760 research outputs found

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Power consumption prediction in cloud data center using machine learning

    Get PDF
    The flourishing development of the cloud computing paradigm provides several services in the industrial business world. Power consumption by cloud data centers is one of the crucial issues for service providers in the domain of cloud computing. Pursuant to the rapid technology enhancements in cloud environments and data centers augmentations, power utilization in data centers is expected to grow unabated. A diverse set of numerous connected devices, engaged with the ubiquitous cloud, results in unprecedented power utilization by the data centers, accompanied by increased carbon footprints. Nearly a million physical machines (PM) are running all over the data centers, along with (5 – 6) million virtual machines (VM). In the next five years, the power needs of this domain are expected to spiral up to 5% of global power production. The virtual machine power consumption reduction impacts the diminishing of the PM’s power, however further changing in power consumption of data center year by year, to aid the cloud vendors using prediction methods. The sudden fluctuation in power utilization will cause power outage in the cloud data centers. This paper aims to forecast the VM power consumption with the help of regressive predictive analysis, one of the Machine Learning (ML) techniques. The potency of this approach to make better predictions of future value, using Multi-layer Perceptron (MLP) regressor which provides 91% of accuracy during the prediction process

    Energy and Performance Management of Virtual Machines: Provisioning, Placement and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. Ho- wever, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations con- cerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utili- zation under workload independent quality of service constraints. These ap- proaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performan- ce degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth con- tribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consump- tion, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) archi- tecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of ser- vers with energy efficiency. Our sixth contribution is a Utilization Prediction- aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scala- bility, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource mana- gement by dynamically adjusting the utilization thresholds for each server in data centers.  </div

    Energy-aware VM Consolidation in Cloud Data Centers Using Utilization Prediction Model

    Get PDF

    Evolutionary computing based QoS oriented energy efficient VM consolidation scheme for large scale cloud data centers using random work load bench

    Get PDF
    In order to assess the performance of an approach, it is unavoidable to inspect the performance with distinct datasets with diverse characteristics. In this paper we had assessed the system performance with random workbench datasets. A-GA (Adaptive Genetic Algorithm) based consolidation technique has been compared with other consolidation techniques including dynamic CPU utilization techniques, VM (Virtual Machine) selection and placement policies. The proposed consolidation system had exhibited better results in terms of energy conservation, minimal Service Level Agreement (SLA) violation and Quality of Service (QoS) assurance

    Classification and Performance Study of Task Scheduling Algorithms in Cloud Computing Environment

    Get PDF
    Cloud computing is becoming very common in recent years and is growing rapidly due to its attractive benefits and features such as resource pooling, accessibility, availability, scalability, reliability, cost saving, security, flexibility, on-demand services, pay-per-use services, use from anywhere, quality of service, resilience, etc. With this rapid growth of cloud computing, there may exist too many users that require services or need to execute their tasks simultaneously by resources provided by service providers. To get these services with the best performance, and minimum cost, response time, makespan, effective use of resources, etc. an intelligent and efficient task scheduling technique is required and considered as one of the main and essential issues in the cloud computing environment. It is necessary for allocating tasks to the proper cloud resources and optimizing the overall system performance. To this end, researchers put huge efforts to develop several classes of scheduling algorithms to be suitable for the various computing environments and to satisfy the needs of the various types of individuals and organizations. This research article provides a classification of proposed scheduling strategies and developed algorithms in cloud computing environment along with the evaluation of their performance. A comparison of the performance of these algorithms with existing ones is also given. Additionally, the future research work in the reviewed articles (if available) is also pointed out. This research work includes a review of 88 task scheduling algorithms in cloud computing environment distributed over the seven scheduling classes suggested in this study. Each article deals with a novel scheduling technique and the performance improvement it introduces compared with previously existing task scheduling algorithms. Keywords: Cloud computing, Task scheduling, Load balancing, Makespan, Energy-aware, Turnaround time, Response time, Cost of task, QoS, Multi-objective. DOI: 10.7176/IKM/12-5-03 Publication date:September 30th 2022

    Scalable and Distributed Resource Management Protocols for Cloud and Big Data Clusters

    Get PDF
    Cloud data centers require an operating system to manage resources and satisfy operational requirements and management objectives. The growth of popularity in cloud services causes the appearance of a new spectrum of services with sophisticated workload and resource management requirements. Also, data centers are growing by addition of various type of hardware to accommodate the ever-increasing requests of users. Nowadays a large percentage of cloud resources are executing data-intensive applications which need continuously changing workload fluctuations and specific resource management. To this end, cluster computing frameworks are shifting towards distributed resource management for better scalability and faster decision making. Such systems benefit from the parallelization of control and are resilient to failures. Throughout this thesis we investigate algorithms, protocols and techniques to address these challenges in large-scale data centers. We introduce a distributed resource management framework which consolidates virtual machine to as few servers as possible to reduce the energy consumption of data center and hence decrease the cost of cloud providers. This framework can characterize the workload of virtual machines and hence handle trade-off energy consumption and Service Level Agreement (SLA) of customers efficiently. The algorithm is highly scalable and requires low maintenance cost with dynamic workloads and it tries to minimize virtual machines migration costs. We also introduce a scalable and distributed probe-based scheduling algorithm for Big data analytics frameworks. This algorithm can efficiently address the problem job heterogeneity in workloads that has appeared after increasing the level of parallelism in jobs. The algorithm is massively scalable and can reduce significantly average job completion times in comparison with the-state of-the-art. Finally, we propose a probabilistic fault-tolerance technique as part of the scheduling algorithm
    corecore