( ) j f
W r XE X f w t R t t w t e d dtπ ττ τ τ

+∞ +∞
−

−∞ −∞

⎡ ⎤ = + +⎣ ⎦ ∫ ∫t . The inner 

integral in the latter equation is the Fourier transform of the autocorrelation function with 

respect to τ . Then, 

     { }2 2( , ) ( ) ( , ), ( ) j ft
W r XE X f w t R t t W f e dtπτ τ

+∞

−∞

⎡ ⎤ ⎡ ⎤= + ∗⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ∫t F      (D.4) 

where 0 2( ) ( )r

r

T j ftW f w t e dtπ+ −= ∫
t

t
. Utilising (DD.1) and (DD.2): 

{ } 2 ( ) 2 ( )2 2

2 ( ) 2 ( )2 2

( , ), 0.5 ( ) ( , ) ( ) ( )

0.5 ( ) ( , ) ( ) ( )

C S C S

C S C S

j f f nT j f f nTj ft
X a i i C i C

n

j f f nT j f f nTj ft
b q q C q C

n

R t t H f e s t n P f f e P f f e

j H f e s t n P f f e P f f e

π ππ

π ππ

τ τ σ

σ

+∞
− +

=−∞

+∞
− +

=−∞

⎡ ⎤+ = − + +⎣ ⎦

⎡ ⎤− − − +⎣ ⎦

∑

∑

F

   (D.5) 

where 2( ) ( ) j ftH f h t e dtπ+∞ −

−∞
= ∫ , 2( ) ( ) j ft

i iP f p t e dtπ+∞ −

−∞
= ∫  and 2( ) ( ) j ft

q qP f p t e dtπ+∞ −

−∞
= ∫ . The 

response of the propagation channel over the considered system subband is a bandpass 

signal occupying the range of frequency allocated to the subband in question. Assuming 

C Cf B>> , we can write the following: ( ) ( 2 ) 0i C S C SP f f nf H f f nf− − − − = , 

( ) ( 2 ) 0q C S C SP f f nf H f f nf+ − + − = , ( ) ( 2 ) 0q C S C SP f f nf H f f nf− + − − =  and 

( ) ( 2 ) 0q C S C SP f f nf H f f nf+ − + − =  ( n∈ ). Thus by substituting (DD.5)-(DD.8) into 

(D.5), we obtain: 

{ } 2 2( , ), 0.25 ( , ) 0.25 ( , )X a S i b S qR t t f t f f t fτ τ σ ξ σ ξ+ = +F                       (D.6) 

where 

        

2* *

2* *

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

S

S

j nf t
i i C S i C S

n

j nf t
i C S i C S

n

t f H f P f f H f nf P f f nf e

H f P f f H f nf P f f nf e

π

π

ξ
+∞

−

=−∞

+∞
−

=−∞

= − − − −

+ + − + −

∑

∑
            (D.7) 
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2* *

2* *

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

S

S

j nf t
q q C S q C S

n

j nf t
q C S q C S

n

t f H f P f f H f nf P f f nf e

H f P f f H f nf P f f nf e

π

π

ξ
+∞

−

=−∞

+∞
−

=−∞

= − − − −

+ + − + −

∑

∑
    (D.8) 

Subsequently, (D.4) can be expressed by: 

        

2 2 2

2 2

( , ) 0.25 ( ) ( , ) ( )

0.25 ( ) ( , ) ( ) .

j ft
W r a S i

j ft
b S q

E X f f w t t f W f e dt

f w t t f W f e dt

π

π

σ ξ

σ ξ

+∞

−∞

+∞

−∞

⎡ ⎤ ⎡ ⎤= ∗ ⎣ ⎦⎣ ⎦

⎡ ⎤+ ∗ ⎣ ⎦

∫

∫

t
                  (D.9) 

Let:  

     [ ] 2( , ) ( ) ( , ) ( ) j ft
i r iF f w t t f W f e dtπξ

+∞

−∞

⎡ ⎤= ∗ ⎣ ⎦∫t                    (D.10) 

and 

      2( , ) ( ) ( , ) ( ) j ft
q r qF f w t t f W f e dtπξ

+∞

−∞

⎡ ⎤⎡ ⎤= ∗⎣ ⎦ ⎣ ⎦∫t                             (D.11) 

, then 

    2 2 2( , ) 0.25 ( , ) 0.25 ( , )W r a S i r b S q rE X f f F f f F fσ σ⎡ ⎤ = +⎣ ⎦t t t .                (D.12) 

Now we simplify the ( , )i rF ft  and ( , )q rF ft terms in (D.12). First, 

2 ( )* *

2 ( )* *

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

S

S

j f nf t
i r i C S i C S

n

j f nf t
i C S i C S

n

F f H f P f f H f nf P f f nf W f w t e dt

H f P f f H f nf P f f nf W f w t e dt

π

π

+∞+∞
−

=−∞ −∞

+∞+∞
−

=−∞ −∞

⎡ ⎤⎡ ⎤
= − − − − ∗ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
+ + − + − ∗ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∫

∑ ∫

t
 

which yields: 

  

* * *

* * *

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

i r i C S i C S S
n

i C S i C S S
n

F f H f P f f H f nf P f f nf W f W f nf

H f P f f H f nf P f f nf W f W f nf

+∞

=−∞

+∞

=−∞

⎡ ⎤ ⎡ ⎤= − − − − ∗ −⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ + − + − ∗ −⎢ ⎥ ⎣ ⎦⎣ ⎦

∑

∑

t
   (D.13) 

Equivalently, we attain:  

* * *

* * *

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

q r q C S q C S S
n

q C S q C S S
n

F f H f P f f H f nf P f f nf W f W f nf

H f P f f H f nf P f f nf W f W f nf

+∞

=−∞

+∞

=−∞

⎡ ⎤ ⎡ ⎤= − − − − ∗ −⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ + − + − ∗ −⎢ ⎥ ⎣ ⎦⎣ ⎦

∑

∑

t
   (D.14) 
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Since the symbol rate and the bandwidth of the shaping filters, i.e. WB , are related by 

0.5 W S WB f B< ≤ , we have: ( ) ( ) 0i i Sn
P f P f nf+∞

=−∞
− =∑  and  ( ) ( ) 0q q Sn

P f P f nf+∞

=−∞
− =∑  if 

{ }1,0,1n∉ − . This results in: 

{ }
{ }

2 2 2 22

2 2 22

( , ) 0.25 ( ) ( ) ( ) ( ) ( ) ( , )

0.25 ( ) ( ) ( ) ( ) ( ) ( , )

W r a S i C i C i r

b S q C q C q r

E X f f H f P f f H f P f f W f f

f H f P f f H f P f f W f f

σ ε

σ ε

⎡ ⎤ ⎡ ⎤= − + + ∗ +⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − + + ∗ +⎢ ⎥⎣ ⎦

t t

t
    

   (D.15) 
where 

       
{

} { }

* *

1

* *

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i r S i C i C S
n

i C i C S S

f H f H f nf P f f P f f nf

P f f P f f nf W f W f nf

ε
=±

⎡= − − − −⎣

⎤+ + + − ∗ −⎦

∑t
           (D.16) 

         
{

} { }

* *

1

* *

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

q r S q C q C S
n

q C q C S S

f H f H f nf P f f P f f nf

P f f P f f nf W f W f nf

ε
=±

⎡= − − − −⎣

⎤+ + + − ∗ −⎦

∑t
       (D.17) 

For kf f=  such that kf  is placed in the guarded-region, i.e. at/near the centre of the 

transmission band, ( , ) ( , ) 0i r q rf fε ε= =t t  and consequently: 

2 2 2 22

2 2 22

( , ) 0.25 ( ) ( ) ( ) ( ) ( )

0.25 ( ) ( ) ( ) ( ) ( ) .

W r a S i C i C

b S q C q C

E X f f H f P f f H f P f f W f

f H f P f f H f P f f W f

σ

σ

⎡ ⎤ ⎡ ⎤= − + + ∗⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − + + ∗⎢ ⎥⎣ ⎦

t
    (D.18) 

If ( ) ( ) ( )i C iP f H f f P f= + , ( ) ( ) ( )i C iP f H f f P f= − , ( ) ( ) ( )q C qP f H f f P f= +  and 

( ) ( ) ( )q C qP f H f f P f= − , each of (D.6), (D.13), (D.14) and (D.15) can be rewritten as: 

{ } 22 * *

22 * *

( , ), 0.25 ( ) ( ) ( ) ( )

0.25 ( ) ( ) ( ) ( )

S

S

j nf t
X a S i C i C S i C i C S

n

j nf t
b S q C q C S q C q C S

n

R t t f e P f f P f f nf P f f P f f nf

f e P f f P f f nf P f f P f f nf

F π

π

τ τ σ

σ

+∞
−

=−∞

+∞
−

=−∞

+ = − − − + + + −

+ − − − + + + −

∑

∑
                         (D.19)         

* * *( , ) ( ) ( ) ( ) ( ) ( ) ( )i r i C i C S i C i C S S
n

F f P f f P f f nf P f f P f f nf W f W f nft
+∞

=−∞

⎡ ⎤ ⎡ ⎤= − − − + + + − ∗ −⎣ ⎦⎣ ⎦∑   

              (D.20) 
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* * *( , ) ( ) ( ) ( ) ( ) ( ) ( )q r q C q C S q C q C S S
n

F f P f f P f f nf P f f P f f nf W f W f nft
+∞

=−∞

⎡ ⎤ ⎡ ⎤= − − − + + + − ∗ −⎣ ⎦⎣ ⎦∑     

(D.21) 
and finally  

{ }
{ }

2 22 22

2 2 22

( , ) 0.25 ( ) ( ) ( ) ( , )

0.25 ( ) ( ) ( ) ( , ) .

W r a S i C i C i r

b S q C q C q r

E X f f P f f P f f W f f

f P f f P f f W f f

σ ε

σ ε

⎡ ⎤⎡ ⎤ = − + + ∗ +⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − + + ∗ +⎢ ⎥⎣ ⎦

t t

t
      (D.22) 

For the stratified sampling with equal partitions scheme, the estimator’s expected value 

include the smeared-aliasing reduction factor: 
2

1

( , ) ( , )
n

N

r S r
n

f E X fχ μ μ
=

⎡ ⎤= ⎢ ⎥⎣ ⎦∑t t  such 

that 2( , ) ( ) ( )
n

n

j ft
S rX f x t w t e dtπ−= ∫t


. This factor attenuates the smeared-aliasing level in the 

vicinity of the active spectral components, see §3.5. From the preceding derivations, it can 

be easily noticed that 
2

S ( , )
n rE X f⎡ ⎤

⎢ ⎥⎣ ⎦
t  is independent of rt  and represents a windowed 

form of the squared magnitude of the shaping filters near/at the centre of the active 

subband similar to (D.22). For instance, let ( ) ( ) ( )
nS nw t w t w t=  such that ( ) 1nw t =  if nt ∈  

and zero elsewhere. Then, 

     
2 2( , ) ( , ) ( ) ( )

n n n

j f
S r X S SE X f R t t w t w t e d dtπ ττ τ τ

+∞ +∞
−

−∞ −∞

⎡ ⎤ = + +⎢ ⎥⎣ ⎦ ∫ ∫t                 (D.23) 

and steps identical to (D.4)-(D.21) can be followed where 2( ) ( )
n n

j ft
S SW f w t e dtπ+∞ −

−∞
= ∫  

replaces ( )W f .  

 
D.2 Variances of TRS, RSG and SSEP  
 

Analogous to (3.17)-(3.23), we have: 

           { }
2

2 4 4
, ,( , ) var ( , ) 2 ( , ) ( , )

( 1) WS WSe TRS r e TRS r R r I r
Nf X f f f

N
σ σ σ

μ
⎧ ⎫ ⎡ ⎤= = +⎨ ⎬ ⎣ ⎦−⎩ ⎭

t t t t        (D.24) 

where 

      2 ( , ) 1( , ) ( , )
WS

WC r
R r R r

E f Nf f
N

σ λ
α

−
= +

tt t           (D.25)                 



Appendix D: Cyclostationary Signals and Periodogram-type Estimators 

163 

 

       2 ( , ) 1( , ) ( , )
WS

WS r
I r I r

E f Nf f
N

σ λ
α

−
= +

tt t         (D.26)     

, ( ) ( )1 2 1 2 1 2 1 2( , ) ( , ) ( ) ( )cos 2 ( , ) cos 2 ( , )
r r

R r X TRS r TRS rf R t t w t w t ft f ft f dt dtλ π θ π θ= − −∫ ∫T T
t t t ,   

{ } ( )2 2 2( , ) ( ) ( )cos 2 ( , )
r

WC r N TRS rE f E x t P w t ft f dtπ θ⎡ ⎤= + −⎣ ⎦∫Tt t       (D.27) 

, ( ) ( )1 2 1 2 1 2 1 2( , ) ( , ) ( ) ( )sin 2 ( , ) sin 2 ( , )
r r

I r X TRS r TRS rf R t t w t w t ft f ft f dt dtλ π θ π θ= − −∫ ∫T T
t t t , 

and    

           { } ( )2 2 2( , ) ( ) ( )sin 2 ( , )
r

WS r N TRS rE f E x t P w t ft f dtπ θ⎡ ⎤= + −⎣ ⎦∫Tt t .             (D.28) 

The phase-shift ( , )TRS r fθ t  is defined accordingly in (3.24) whilst 1 2( , )XR t t  is the signal’s 

autocorrelation function in (4.7).  

Similarly, from (3.34)-(3.40) the variance of the RSG estimator is given by: 

   
2

02 4 4
,

( 1)
( , ) 2 ( , ) ( , )

( 1) RG RG

g
e RSG r R r I r

d

N T
f f f

N N
σ σ σ

μ
−⎧ ⎫

⎡ ⎤= +⎨ ⎬ ⎣ ⎦−⎩ ⎭
t t t      (D.29) 

where 

                          2 ( ) ( 1)( , ) ( , ) ( , )
( 1) ( 1)RG

g d d
R r WC r R r

g g g g

N N N N Nf E f f
N N N N

σ λ
− −

= +
− −

t t t                 (D.30) 

       2 ( ) ( 1)( , ) ( , ) ( , )
( 1) ( 1)RG

g d d
I r WS r I r

g g g g

N N N N Nf E f f
N N N N

σ λ
− −

= +
− −

t t t       (D.31) 

         ( )2 2 2

1

( 1)
( , ) ( ) ( )cos 2 ( )

( )

gN
gd

WC r n N n n RSG
n g

N
E f E x t P w t ft f

N N
π θ

=

⎧ ⎫−⎪ ⎪⎡ ⎤= + −⎨ ⎬⎣ ⎦ −⎪ ⎪⎩ ⎭
∑t     (D.32) 

    ( )2 2 2

1

( 1)
( , ) ( ) ( )sin 2 ( , )

( )

gN
gd

WS r n N n n RSG r
n g

N
E f E x t P w t ft f

N N
π θ

=

⎧ ⎫−⎪ ⎪⎡ ⎤= + −⎨ ⎬⎣ ⎦ −⎪ ⎪⎩ ⎭
∑t t     (D.33) 

( ) ( )
1 1

( , ) ( , ) ( ) ( )cos 2 ( , ) cos 2 ( , )
g gN N

d
R r X n m n m n RSG r m RSG r

n m
f R t t w t w t ft f ft fλ π θ π θ

= =

= − −∑∑t t t  and 

 ( ) ( )
1 1

( , ) ( , ) ( ) ( )sin 2 ( , ) sin 2 ( , )
g gN N

d
I r X n m n m n RSG r m RSG r

n m
f R t t w t w t ft f ft fλ π θ π θ

= =

= − −∑∑t t t .       

The ( , )X g gR nT mT  is the discrete-time autocorrelation function and ( , )RSG r fθ t  is duly 

defined in (3.41).  
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For the stratified sampling with equal partitions scheme, we have: 

           2 4 4
, 2

2( , ) ( , ) ( , )
SS SSe SSEP r R r I rf f fσ σ σ

μ
⎡ ⎤= +⎣ ⎦t t t      (D.34)               

where 

                                     2 ( , )( , ) ( , ) ( , )
SS

WC r
R r R r R r

E ff f fσ χ λ
α

= − +
tt t t      (D.35)                        

                   2 ( , )( , ) ( ) ( )
SS

WS r
I r I I

E ff f fσ χ λ
α

= − +
tt       (D.36) 

, ( ) ( )1 2 1 2 1 2 1 2
1

( , ) ( , ) ( ) ( )cos 2 ( , ) cos 2 ( , )
n n

N

R r X SS r SS r
n

f R t t w t w t ft f ft f dt dtχ π θ π θ
=

= − −∑ ∫ ∫t t t
 

 

and ( ) ( )1 2 1 2 1 2 1 2
1

( , ) ( , ) ( ) ( )sin 2 ( , ) sin 2 ( , )
n n

N

I r X SS r SS r
n

f R t t w t w t ft f ft f dt dtχ π θ π θ
=

= − −∑ ∫ ∫t t t
 

.   

The phase-shift ( , )TRS r fθ t  in ( , )R r fλ t , ( , )WC rE ft , ( , )I r fλ t  and ( , )WS rE ft  in (D.25)-

(D.28)  is replaced with ( , )SS r fθ t  which can be attained from (3.56). 

Now, we develop simplified approximations of the variances in (D.24), (D.29) and (D.34) 

at the sensed frequency points { }kf . From (D.27), we can write: 

  { } ( )2 2( , ) 0.5 ( ) ( ) 1 cos 4 2 ( , ) .
r

WC r k N k TRS r kE f E x t P w t f t f dtπ θ⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦⎣ ⎦∫Tt t              (D.37) 

The term that includes the sinusoid represents a widowed Cosine transform of the signal’s 

second moment plus a constant at the frequency point 2 kf , which is a high frequency 

outside the monitored frequency range. This is expected to be of a negligible value in 

comparison to { }2 2( ) ( )
r

NE x t P w t dt⎡ ⎤ +⎣ ⎦∫T  and similar argument applies to ( , )WS rE ft  in 

(D.28). Thus [ ]( , ) ( , ) 0.5 ( )WC r k WS r k S r NE f E f P Pμ≈ ≈ +t t t  in (D.25), (D.26), (D.35) and 

(D.36) where 2 2( ) ( ) ( )
r

S rP E x t w t dt μ⎡ ⎤= ⎣ ⎦∫Tt . Likewise, for the RSG scheme we have: 

( , ) ( , ) 0.5 ( ) ( 1) ( )d d d
WC r k WS r k d S r g N gE f E f P N P N Nμ ⎡ ⎤≈ ≈ + − −⎣ ⎦t t t  and 

2 2
1

( ) ( ) ( )gNd
S r g g dn

P E x nT w nT μ
=

⎡ ⎤= ⎣ ⎦∑t  

From (4.18) and (4.19) it can be noticed that ( , ) ( , ) ( , )R r I r rf f D fλ λ μ+ =t t t  where 

2( , ) ( , )r W rD f E X f μ⎡ ⎤= ⎣ ⎦t t , i.e.  
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         2 2 2 2 2 20.5 ( , ) ( , ) ( , ) ( , )r R r I r rD f f f D fμ λ λ μ≤ + ≤t t t t .           (D.38) 

As a result, 2 2 2 2( , ) ( , ) ( , ) ( , )R r I r D r rf f f D fλ λ η μ+ =t t t t  and 0.5 ( , ) 1D r kfη≤ ≤t . Whilst 

( , ) ( , ) ( , )d d d
R r I r d g rf f f D fλ λ μ+ =t t t  and 

2
( , ) ( , )d d

r W r d gD f E X f fμ⎡ ⎤= ⎢ ⎥⎣ ⎦
t t , we obtain: 

          { } { } { } { }2 2 2 2
0.5 ( , ) ( , ) ( , ) ( , ) .d d d d

d g r R r I r d g rf D f f f f D fμ λ λ μ≤ + ≤t t t t         (D.39) 

Hence { } { } { }2 2 2
( , ) ( , ) ( , ) ( , )d d d d

R r I r D r d g rf f f f D fλ λ η μ+ =t t t t  where 0.5 ( , ) 1d
D r fη≤ ≤t . 

Consequently, each of (D.24) and (D.29) reduces to: 

[ ] ( )[ ]22
2
, 2 2

2

( ) 2 1 ( ) ( , )
( , )

( 1)

12 ( , ) ( , )

S r N S r N r k
e TRS r k

D r k r k

P P N P P D fNf
N N

Nf D f
N

σ
α α

η

⎧ + − +⎪≈ +⎨
− ⎪⎩

⎫− ⎪⎛ ⎞+ ⎬⎜ ⎟
⎝ ⎠ ⎪⎭

t t t
t

t t

     

and 
2 2

2
,

2

( 1) 2( )
( , ) ( )

( 1) ( ) ( 1)

( 1)
( ) ( , ) 2 ( , ) ( , ) .

( )

g g gd
e RSG r k S r N

g g g

g Nd d d d
S r r k D r k r k

g

N N N N N
f P P

N f N N N f

N P
P D f f D f

N N

σ

η

⎡ ⎤ ⎡ ⎤− − −
≈ + +⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤−

⎡ ⎤× + +⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦

t t

t t t t

    

For SEEP, we can write: ( , ) ( , ) ( , )R r I r rf f A fχ χ μ+ =t t t  from (4.42) and (4.43) such that 

2
2

1

1( , ) ( ) ( )
n

N
j ft

r
n

A f E x t w t e dtπ

μ
−

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ ∫t


. It follows that: 

    2 2 2 2 2 20.5 ( , ) ( , ) ( , ) ( , )r R r I r rA f f f A fμ χ χ μ≤ + ≤t t t t       (D.40) 

and subsequently 2 2 2( , ) ( , ) ( , ) ( , )R r I r A r rf f f A fχ χ η+ =t t t t  where 0.5 ( , ) 1A r fη≤ ≤t . 

Whereas, ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R r R r I r I r DA r r rf f f f f D f A fχ λ χ λ η+ =t t t t t t t  such that 

 0.5 ( , ) 1DA r kfη≤ ≤t .  Utilising (D.34)-(D.36), we reach: 

[ ]

[ ] [ ]

2
2 2 2
, 2

( )
( , ) 2 ( , ) ( , ) 2 ( , ) ( , )

2 ( ) 2 ( )
( , ) ( , ) 4 ( , ) ( , ).

S r N
e SSEP r A r r D r r

S r N S r N
r r DA r r

P P
f f A f f D f

P P P P
A f D f D f A f

t
t t t t t

t t
t t t t

σ η η
α

η
α α

+
= + +

+ +
− + −
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In the next section of this appendix, we examine the possible values each of ( , )D r fη t , 

( , )d
D r fη t  and ( , )A r fη t  can take given the type of the incoming signal. 

  
D.3 Accuracy Deterioration Factor 
 

D.3.1 Total Random Sampling  
 
Here we aim at revealing the differences between ( , )R r fλ t  in (4.18) and ( , )I r fλ t  in 

(4.19), i.e. quantifying ( , ) ( , ) ( , )r k R r k I r kf f fλ λΓ = −t t t . Generic phase-shift ( , )r fθ t  is 

used, however the ones that were derived for each of the investigated randomized sampling 

schemes can be substituted. We start by writing: 1 2( , ) ( , ) ( , )R r r rf f fλ ψ ψ= +t t t  and 

1 2( , ) ( , ) ( , )I r r rf f fλ ψ ψ= −t t t  such that: 

( )1 1 2 1 2 1 2 1 2( , ) 0.5 ( , ) ( ) ( )cos 2 ( )
r r

r Xf R t t w t w t f t t dt dtψ π= −∫ ∫T T
t , 

 [ ] [ ]1 2 1 22 ( ) 2 ( , ) 2 ( ) 2 ( , )
2 1 2 1 2 1 2( , ) 0.25 ( , ) ( ) ( ) r r

r r

j f t t f j f t t f
r Xf R t t w t w t e e dt dtπ θ π θψ − + − + −⎡ ⎤= +⎣ ⎦∫ ∫ t t

T T
t   and 

 1 2( , )XR t t  is given in (D.2). Consequently, 2( , ) 2 ( , )r k rf fψΓ =t t  and 2 ( , )r fψ t  can be 

expressed by: 

                2 ( , ) 2 ( , ) *
2 ( , ) 0.25 ( , ) ( , )r rj f j f

r r rf e G f e G fθ θψ −⎡ ⎤= +⎣ ⎦
t tt t t                      (D.41) 

and 2 2( , ) ( , ) ( , )r a i r b q rG f G f G fσ σ= +t t t  where 

               1 22 ( )
1 2 1 2 1 2( , ) ( , ) ( , ) ( ) ( )

r r

j f t t
i r i i

n

G f s t n s t n w t w t e dt dtπ
+∞

− +

=−∞

= ∑ ∫ ∫T T
t               (D.42) 

 1 22 ( )
1 2 1 2 1 2( , ) ( , ) ( , ) ( ) ( )

r r

j f t t
q r q q

n

G f s t n s t n w t w t e dt dtπ
+∞

− +

=−∞

= ∑ ∫ ∫T T
t .            (D.43) 

Employing (DD.3), we have: 

{ }22 ( ) 2 ( )( , ) 0.25 ( ) ( ) ( ) ( ) ( )C S C Sj f f nT j f f nT
i r i C i C

n

G f H f P f f e H f P f f e W fπ π
+∞

− +

=−∞

⎡ ⎤= − + + ∗⎣ ⎦∑t  

              (D.44) 

whereas (DD.4) yields: 

{ }22 ( ) 2 ( )( , ) 0.25 ( ) ( ) ( ) ( ) ( )C S C Sj f f nT j f f nT
q r q C q C

n

G f H f P f f e H f P f f e W fπ π
+∞

− +

=−∞

⎡ ⎤= − − − + ∗⎣ ⎦∑t . 

                  (D.45) 
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Assuming ( ) ( )W f fδ→ , i.e. very long signal observation window, (D.44) and (D.45) 

reduce to: 

[ ] [ ] [ ]

[ ] [ ] [ ]

2 2 24 ( ) 4 ( )

2 2 2

( , ) 0.25 ( ) ( ) ( )

0.125 ( ) ( ) ( 0.5 ) ( ) ( 0.5 )

C S C Sj f f nT j f f nT
i r i C i C

n n

S i C C S i C C S
n n

G f H f P f f e P f f e

f H f P f f f f nf P f f f f nf

π π

δ δ

+∞ +∞
− +

=−∞ =−∞

+∞ +∞

=−∞ =−∞

⎧ ⎫
= − + +⎨ ⎬

⎩ ⎭
⎧ ⎫

= − − − + + + −⎨ ⎬
⎩ ⎭

∑ ∑

∑ ∑

t
               

   (D.46) 
and 

[ ]

[ ]

2 22 4 ( ) 4 ( )

2 22

( , ) 0.25 ( ) ( ) ( )

0.125 ( ) ( ) ( 0.5 ) ( ) ( 0.5 )

C S C Sj f f nT j f f nT
q r q C q C

n n

S q C C S q C C S
n n

G f H f P f f e P f f e

f H f P f f f f nf P f f f f nf

π π

δ δ

+∞ +∞
− +

=−∞ =−∞

+∞ +∞

=−∞ =−∞

⎧ ⎫⎡ ⎤ ⎡ ⎤= − − + +⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤ ⎡ ⎤= − − − − + + + −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑

∑ ∑

t
 

           (D.47) 

respectively. Thus:  

[ ] [ ]{ }
[ ] [ ]{ }

222 2 2

222 2 2

( , ) 0.125 ( ) ( ) ( ) ( 0.5 )

0.125 ( ) ( ) ( ) ( 0.5 ).

r S a i C b q C C S
n

S a i C b q C C S
n

G f f H f P f f P f f f f nf

f H f P f f P f f f f nf

σ σ δ

σ σ δ

+∞

=−∞

+∞

=−∞

⎡ ⎤= − − − − −⎣ ⎦

⎡ ⎤+ + − + + −⎣ ⎦

∑

∑

t
    

   (D.48) 

As a result ( , ) 0rG f ≈t and 2 ( , ) 0r fψ ≈t  if ( ) ( )i C q CP f f P f f− = −  and 2 2
a bσ σ= . 

 
D.3.2 Random Sampling on Grid  
 
Any differences between each of ( , )d

R r fλ t  in (4.35) and ( , )d
I r fλ t  in (4.36), i.e. 

( , ) ( , ) ( , ) 0d d d
r R r I rf f fλ λΓ = − ≠t t t , can result in a significant decline in the performance 

of the RSG estimator. Below, we assess ( , )d
r fΓ t  in order to establish the values of 

( , )d
D r fη t  in (4.31).  

We have: 1 2( , ) ( , ) ( , )d d d
R r r rf f fλ ψ ψ= +t t t  and 1 2( , ) ( , ) ( , )d d d

I r r rf f fλ ψ ψ= −t t t  where 

( )1 1 1
( , ) 0.5 ( , ) ( ) ( )cos 2 ( )g gN Nd

r X g g g g g gn m
f R nT mT w nT w mT f nT mTψ π

= =
= −∑ ∑t  and 

( )2 1 1
( , ) 0.5 ( , ) ( ) ( )cos 2 ( ) 2 ( , )g gN Nd

r X g g g g g g RSG rn m
f R nT mT w nT w mT f nT mT ft tψ π θ

= =
= + −∑ ∑ . 

Hence 2( , ) 2 ( , )d d
r rf fψΓ =t t  and 2 ( , )d

r fψ t  dictate the values of 0.1 ( , ) 1d
D r fη≤ ≤t . 

Similar to (D.41) noting (D.2), 2 ( , )d
r fψ t  can be stated as:  
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  { }*2 ( , ) 2 ( , )
2 ( , ) 0.25 ( , ) ( , )RSG r RSG rj f j fd d d

r r rf e G f e G fθ θψ − ⎡ ⎤= + ⎣ ⎦
t tt t t          (D.49)                        

such that 2 2( , ) ( , ) ( , )d d d
r a i r b q rG f G f G fσ σ= +t t t , 

2 ( )

1 1
( , ) ( , ) ( , ) ( ) ( )

g g
g

N N
j fT n md

i r i g i g g g
l n m

G f s nT l s mT l w nT w mT e π
+∞

− +

=−∞ = =

= ∑∑∑t     (D.50) 

and             
2 ( )

1 1
( , ) ( , ) ( , ) ( ) ( )

g g
g

N N
j fT n md

q r q g q g g g
l n m

G f s nT l s mT l w nT w mT e π
+∞

− +

=−∞ = =

= ∑∑∑t  .      (D.51) 

Utilising (DD.9) as well as (DD.10) and assuming a very long signal observation window, 

i.e. , we obtain: 

2
2 2

2

( , ) ( ) ( ) ( 0.5 )
8

( ) ( 0.5 )

S gd
i r g i C g C g S

n l

i C g C g S
l

f f
G f H f nf P f f nf f f nf lf

P f f nf f f nf lf

δ

δ

+∞ +∞

=−∞ =−∞

+∞

=−∞

⎧⎡ ⎤ ⎡ ⎤= − − − − − −⎨⎣ ⎦ ⎣ ⎦⎩
⎫⎡ ⎤+ + − + − − ⎬⎣ ⎦ ⎭

∑ ∑

∑

t
     (D.52) 

2
2 2

2

( , ) ( ) ( ) ( 0.5 )
8

( ) ( 0.5 ) .

S gd
q r g q C g C g S

n l

q C g C g S
l

f f
G f H f nf P f f nf f f nf lf

P f f nf f f nf lf

δ

δ

+∞ +∞

=−∞ =−∞

+∞

=−∞

⎧⎡ ⎤ ⎡ ⎤= − − − − − − −⎨⎣ ⎦ ⎣ ⎦⎩
⎫⎡ ⎤+ + − + − − ⎬⎣ ⎦ ⎭

∑ ∑

∑

t
 

           (D.53) 

where ( ) ( ) 0i C i C gP f f P f f nf− − − =  and ( ) ( ) 0q C q C gP f f P f f nf− − − =  if 0n ≠  ( n  is an  

integer). Thus:  

{ }
{ }

2

2 2 22 2

2 2 22 2

( , ) 0.125

( ) ( ) ( ) ( 0.5 )

( ) ( ) ( ) ( 0.5 )

d
r S g

n

g a i C g b q C g C S g
l

g a i C g b q C g C S g
l

G f f f

H f nf P f f nf P f f nf f f lf nf

H f nf P f f nf P f f nf f f lf nf

σ σ δ

σ σ δ

+∞

=−∞

+∞

=−∞

+∞

=−∞

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + − − + − + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑

∑

∑

t

     

and for a BPSK signal: 

2 2
2 2

2

( , ) ( ) ( ) ( )
8 2

( ) ( )
2

S g ad S
r g i C g C g

n l

S
i C g C g

l

f f lfG f H f nf P f f nf f f nf

lfP f f nf f f nf

σ
δ

δ

+∞ +∞

=−∞ =−∞

+∞

=−∞

⎧⎡ ⎤ ⎡ ⎤= − − − − − −⎨⎣ ⎦ ⎣ ⎦⎩
⎫⎡ ⎤+ + − + − − ⎬⎣ ⎦ ⎭

∑ ∑

∑

t
     (D.54) 

 

( ) ( )W f fδ→

. 
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D.3.3 Stratified Sampling with Equal Partitions 
 

The value of ( , )A r fη t  in (4.49) is set by: ( , ) ( , ) ( , )A r R r I rf f fχ χΓ = −t t t  where ( , )R r fχ t   

is defined in (4.42) and ( , )I r fχ t  in (4.43). As ( , )A r fΓ t  tends to zero, ( , )A r fη t  tends to 

its minimum values (i.e. ( , ) 0.5A r fη →t ) and vice versa. In this subsection, we show that 

( , )A r fΓ t  can reach its extreme values at selected frequency points for certain types of 

linearly modulated signals. Since quantifying ( , )A r fΓ t  is more complex than ( , )r fΓ t  in 

(4.25) and ( , )d
r fΓ t  in (4.37), some inquisitive assumptions are made below to 

demonstrate the ( , )A r fη t  behaviour for the class of studied cyclostationary signals.  

Each of ( , )R r fχ t   and ( , )I r fχ t  can be expressed by: 1 2( , ) ( , ) ( , )A A
R r r rf f fχ ψ ψ= +t t t   

and 1 2( , ) ( , ) ( , )A A
I r r rf f fχ ψ ψ= −t t t  respectively where: 

( )1 1 2 1 2 1 2 1 21
( , ) ( , ) ( ) ( )cos 2 ( )

n n

NA
r Xn

f R t t w t w t f t t dt dtψ π
=

= −∑ ∫ ∫t
 

    (D.55) 

and 

              
*2 ( , ) 2 ( , )

2 1
( , ) 0.5 ( , ) ( , )SS r SS r

N j f j fA A A
r n r n rn

f e G f e G fθ θψ −
=

⎡ ⎤= + ⎣ ⎦∑ t tt t t     (D.56) 

such that 

    1 22 ( )
1 2 1 2 1 2( , ) ( , ) ( ) ( ) .

n n

j f t tA
n r XG f R t t w t w t e dt dtπ += ∫ ∫t

 
    (D.57)

  

Hence, 

2( , ) 2 ( , )A
A r rf fψΓ =t t       (D.58) 

and ( , )A r fη t  is directly controlled by 2 ( , )A
r fψ t . To assess 2 ( , )A

r fψ t , we assume that n  

tends to infinity and subsequently 0T → ∞ , whilst the number of samples N  is kept fixed 

to maintain the average sampling rate. Similar to (D.41)-(D.48), we have:   

[ ] [ ]{ }
[ ] [ ]{ }

2
222 2

2
222 2

( )
( , ) ( ) ( ) ( 0.5 )

8

( )
( ) ( ) ( 0.5 ).

8

SA
n r a i C b q C C S

n

S
a i C b q C C S

n

f H f
G f P f f P f f f f nf

f H f
P f f P f f f f nf

σ σ δ

σ σ δ

+∞

=−∞

+∞

=−∞

⎡ ⎤= − − − − −⎣ ⎦

⎡ ⎤+ + − + + −⎣ ⎦

∑

∑

t
    (D.59) 
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Formula (D.59) demonstrates that if [ ] 22( ) ( )a i b qP f P fσ σ⎡ ⎤≠ ⎣ ⎦  then ( , )A r fη t  can reach its 

maximum value at 0.5C Sf f nf= ± −  ( n∈ ) such that f  belongs to the frequency range of 

either ( )i CP f f−  or ( )i CP f f+ . 

 
D.3.4 Wide Sense Stationary Signals 
 
We reveal by simple analysis that  for wide sense 

stationary processes, i.e. choosing ( , ) 0.5D r kfη ≈t  in (4.24) is appropriate. First, we have: 

2( , ) 2 ( , )r k rf fψΓ =t t  where                                                                               

2 ( , ) 2 ( , ) *
2 ( , ) 0.25 ( , ) ( , )r rj f j f

r r rf e G f e G ft tt t tθ θψ −⎡ ⎤= +⎣ ⎦  in (D.41) such that:  

1 22 ( )
1 2 1 2 1 2( , ) ( ) ( ) ( )

r r

j f t t
r XG f R t t w t w t e dt dt

T T
t π− += −∫ ∫      (D.60)            

and [ ]1 2 1 2( ) ( ) ( )XR t t E x t x t− =  is the autocorrelation  function of the WSS signal. Assuming 

an infinity long signal observation window for simplicity and letting 1 2t tτ = − , we can 

write: 

242
2( , ) ( ) j ftj f

r XG f R e d e dtt ππ ττ τ
+∞ +∞

−−

−∞ −∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫     (D.61) 

which produces: 

 ( , ) 0.5 ( ) ( )r XG f f ft δ= Φ       (D.62) 

where ( )X fΦ  is the signal’s power spectral density. It follows from (D.62) that ( , ) 0rG f ≈t  

and ( , ) 0r ftΓ ≈  for the processed real WSS multiband signal and hence ( , ) 0.5D r kftη ≈ .  

Similar analysis applies to ( , )d
D r fη t  for RSG and ( , )A r ftη  for SSEP. 

 

 

 

 

 

( , ) ( , ) ( , ) 0r R r I rf f ft t tλ λΓ = − ≈
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D.4 Useful Identities 
 

We list a number of useful identities that are used in Sections D.1, D.2 and D.3 of this 

appendix. They are aimed at facilitating the analysis of cyclostationary signals. 
 

( ){ } 2 ( ) 2 ( )2, , 0.5 ( ) ( ) ( )C S C Sj f f nT j f f nTj ft
i i C i Cs t n e H f P f f e P f f eπ ππτ τ − +⎡ ⎤+ = − + +⎣ ⎦F         (DD.1) 

 

( ){ } 2 ( ) 2 ( )2, , 0.5 ( ) ( ) ( )C S C Sj f f nT j f f nTj ft
q q C q Cs t n j e H f P f f e P f f eπ ππτ τ − +⎡ ⎤+ = − − − +⎣ ⎦F    (DD.2) 

 

{ } 2 ( ) 2 ( )( , ), 0.5 ( ) ( ) ( )C S C Sj f f nT j f f nT
i i C i Cs t n t H f P f f e P f f eπ π− +⎡ ⎤= − + +⎣ ⎦F                 (DD.3) 

 

{ } 2 ( ) 2 ( )( , ), 0.5 ( ) ( ) ( )C S C Sj f f nT j f f nT
q q C q Cs t n t j H f P f f e P f f eπ π− +⎡ ⎤= − − − +⎣ ⎦F                 (DD.4) 

 

2 ( ) 2 ( 2 )* *
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( , ) 0.5 ( ) ( 2 ) )
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j f f nT j f f nf t
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n n
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S
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H f nf e

π π

π
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∑ ∑

    

(DD.5) 
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( , ) ( ) ( 2 )
2
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n n
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π π

π
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=−∞ =−∞
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∑ ∑
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π π

π

+∞ +∞
+ − −
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