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Abstract: To improve resource utilization and energy efficiency, cloud datacenters use VM 

consolidation to consolidate VMs to less number of physical machines through VM migration. 

However, improper VM placement may cause frequent VM migrations and constant on-off switch 

on physical machines (PMs), which results in decreasing service quality and increasing energy 

consumption. To address this problem, in this paper, we propose an effective and efficient VM 

consolidation approach called EQ-VMC with the goal to optimize energy efficiency and service 

quality. In our approach, a discrete differential evolution algorithm is developed to search the 

global optimum solution of VM placement. By integrating it with a set of algorithms we propose 

for effective host overloading detection, VM selection and under-loaded host detection, EQ-VMC 

effectively reduces energy consumption and improves quality of services (QoS). Extensive 

simulation demonstrates its effectiveness and shows its advantage compared with previous VM 

consolidation methods. 
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1. Introduction 

Virtual machine (VM) consolidation is a critical mechanism to improve the energy 

efficiency and resource utilization of cloud computing, by migrating VMs to less 

number of running physical machines (PMs). However, an improper VM placement 

during VM consolidation may further incur frequent live VM migration and constant 

on-off switch of PMs, which lead to serious service quality degradation and resource 

overhead. Thus, the algorithm effectiveness of VM consolidation is key for efficiently 

fulling its purpose. At the same time, it is a very challenging issue since it involves 

multiple different types of resource factors, such as CPU, memory, network 

bandwidth and disk I/O, while VM workloads have the dynamic and uncertain 

resource demands. 

The VM consolidation problem has been receiving significant attention in recent 

years. Many methods [1-16] have been proposed with addressing several aspects 

involved in VM consolidation, including host overloading detection, VM selection, 

VM placement, and under-loaded PMs detection. The methods [1-3] determine 

hotspots by comparing the current resource utilization measurements with the given 
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thresholds. The threshold-based methods however cannot adapt to the dynamic 

resource utilization and demand uncertainty. A number of works on VM consolidation 

[4-9] analyzed the characteristic of VMs’ resource demands, PMs’ workload in data 

centers and propose statistical methods to predict the VMs’ resource demand and PMs’ 

workload to perform VM migration. Many intelligence-related VM consolidation 

methods [3, 4, 15, 17-25] also have been developed, but they easily trap in local 

optimal regime and are difficult to obtain an ideal balance between energy 

consumption, resource utilization and QoS. Some VM consolidation methods [10-15] 

use heuristic algorithms to search the optimal solution of VM placement for reducing 

energy consumption but they may suffer easily premature convergence, which leads to 

sub-optimal solutions.  

In this paper, we present an energy-efficient and quality-aware VM consolidation 

(EQ-VMC) method. EQ-VMC method is a heuristic VM consolidation method that 

targets to minimize the energy consumption of running PMs while ensuring lowest 

overloading risk of host resources through a dynamic optimization model for 

VM placement. In our approach, an improved discrete differential evolution (discrete 

DE) algorithm is developed to search the global optimization solution to find optimal 

VM placement for the migrated VMs. This algorithm regards all the mappings 

between VMs and PMs as a population and uses heuristic evolutionary to obtain the 

optimal VM placement. At the same time, the developed discrete DE algorithm 

fastens the searching process for the global optimization solution by employing the 

strategy of multi-evolution routes. Additionally, we propose a set of methods for 

different phases in VM consolidation including host overloading detection, VM 

selection and under-loaded host detection. Our major contributions can be 

summarized as follows. 

(1)First, we note that VM placement is an authentic combination optimization issue 

with multiple resource constraint;  

(2)Then, the probable mappings between VMs and PMs are abstracted as a piece of 

limited search space, and which corresponds to a population of heuristic evolutionary 

algorithm. Each individual of population is identical to a real mapping between VMs 

and PMs during a cycle of VMs consolidation;  

(3)Next, we define a combination optimization model for handling VM placement 

to achieve the optimal mapping between VMs and PMs in the search space. The 

solution of the optimization model is performed by an improved heuristic 

evolutionary algorithm to guarantee the globally optimal results, namely, the optimum 

VM placement scheme; 

(4)At last, the proposed EQ-VMC method integrates sub-algorithms on host 

overloading detection, VM selection and under-loaded host detection for VMs 

consolidation. Comparison and validation are performed using the CloudSim toolkit. 

The experimental results show that the presented EQ-VMC method is promising in 

degrading energy consumption and host overloading risk, as well as in improving 

QoS. Thereby its effectiveness and efficiency have been validated. 

The rest of this paper is organized as follows. The related works are introduced in 

section 2. In section 3, we describe the optimization model and scheme for VM 
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placement. In section 4, we derive the framework of the EQ-VMC method and 

propose the overview and the detailed design of it. Extensive experiment results are 

given in section 5, followed by the concluding remarks and future works in section 6. 

2. Related work 

A VM consolidation scheme should determine the migrated VMs from where and 

where to, as well as the PMs that can be turned off, identically, the issue of identifying 

the source and destination hosts for live VM migration. Many works 

[3,15,17,18,2,4,20,21,22,23,24,40] handle this issue from different perspectives, such 

as VM placement [3,15,17,18], host overloading detection [2,3,4,20,21,22,18], and 

VM migration selection [3,23,24]. In this paper, we focus on heuristic evolutionary 

based VMs consolidation methods, thus we mainly discuss the topic-related VM 

placement and VMs consolidation methods. 

2.1 VM placement 

Efficient VM placement is critical for VM consolidation, due to the fact that an 

inappropriate VM placement scheme easily reduces resource utilization and increases 

energy consumption, possibly leading to risk of new host overloading. The core of 

VM placement addresses the issue of “where to” for live VM migration, and it has 

been approximately characterized as a bin packing problem [17, 26-28]. Mishra and 

Sahoo [27] handled this issue as a multi-dimensional bin packing problem, and 

optimized the mapping between VMs and PMs as specific optimization objectives by 

using an improved genetic algorithm [26], first-fit decreasing (FFD) algorithm [26], 

and other intelligence optimization algorithms. Although both Kaaouache et al. [26] 

and Mishra and Sahoo [27] addressed improving the quality of service (QoS) and 

resource utilization by optimizing the mapping, both of them did not regard the 

dynamic scales of the up-allocating VMs and PMs, which easily results in frequent 

VM migrations and constant switching between on and off on PMs. Best fit 

decreasing (BFD) [38] is an effectively heuristic algorithm employed to resolve this 

packing issue. A Power-Aware BFD (PABFD) algorithm [17], which is based on BFD, 

is presented. The PABFD algorithm first performs the unallocated VMs in descending 

order based on their CPU resource request and then allocates each VM to the 

destination host according to this order. Each VM deploys on a PM with minimal 

increase of energy consumption. However, both BFD and PABFD algorithms do not 

consider the workload changes of the destination host after VM placement, which 

may incur a new risk of host overloading and thus cannot ensure the QoS. J. A. Aroca 

et al. [28] performed competitive ratio analysis on approximate solutions for the VM 

placement issue with restrictions on the number of VMs and PMs. Melhem et al. [29] 

proposed a Markov prediction model for VM placement in live VM migration to 

determine the set of candidate destination hosts that would be able to receive the 

migrated VMs in a way that avoids their VM migration in the near future. However, 

they did not consider how to determine the under-loaded, over-loaded, or normal 

loaded status, which is also important for VM consolidation. 
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2.2 Heuristic VM consolidation 

VM consolidation primarily includes host overload detection, VM migration 

selection, VM placement, and running hosts shrinking [2, 13]. Due to the complexity 

of VM consolidation, the issue of VM consolidation [13] was divided into several 

sub-problems, and the task of VMs consolidation was then conducted by handling and 

integrating the sub-problems. When using competitive ratio analysis, this type of 

method was very effective in practice in terms of the viewpoints [39], even though it 

was unable to guarantee optimal results theoretically. So far, a large number of studies 

[1-16] have addressed the VM consolidation involved in the different phases, and 

heuristic algorithms have been implemented for VM consolidation, owing to their 

outstanding performance in resolving the complex multi-objective optimization model. 

Several researches [10, 11, 13-15] have explored this issue, and their performance was 

relatively benchmark. Telenyk et al. [14] aimed to improve QoS in terms of reducing 

energy consumption and proposed to minimize the imbalance between each resource 

of the PMs with a simulated annealing algorithm to find the optimal VM placement. 

However, the presented SA-VMC method did not consider stochastic demands, which 

could result in new overloading risk for further load imbalance. Generally speaking, 

fewer running PMs implies lower energy consumption in data centers. Based on this 

idea, Hallawi et al. [11] developed a multi-objective optimization model, minimizing 

both the number of running PMs and total resource wastage. The genetic algorithm 

COFFGA was proposed to perform VM consolidation, using chromosome encoding 

to represent the order of VM placement and obtaining the best order of VM placement 

via evolution. However, COFFGA employs an FFD algorithm for VM placement, 

which easily results in insufficient reserved resources in PMs, and suffers from 

reduction of QoS to improper optimization objective. Farahnakian et al. [10] proposed 

to minimize the total number of running PMs with the goal of reducing the frequency 

of VM migration (VMMs) to improve QoS. They proposed an algorithm called Ant 

Colony System (ACS) to resolve the optimization model. In ACS, a set of tuples, T, is 

created, where each tuple consists of three elements: the source PM, the VM to be 

migrated, and the destination host, of which each tuple represents a sketch of VM 

migration. ACS finds the best tuple set from the total probable VM migration via the 

ant colony algorithm. The proposed ACS-VMC decreased energy consumption by 

consolidating VMs and reducing the total number of running PMs. But the objective 

of minimizing VMMs easily causes new host overloading risk, further increasing SLA 

violations. Gao et al. [15] proposed VMPACS, which utilizes an ACS algorithm to 

address VM consolidation with the goal of reducing energy consumption directly and 

minimizing resource wastage. VMPACS searches for the optimum VM placement 

balancing the available resource on each PM along varying dimensions. The method 

efficiently, simultaneously minimizes total resource wastage and energy consumption. 

Although, VMPACS is superior to the aforementioned algorithms in reducing energy 

consumption, it did not regard how to reserve resources of PMs to guarantee QoS. 

Li et al. [13] proposed to search optimal mapping between VMs and PMs for live VM 

migration to minimize energy consumption and VMMs with simulating artificial bee 

colony foraging behaviour. In order to guarantee QoS, the research took overloading 
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probability as a constraint condition for each running PMs. However, the convergence 

speed of the algorithm was relatively slow. 

The proposed studies treat the researches on VM placement model and the 

model-related VM consolidation method. The proposed model focuses on the optimal 

balance between the energy consumption and QoS. Accordingly, we present an 

EQ-VMC method. The major differences from the previous works are as follows. 

(1)First, the presented VM placement model focuses on the balance between energy 

consumption and hosts’ workload stability during ongoing VMs consolidation;  

(2)Next, searching the finally optimum results in the solution space (e.g., 

population) is performed by the improved heuristic evolutionary algorithm, and it not 

only guarantees the global optimization result but fasten the evolutionary process;  

(3)At last, by integrating several sub-algorithms with discrete DE based VM 

placement algorithm, EQ-VMC globally addresses the issue “where from and where 

to” of live VM migration, thereby fundamentally guaranteeing the reliability of the 

results. The extensive experiment results demonstrate that the proposed EQ-VMC 

manner efficiently reduces energy consumption and host overloading risks while 

effectively improving QoS. 

3. System model and problem formulation 

3.1 Data center model 

Suppose a data center consists of a set of PMs denoted by 

 1 2, , , , ,j nH h h h h K K , and the VMs are represented as

 1 2, , , , ,i mV v v v v K K .  The deployment relation between VMs and PMs 

is expressed as a mapping matrix  1 2, , , , ,
T

T T T T

m n i mD d d d d  K K , in which each 

vector
id  represents a mapping relation between the virtual machine 

iv  to all PMs in 

data centers. The vector id  is called the deployment vector for the virtual machine
iv . 

If the virtual machine 
iv is deployed on the physical machine

jh , then the j-th element 

in the vector 
, 1i jd  , otherwise

, 0i jd  . Because each VM can only be allocated on a 

single PM, the deployment vector id satisfies
,

1

1
n

i j

j

d


 , which is a constraint 

condition for the VM placement.  

For each resource, the configured resource capacity of virtual machine 
iv  is 

represented by res

ir ,where { , , }res cpu mem band .  Each type of resource capacity 

on the host 
jh  is denoted as res

jc . The utilization of each resource on a host is 

computed as (1). 

i j

res res res

j i j

v V

u a c


                                            (1) 

where 
jV  indicates the set of VMs deployed on host 

jh , and res

ia  represents the real 

usage of resource of the virtual machine 
iv  in the host . 

As for a physical machine
jh , the total usage for certain type of resources from all 

deployed VMs cannot be more than the resource capacity in VMs, namely, res res

i ia r . 
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So, for the destination host, the total requested resource from the deployed VMs must 

satisfy the following constraint condition.  

i j

res res

i j

v V

r c


                                                (2) 

3.2 Energy consumption estimation 

Due to the PMs’ hardware heterogeneity and running status, the energy 

consumption of the identical VM deployed on different PMs will also be different. We 

follow the energy consumption model proposed in the work [13] that characterizes the 

relation between CPU utilization and energy consumption. It says that given a number 

p of intervals       0,1 , 1 ,2 , , 1 ,1p p p p p  K  on the average CPU resource 

utilization, the host energy consumption linearly increases with the CPU resource 

utilization ratio in each interval. Thus, the energy consumption of PMs can be 

estimated as shown in formula (3). 

       

 

 

1 1

2 2

, 0 1

, 1 2

, 1 1

cpu cpu

j j

cpu cpu

j jpower cpu

j j

cpu cpu

p j p j

u u p

u p u p
PM u

u p p u

 

 

 

    


   
 

     

M M
                  (3) 

where ( 1,2, , )iλ i p K  is the slope of the linear function of each power interval,

( 1,2, , )iη i p K  is energy consumption at different load levels in watts with respect 

to the hardware heterogeneity of PMs (e.g., Table 2). 

Based on formula (3), the energy consumption for a host within a certain period of 

time can be estimated as  

    
1

0

t
power cpu

j j j j
t

EC h PM u t dt                             (4) 

where {0,1}j  , if 1j   then the host
jh is running; otherwise, if 0j  , the host

jh

is in sleep mode. 

3.3 Host overloading probability estimation 

Host overloading probability reflects the overloading risk of PMs under the current 

deployed VMs. When the resource utilization gets high, the uncertainty of workload 

will increase the host overloading risk. In this paper，we follow the approach [37]. It 

characterizes the stochastic variation of VM resource requests by normal distribution, 

and then estimates the distribution of each resource usage on hosts. The host 

overloading probability is determined as. 

 
 , ,

1 Pr
i j

res res

over j res i j
res cpu mem band

v V

P h r c




 
    

 
 


                    

(5) 

where Prres  is a probability distribution function of various resource usage on a host.  

3.4 Problem formulation for VM placement 

 In terms of the aforementioned energy consumption estimation for data centers 

and analysis of host overloading risk, the optimization problem for VM placement in 

datacentres can be defined as shown in formula (6). In fact, formula (6) attempts to 

obtain the optimum mapping relation between VMs and PMs by taking the 
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mathematical expectation of energy consumption of PMs with lowest overloading risk 

to realize the optimization objective. 

 

 

( )

:

,

1

, , , , ,

1

arg min ( )

1, 1,2, ,

, 1, 2, , , , ,

over j

i j

α P h

j

 f vm h

f D

n

i j

j

m

j res j res i res i j j res

i

                                

  f D EC h e

s.t.           d i m

               c u r d c j n res cpu mem band    











 

 

     







K

K

(6) 

where the host overloading probability is ( ) [0,1]over jP h  , the function 
( )over jα P h

e


adjusts the efficacy of the host overloading probability. Once the overloading risk 

increases during VM placement, the importance of host overloading probability arises 

exponentially. This policy has the effect of enhancing the sensitivity of the model to 

host overload probability. Further, the parameter α  is used to control the impact of 

overloading probability on the optimization objective. The greater the value of α  is, 

the more sensitive the destination hosts is to the host overloading probability. 

Unfortunately, when the host overloading probability tends to be “0”, it is easy to 

cause the phenomenon that the identically migrated VM is able to migrate to multiple 

under-loaded destination hosts. Under such situation, the VM placement can be 

determined according to energy consumption. Apparently, it can be seen that formula 

(6) can fully achieve the optimization objectives of minimizing energy consumption 

of running PMs with minimal overloading risk. 

4. Our VM consolidation approach  

In this section, we present our VM consolidation approach. It consists of 

multi-resource host overloading detection (MHOD) algorithm, QoS-aware VM 

selection (QVMS ) algorithm, discrete DE based VM placement (Discrete DEVMP) 

algorithm, and under-loaded hosts detection (ULHD) algorithm. These four 

algorithms cooperate and integrate with each other for live VM migration with 

guaranteeing QoS, improving resource utilization and reducing energy consumption. 

We describe them one by one in the follows. 

Additionally, for the clarity, all used notations and their meanings are listed below. 

iv  the i-th VM 

V  the set of VMs in datacentres 

migV  the set of migrated VMs 

jh  the j-th PM  

H
 

the set of PMs in data center 

activeH  the set of active PMs 

overH  the set of overloading PMs 

migH  the set of new destination PMs 

sH  the set of PMs need under-loaded detection 

spH  the set of PMs are suitable to place VMs from under-loaded PM 

m
 

the number of VMs 

n
 

the number of PMs 
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m nD   
a mapping matrix denotes the deployment relation between VMs and PMs 

id
 

the deployment vector for 
iv  

,i jd
 

the deployment component for 
iv  to 

jh  

res
 

the resource types of PMs and the set is { , , }cpu mem band  

res

ir  
the resource demand of 

iv  

res

ja
 

the real amount of resource allocated to the VMs on 
jh  

res

jc
 

the resource capacity of 
jh  

res

ju
 

the resource utilization of 
jh  

p
 

the number of intervals on CPU utilization 

iλ  
the slope of the linear function of each power interval 

iη  
the intercept of the linear function of each power interval 

j  
the flag whether 

jh  is active or not 

Prres  
the normal distribution function of various resource usage on a host 

α
 

the weight of overloading probability in optimization model 

ω  the safe parameter to adjust threshold 

tX  the population of t-th generation  

S
 

the size of population 

t

kD
 

the k-th individual in population  

D  the difference matrix 

1 2 3, ,r r rD D D
 three random selected individuals from population 

m

kD
 

the k-th mutant individual in population  

, , , ,,m m

k i k i jd d
 the deployment vector and deployment component in 

m

kD  
c

kD
 

the k-th crossover individual in population  

, , ,,c c

k i k i jd d
 the deployment vector and deployment component in 

c

kD  

F
 

a scalar factor and its value range is [0,2]  

randf
 

a random variable and its value range is [0,2]  

CR
 

a cross constant and its value range is [0,1]  

randc
 

a random variables and its value range is [0,1]  

randi  a random data in the sequence  1,2, ,mK  

( , )tHMatrix i j  an element in heuristic information matrix of the t-th generation  

β
 

the relative weight of two factors for initial heuristic values 

ρ
 

the parameter adjusts the proportion between previous generation heuristic 

information and current heuristic information 
cpu

j ic 
 

the remain CPU resource of 
jh  after hosting 

iv
 

on it 

res

j iu   
the resource utilization of 

jh  after hosting 
iv
 

on it 

migv
 

the migrated VMs 
mem

miga
 

the allocated memory for 
migv  

Pr migv

res



 
the normal distribution of a resource usage in which hosts exclude 

migv  

EXP
 

the rate of exploratory evolution and its value range is [0,1]  

exprand
 

a random value and its value range is [0,1]  

violate

jξ
 

the SLAV duration resulting from overloaded CPU resources for 
jh  

jξ
 

the running time of 
jh  
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mig

iR
 

the size of the unsatisfied demand for CPU resources as a result of 
iv   

migration 

iR
 

the size of the demand for CPU resources from 
iv  

 

4.1 VM Placement 

To resolve the VM placement problem formulated in section 3.4, we present an 

improved Discrete DE algorithm in the following. 

4.1.1 Discrete DE algorithm 

Differential evolution (DE) algorithm [30] consists of three operations including 

mutation, crossover and selection, in which mainly handles continuous variables. The 

population of traditional DE algorithm consists of several vectors, and the value in 

each dimension is continuous. However, in this paper, we have to conduct the discrete 

variable, thus need to discretize the typical DE algorithm. Given a population with S

pieces of individual denoted as  0 1, , , , ,t t t t t

k SX D D D D L L , in which t

kD  is a matrix 

and t  is the generation of population. The detailed processes are as follows.  

A. Mutation  

Arbitrarily select three individuals
1 2 3
, ,r r rD D D from the population mX , in which 

m

kD  is performed as  

1 2 3( ), 1,2, ,m

k r r rD D F D D k S     K                           (7) 

where [0,2]F , which is a scalar factor that adjusts the impact to the difference 

vector. The i-th row in difference matrix D  is determined according to formula (8). 

2, 2, 3,

, 2, 3,

,
1, 2, ,

,0

r i r i r i

i r i r i

d d d
d d d i m

others


 
   



r K                   (8) 

where 
, 2, 3,, ,i r i r id d d

 represent the i-th row corresponding to the matrix 
2 3, ,r rD D D

 

respectively. Formula (8) obtains the result (e.g., the row in the difference matrix) by 

determining whether the deployment vectors at the locations corresponding to the two 

matrices are equal. Further, calculate the mutation individual m

kD  by formula (9).  

, ,
, 1, ,

1,

,0 & 0
1,2, ,

,

im i
k i r i i

r i

d randf F d
d d F d i m

d others

 


   
    



r

K       (9) 

where 
,

m

k id  is the i-th row in matrix m

kD , randf  is a random variable and  

 0  2randf  ， .  

B. Crossover 

The cross-calculation is examined by formula (10).  

,

 or ,
1,2, ,

&,

m

c i

k i

i

randc CR i randid
d i m

randc CR i randid

  
 

 
K                 (10) 

where
,

c

k id is the i-th row in the cross-mapping matrix c

kD ,  0,1CR and is a cross 

constant, randc  is a random variables and  0,1randc , randi  is a random data in 

the sequence 1,2, ,mK .   
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C. Selection 

Selection operation is performed by comparing the value of f  one by one 

between the original individuals in the initial population and corresponding cross 

individuals, select individuals with small value of f to join next-generation 

populations. The detailed selection process is shown as formula (11). 

   1 ,
, 1,2, ,

,

c tc
k kt k

k t

k

f D f DD
D k S

D others




 


K                        (11) 

4.1.2 Discrete DE based VM placement algorithm 

 
         Fig.1 The concept diagram of discrete DE algorithm 

The mappings between PMs and VMs in data centers form a limited search space, 

and it is abstracted as a population corresponding to the tX in section 4.1.1，where 

each individual t

kD  in population represents one of the probable mapping matrixes 

between VMs and PMs. The i-th row in t

kD  is the deployment vector of the virtual 

machine
iv , namely, 

,

t

k id  essentially refers to the deployment map on all running PMs 

for virtual machine 
iv  and is the deployment vector. The corresponding 

, ,

t

k i jd  

represents the deployment component of the deployment vector
,

t

k id . Here, if the 

individual obtained by the mutation, crossover, and selection operations by the 

Discrete DE algorithm is the final optimal mapping relation between VMs and PMs, 

which is called VM placement scheme in this paper. 

In this section, we propose an improved Discrete DE algorithm to solve the VM 

placement problem given in the model Eq. (6). In the improved Discrete DE 

algorithm, we additionally employ a policy of heuristic information matrix to fasten 

the evolutionary process. The concept diagram of discrete DE algorithm shows as 

Fig.1. 

In Fig.1, given generating the i-th generation population tX ， the individuals are 

randomly separated into two evolution routes including t

evolveX  and t

exploreX . The 

route of t

evolveX  depends on the heuristic information matrix, the t

exploreX  directly 

explore the results in the search space. The heuristic information matrix HMatrix is 

updated with the current generated population at the same time, which speeds up the 
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evolution and avoiding premature local optimization. Finally, a new population 1tX 

is achieved. 

In the follows, we discuss the different parts including the update of heuristic 

information matrix, the evolution routs of t

evolveX  and t

exploreX  respectively. 

A. The update of heuristic information matrix 

In Fig.1, each element in the heuristic information matrix has a one-to-one 

correspondence with each deployment component. For example, supposing 

( , )tHMatrix i j records the heuristic information of the deployed virtual machine 
ivm  

on host
jh in the current population tX . At this time, if the virtual machine 

iv  can be 

treated to deploy on host 
jh , the initial value of 0( , )HMatrix i j  can be computed as 

formula (12), else the initial value is 0. 
0 ( , ) ( / ) (1 ) 1 ( , , )cpu power cpu mem band

j i j i j i j i j iHMatrix i j β c PM β std u u u          
    

(12) 

where ( )cpu cpu cpu cpu

j i j j ic c a r     is the remain CPU resource of 
jh  after hosting 

iv

on it , (1) (( ) / )
i j

power power power cpu cpu cpu

j i j j i i j

v V

PM PM PM a r c



     is the remain power 

of 
jh , the larger /cpu power

j i j ic PM    represents the higher cost performance of 
jh  for 

other VMs. ( , , )cpu mem band

j i j i j istd u u u  
 is the standard deviation of resources utilization of 

jh  after hosting 
iv , the larger 1 ( , , )cpu mem band

j i j i j istd u u u  
 represents more stable resource 

utilization of 
jh  after finishing VM placement. β  is the weight of these two 

objectives. 

For each t

kD  in population tX has a corresponding value ( )t

kf D according to the 

formula (6), the range of f is determined by the deployment vector

 , . ., 1,2, ,t

k id e g i m K in the current mapping matrix t

kD . Usually, the smaller the 

value of f is, the more favourable the VM placement scheme is, conversely, the 

worse the VM placement scheme is. Further, quantify the priority level of each 

deployment components by 1 ( )t

kf D . In addition,  , , , ,

1 1

(1 ( ))
S S

t t t

k k i j k i j

k k

f D d d
 

 

records the average priority level of the deployment component in population. At the 

same time, the heuristic information matrix is updated according to formula (13). 

1 1 1 1 1
1 , , , ,

1 1

1( , ) ( , ) (1 ) ,
( )

S S
t t t t t t

t k i j k i j k
kk k

HMatrix i j ρ HMatrix i j ρ D D D X
f D

    


 

 
      

 
  （13） 

where [0,1]ρ , and it weights the previous generation of heuristic information and 

current heuristic information. In terms of the above element value of heuristic 

matrixes and their update process, it can be found that the situation that a deployment 

component satisfies 
, , 1t

k i jd   more frequently appears in t

kD  with a small f value, 

the heuristic information value ( , )tHMatrix i j  of the corresponding deployment 

component will get bigger. Namely, the element value of the heuristic information 

matrix reflects the rank of priority and inferiority of the corresponding deployment 

component, that is, the larger element value of the heuristic information matrix means 

that the corresponding deployment component of it contributes more weight to the 

optimization objectives.  
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B. The evolution of t

evolveX  

Under the guidance of the heuristic information matrix, the mutation operation is 

treated at first. The mutation operation conducts to generate more perfect deployment 

component of the deployment vector. Given three mapping relation 
1 2 3, ,r r rD D D  in 

population tX  are randomly selected. The deployment vector
,id

 in difference 

matrix D is computed as formula (14). 

2, 2, , 3, ,

1 1, 2, 3,

, ( , ) ( , )

0,
. 1,2, ,

n n
t t

r i r i j r i j

j ji r i r i

d d HMatrix i j d HMatrix i j
d d d

others i m

 

  
   

 

 
v

K

       (14) 

where 
2,r id ,

3,r id  denotes the deployment vector of 2rD ,
3rD  respectively and 

2, ,r i jd ,

3, ,r i jd  are the corresponding deployment components. In fact, the formula (14) 

performs the minus operation by comparison between the heuristic information of the 

two different deployment vectors. However, when the heuristic information is 

relatively small, the vector 
,id
 equals “ 0

v
”. The obtained differential matrix by 

formula (14) achieves a relative perfect deployment vector. Additionally, since the 

obtained differential matrix contains more heuristic information, thus such methods 

can guide the subsequent evolutionary route to find the optimum VM placement 

scheme fast. At last, the deployment vector 
,

m

k id  of the mutant individual m

kD  is 

obtained by formula (9).  

Next, the crossover operation treats the mapping relation between the original 

mapping relation and mutated mapping relation between PMs and VMs. The updated 

crossover individual may have a mapping relation that contains a slice of superior 

deployment components identified in heuristic matrix. The crossover individuals c

kD  

of the original individuals and mutant individuals are generated by the formula (10). It 

can be seen that the crossover operation of equation (10) randomly selects the 

deployment components of mutant individuals to cross individuals. However, when 

selecting the deployment components of the cross individual one by one, it is 

necessary to constrain each deployment vector 
,

c

k id  in the crossover individual c

kD

according to the hosts’ resource constraints under the presented optimization model，
so as to ensure that the crossover individual becomes a VM placement scheme that 

meets the hosts’ resource constraints. When it does not satisfy the hosts’ resource 

constraints, the deployment components of the crossover individual is defined as 

formula (15). 

 , ,

, ,

max{ ( , )}&1

0
i j

t m res res

k i j i j
jc

v V
k i j

 HMatrix i j d r c
d

otherwise



  


 


，

，
         （15） 

Formula (15) targets to find the most appropriate deployment component, namely,  

getting the i-th deployment vector 
,

c

k id  of the cross-individual c

kD ;  

C. The evolution of t

exploreX  

If the individual follows the exploratory evolution route, the corresponding mutant 

individuals are obtained directly according to formula (8) and (9). Such operation is 

conducive to fully explore other feasible mutant individuals in the search space. 
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Similarly, the crossover mapping is the exploration of the original mapping relation to 

some deployment components, which can effectively avoid the evolution algorithm 

falling inside local optimization. When the deployment vector 
,

c

k id  dissatisfies the 

the hosts’ resource constraints, recalculate each deployment component of 
,

c

k id  by 

formula (16). 

 , ,

, ,

,1

0
i j

m res res

k i j i j
c

v V
k i j

d r c wherein random j
d

otherwise



 
 


，
，

       （16） 

where there are randomly selected a deployment component in line with the hosts’ 

resource constraints during VM placement, which fully embodies the generality of the 

exploratory evolution route. 

D．VM placement Algorithm  

The optimum mapping relation between VMs and PMs is obtained through 

mutation, crossover, selection, and heuristic information matrix synchronously 

updates by Discrete DE algorithm, i.e., the VM placement scheme. Based on this, the 

Discrete DE based VM Placement (Discrete DEVMP) algorithm is presented. The 

Discrete DEVMP algorithm is described below. 

Algorithm 1：Discrete DE based VM Placement 

1: Input：V , H  

2: Output： ,migMap host vm   

3: Generate  0 0 0 0

0 1, , , SX D D D K ， 0tX X  

4: Use equation (12) init 
tHMatrix  

5: while _ _cur times total times  

6:  Update tHMatrix  using equation (13) 

7:  for all t

kD  in tX  

8:   if 
exprand EXP

 
 

9:    Use equation (14),(9) to calculate mutated deployment map m

kD  

10:    Use equation (10),(15) to calculate cross deployment map c

kD  

11:   else 

12:    Use equation (8),(9) to calculate mutated deployment map m

kD  

13:    Use equation (10),(16) to calculate cross deployment map c

kD  

14:   end if 

15:   1 ( ) ( )? :t t c t c

k k k k kD f D f D D D    

16:   Add 1t

kD   to 1tX   

17:  end for 

18: end while 

19: arg min ( )
t
k

t

optimal k
D

D f D  

20: Convert 
optimalD  to ,migMap host vm   

4.2 Host overloading detection 

First, we use the normal distribution model to fit the history records of hosts’ 

resource usage, and get the probability distribution function Prres of each resource 

accordingly. Next, the overloading probability of each resource is obtained depend on 
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the Prres . Finally, the overloading threshold of each resource is determined according 

to the overloading probability. The overloading threshold is conducted in terms of 

formula (17). 

1 Pr
i j

res res res

j res i j

v V

T r c


 
    

 
 
                     （17） 

where res

jT is the upper boundary of the current utilization of each resource on host
jh ; 

  is the adjustment coefficient for weight the overloading threshold. By adjusting its 

size, the threshold setting can be inclined to make full use of resources or 

guaranteeing QoS. During host overloading detection, any resource utilization 

exceeding a corresponding threshold value (e.g., res res

j ju T ) is recognized an 

occurrence of host overloading. In data centers, all PMs with overloading risk need to 

be discovered. 

Multi-resource host overloading detection (MHOD) algorithm is as follows.  

Algorithm 2：MHOD 

1: Input：
activeH  

2: Output：
overH  

3: for all 
jh  in 

activeH  

4:  if res res

j ju T  

5:   
over over jH H h U  

6:  end if 

7: end for 

4.3 VM selection 

In data centers, usually, it is necessary to migrate some VMs from the overloaded 

PMs decrease their overloading risk. Thus this paper proposes two criteria for 

performing VM selection: (1) the workload on source hosts gets more stable after VM 

migration; (2) the time for live VM migration should be as short as possible, so as to 

minimize the negative influence on QoS by VM migration. For the first criterion, it 

can be measured in terms of the changes of overloading probability on source and 

destination hosts after VM migration. For the second criterion, using pre-copy 

mechanism [31], i.e., the smaller the memory usage, the less migration time needs, 

thus effectively reducing the negative impact by VM migration on QoS. The resource 

overloading probability of source hosts is estimated in terms of formula (18) after VM 

migration. 

 
 , ,

1 Pr ,mig mig

i j

v v res res

over j res i j mig j
res cpu mem band

v V

P h r c v V
 




 
     

 
 
         （18） 

where Pr migv

res


is the resource utilization of source host 

jh  after VM migration. 
migv  

represents the migrated VM. 

Further, the two above described criteria for selecting the VMs to be migrated are 

quantified as shown in formula (19), and which is called VM selection criteria. 

mig

mem

v mig

over mem

j

a
RaP P

c


                         （19） 

where mem

miga  is the amount of occupied memory by the migrated VM. 

For the source host, after VM migration, it is also necessary to continue the 
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overloading risk assessment to confirm whether the current source host has relieved 

overloading risk. If the current VM migration does not eliminate the host overloading 

risk, it needs to repeatedly perform the aforementioned steps until host overloading 

risk is removed. 

QoS-aware VM Selection (QVMS ) algorithm is as follows.  

Algorithm 3：QVMS 

1: Input：
overH  

2: Output：
migrateV  

3: for all 
jh  in 

overH  

4:  while res res

j ju T  

5:   arg min
i j

m
v V

v RaP


  

6:   
mig mig mV V v U ，

j j mV V v   

7:  end while 

8: end for 

4.4 Under-loaded hosts detection  

During VM consolidation, turning off some under-loaded running PMs is useful to 

reduce energy consumption and improve resource utilization. Therefore, in this 

section, we address the criteria for under-loaded PMs detection. During the process of 

shutting down the under-loaded PMs, the following problems need to be addressed: (1) 

detect the under-loaded PMs; (2) migrate all of the VMs from the under-loaded PM; 

(3) select the destination host for live VM migration. Obviously, during a cycle of VM 

consolidation, (1) the under-loaded PMs must be selected from the current running 

PM set. Because the overloading hosts are in a relatively stable status after VM 

migration, the previous overloading hosts are impossible to still be at under-loaded 

status; (2) those hosts that have been selected as destination hosts in the previous 

cycle of VM consolidation should also be excluded so that the under-loaded PMs 

candidate set is optimized as
s active over migH H H H   . Further, for the under-loaded 

PM candidate set, the comprehensive utilization of each resource is calculated 

according to the formula (20), and sorting the comprehensive resource utilization in 

ascending order, which in turn turns off the low-utilization PMs and migrates all of 

the VMs on it. The candidate set of destination hosts for the migrated VMs is denoted 

as
sp active overH H H  . 

     
2 2 2

cpu mem band

j j j ju u u u                （20） 

Under-loaded hosts detection (ULHD) algorithm is as follows. 

Algorithm 4：ULHD 

1: Input： sH ,
spH  

2: Output： ,sMap host vm   

3: Sort sH  by equation (20) 

4: for all 
jh  in sH  

5:  Get sD  from ( , )j sp jDiscerte DEVMP V H h  

6:  if sD null  

7:   Convert 
sD  to ,map host vm   
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8:   
sp sp jH H h   

9:  end if 

10:  , , ,s sMap host vm Map host vm map host vm     U  

11: end for 

4.5 VM consolidation method 

The essence of VM consolidation is to optimize the mapping relation between 

currently running PMs and VMs and improve resource utilization, reduce energy 

consumption while guaranteeing QoS. This paper takes the optimum mapping relation 

between VMs and PMs as the optimization objective through minimizing energy 

consumption of hosts with lowest host overloading risk; and resolves the optimization 

model with the proposed discrete DE algorithm. A Discrete DE algorithm based VM 

placement scheme and method are presented. By the full mutation and crossover of 

the improved discrete DE algorithm, the optimum mapping relation between VMs and 

PMs is fundamentally guaranteed, and the global optimization result is achieved. In 

addition, the above presented sub-algorithms, including host overloading detection, 

VM selection, and under-loaded PMs detection algorithms, are integrated, and a 

hybrid energy-efficient and quality-aware based heuristic VM consolidation 

(EQ-VMC) method is proposed. 

The detailed EQ-VMC method is as follows.  

Algorithm 5：EQ-VMC 

1：  Input：H ，
activeH  

2：  Output： ,Map host vm   

3：  ( )over activeH MHOD H  

4：  ( )mig overV QVMS H  

5：  
app active overH H H   

6：  , ( , )j appMap host vm Discrete DEVMP V H   

7：  
s active over migH H H H   ，

sp active overH H H   

8：  , ( , )s s spMap host vm ULHD H H   

9：  , , ,sMap host vm Map host vm Map host vm     U  

5. Experiment 

5.1 Simulation Setting 

We employed the CloudSim toolkit [32] as the simulation platform. In experiments, 

since the lower bound on the number of VMs in the employed workload traces is 

approximately 800, 800 heterogeneous PMs are created in cloud data centers, these 

hosts include four types, and the specific configuration and the power measurement 

are shown in Table 1, Table 2 (SPEC) [33]respectively. Besides, six types of VMs are 

created based on the instance parameters provided by EC2 (Amazon EC2 Product 

Details)[34], Table 3 shows their configuration parameters. These VMs are randomly 

deployed on different PMs. 

In order to properly simulate the real resource request and response in data centers, 

two different data sets Bitbrains trace [35] and GoogleClusterTrace [36] are employed 

to examine the experiments. Bitbrains includes CPU usage, memory, and workload of 

bandwidth, the selected 10 days trace is shown in Table 4. GoogleClusterTrace just 
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includes CPU and memory usage. We equally select 10 days data trace, and 1200 

items of data trace are selected randomly from each day respectively.The selected 

trace is shown in Table 5. Additionally, The parameters in EQ-VMC are set as follows, 

1F  , 0.5CR  , 6α  , 0.5β  , 0.5ρ  , 0.8ω  , _ 10total times  , 

10S H   and 0.7EXP  . 

Table 1 The PM instances 

Type CPU RAM(GB) 

IBM server X3550 M3-1 Intel Xeon X5670 
12 cores 2933Hz 12 

IBM server X3550 M3-2 Intel Xeon X5675 
12 cores 3067Hz 16 

HP Enterprise ProLiant DL 360 Gen9 Intel Xeon E5-2699 v3 
36 cores 2300Hz 64 

HP Enterprise ProLiant DL 360 Gen10 Intel Xeon Platinum 8180 
28 cores 2500Hz 48 

Table 2 The energy consumption at different load levels in watts with respect to different PMs 

Utilization(%) 0 10 20 30 40 50 60 70 80 90 100 

M3-1 66 107 120 131 143 156 173 191 211 229 247 

M3-2 58.4 98 109 118 128 140 153 170 189 205 222 

Gen9(kWh) 45.0 83.7 101 118 133 145 162 188 218 248 276 

Gen10(kWh) 38.7 68.9 82.2 94.6 107 121 138 156 178 210 233 

Table 3 The VM instances 

Type CPU frequency (MIPS) RAM (GB) 

m3.medium 2300×1 3.75 

m3.large 2300×2 7.5 

m3.xlarge 2300×4 15 

c4.large 2300×2 3.75 

c4.xlarge 2300×4 7.5 

c4.2xlarge 2300×8 15 

Table 4 The properties of Bitbrains trace 

Date Number of VMs 
CPU Memory Bandwidth 

mean(%) St.dev.(%) mean(%) St.dev.(%) mean(%) St.dev.(%) 

2013-08-02 1237 7.20 5.97 8.83 4.35 0.76 1.84 

2013-08-04 1233 8.05 4.83 9.75 4.12 0.80 1.77 

2013-08-08 1209 10.27 6.64 9.69 4.52 0.70 1.67 

2013-08-10 1205 8.17 5.43 9.47 4.36 0.85 2.00 

2013-08-12 1202 9.57 6.36 9.25 3.86 0.79 1.79 

2013-08-14 1194 4.88 4.54 8.41 3.33 0.59 1.41 

2013-08-18 1189 8.39 3.73 8.95 3.16 0.89 1.88 

2013-08-20 1186 8.99 3.45 9.10 3.05 0.79 1.46 

2013-08-23 1176 9.44 4.64 9.74 3.90 1.01 2.19 

2013-08-25 1175 5.48 4.06 8.40 3.63 1.12 2.39 

Table 5 Ten items of GoogleClusterTrace 

No. Number of VMs CPU Memory 
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mean(%) St.dev.(%) mean(%) St.dev.(%) 

1 1200 1.63 0.49 2.16 0.10 

2 1200 2.23 0.71 2.30 0.16 

3 1200 2.71 0.82 2.31 0.16 

4 1200 2.97 0.89 2.25 0.16 

5 1200 3.01 0.91 2.27 0.17 

6 1200 3.02 0.91 2.24 0.16 

7 1200 2.99 0.91 2.23 0.17 

8 1200 2.98 0.90 2.21 0.17 

9 1200 2.96 0.91 2.20 0.16 

10 1200 2.95 0.90 2.20 0.17 

5.2 Evaluation Metrics 

We use five performance indices to evaluate performance in our experiments [13]: 

SLA violation time per active host (SLATAH), performance degradation due to 

migration (PDM), SLA violations (SLAV), energy consumption (EC), and energy and 

SLA violations (ESV). 

a) SLATAH, which measures the service quality of a running PM, is defined as 

1

1
violationn
j

j j

SLATAH
n 

 
l

l
                                      (21) 

where violation

jl  is the SLAV duration resulting from overloaded CPU resources for a 

host 
jh , 

jl  the running time of host 
jh , and n  the number of PMs. 

b) PDM, given by (22), reflects the extent of VM migration-related performance 

decline. 

1

1
migm
i

i i

R
PDM

m R

                                            (22) 

where mig

iR  denotes the size of unsatisfied demand for CPU resources as a result of 

the migration of a given virtual machine 
iv , 

iR  the size of total demand for CPU 

resources from 
iv , and m  the number of VMs. 

c) SLAV evaluates the QoS of a data center on a single day:  

SLAV SLATAH PDM                                      (23) 

SLATAH, PDM, and SLAV are inversely proportional to QoS. 

d) The comprehensive evaluation index ESV, which is defined in formula (24), 

reflects the energy consumption, VMMs, and service quality.  

        ESV = ECSLAV                                           (24)  

where EC indicates the energy consumption of a data center in a single day，which is 

determined according to formula (4) in section 3.2. A low ESV value indicates that 

more energy is saved and guarantees the service quality of data centers.  

Since VMs always suspend services during live migration, prolonged VM 

migrations can further affect QoS. Reducing the number of insignificant VM 

migrations is beneficial for improving QoS. Therefore, if limited VM migrations can 

yield ideal effects using a given VM consolidation method, this indicates that the VM 

consolidation method is highly efficient. 

5.3 Experiment Results 

In this section, several experiments are arranged to validate the effectiveness and 
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efficiency of the proposed optimization model and VM consolidation method from 

different aspects.   

5.3.1 Validating the optimization model 

To validate the effectiveness and efficiency of the proposed optimization model and 

VM placement method, this section performs comparison between the presented 

Discrete DEVMP, PABFD and FFD. We combine and evaluate each of them with 4 

identical host overloading detection methods and 3 VM selection methods, resulting 

in total 36 different combinations. The host overloading detection algorithms [2,3] 

include benchmark IQR, LR, MAD, ST, the VM selection algorithms [2,3] including 

MC, MMT, RS.  These combined schemes are separated into 12 groups; each group 

with 3 different colour columns corresponds to Discrete DEVMP, PABFD and FFD 

respectively. The experimental comparisons using 36 different combination schemes 

are performed on the same measurement including EC, SLATAH, PDM, SLAV, ESV 

and VMMs on Bitbrains trace. The results are shown in Figs.2-7.  

 

Fig. 2 Comparison of EC 

 

Fig. 3 Comparison of SLATAH 

 

Fig. 4 Comparison of times of VM migrations 

 

Fig. 5 Comparison of PDM 

 

Fig. 6 Comparison of SLAV 
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Fig. 7 Comparison of ESV 

Figs.2-7 are the comparison results on various performance indices. Fig.2 shows 

the comparison results based on the EC index between the related schemes. As shown 

in Fig.2, the EC index of schemes with Discrete DEVMP is the lowest. Fig.3 

compares the SLA violation of all 36 combinations. The Discrete DEVMP algorithm 

performs best in all 36 combinations. Fig. 4 shows VMMs during VM consolidation 

for each method. The times of VM migration with Discrete DEVMP is the smallest. 

Fig. 5 shows the PDM-driven performance of combination schemes with Discrete 

DEVMP is the best, and the schemes using PABFD has the worst performance. Fig. 6 

shows the comparison of SLAV on the different schemes. Since the SLAV depends on 

both SLATAH and PDM, the Discrete DEVMP algorithm outperforms other schemes 

in terms of SLATAH, PDM SLAV index. Fig. 7 shows the ESV index and the Discrete 

DEVMP algorithm performs best. 

The figures above show that the proposed method is prominent in various indices, 

which validates the effectiveness of the proposed optimization model and method. In 

contrast, the VM placement policy employed by PABFD does not sufficiently predict 

the host overloading risk, which resulting in frequent VM migration and a large 

number of SLA violations. In addition, due to the local greedy selection of PABFD, it 

is unable to reduce the number of running PMs immediately, resulting in energy waste. 

Additionally, as shown in the figures, several combination schemes using LR show a 

little vibration in EC, SLAV, ESV indices, especially in SLATAH. The most 

unexpected changes come from the combination of LR and FFD. The primary reasons 

are that the LR algorithm predicts the resource utilization of hosts through linear 

regression. When the FFD algorithm performs VM placement according to the 

prediction results, although it greatly increases the resource utilization, it also leads to 

the occurrence of excessive VM consolidation and causes the QoS deterioration.  

5.3.2 Effectiveness and efficiency evaluation  

A. Comparisons in different evaluation metrics 

In this section, we compare the proposed EQ-VMC method with four VM 

consolidation methods, i.e., ACS-VMC [10], SA-VMC [14], EC-VMC [13], 

COFFGA [11]. The comparison is examined using different data trace on the same 

indices respectively.  

Table 6 Simulation results using Bitbrains trace with four metrics 

 EC(kWh) SLATAH VMMs ESV 

EQ-VMC 37.31 1.35 1842.2 0.00889 

EC-VMC 37.33 1.64 6068.3 0.01197 

ACS-VMC 39.39 2.62 3502.9 0.04915 

SA-VMC 40.75 1.70 10603.3 0.02241 

COFFGA 52.70 1.60 10827.9 0.02363 

Table 6 shows the experimental results on the Bitbrains trace with the four indices. 

For the EC metric, EQ-VMC method is the best, EC-VMC method is the second best, 
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and COFFGA method is the worst. EQ-VMC and EC-VMC perform very similarly in 

EC, because they all take the total EC of data centers as one of the optimization 

objectives for VM consolidation. The COFFGA method aims at minimizing the 

number of running hosts and resource waste, which does not directly optimize energy 

consumption and thus the solution process fall into local optimal easily. As for the 

SLATAH index, EQ-VMC performs the best, ACS-VMC is 94 % more than EQ-VMC, 

though its EC is only 5.6% more than EQ-VMC.  This is because that ACS-VMC 

targets at decreasing the number of running PMs which can significantly improve 

resource utilization. Regarding VMMs index, in Table 6, EQ-VMC has the smallest 

number; ACS-VMC has the second smallest. In terms of the estimation of host 

overloading risk, EQ-VMC is capable of keeping workload stable for running PMs, 

which further reduces VM migrations. ACS-VMC establishes an optimization model 

which contains the optimization objective for minimizing VM migrations, which 

make it relieve host overloading risk, even if it has less VM migrations. SA-VMC and 

COFFGA do not consider the QoS directly when it optimizes VMs placement, so they 

have a common performance on VM migrations. Since ESV is a combination metric 

covered energy and QoS for VM consolidation. EQ-VMC still has the best 

performance in ESV, EC-VMC is the second best. The EQ-VMC and EC-VMC 

methods are superior to other compared methods in both EC and QoS indices, because 

reducing energy consumption and relieving host overloading risk are the optimization 

objectives of the established optimization model in them. This verifies that both 

EQ-VMC and EC-VMC methods realize their optimization objective. In summary, 

EQ-VMC shows better performance and stability in EC, SLATAH, VMMs and ESV 

than other methods. 

Table 7 Simulation results using GoogleClusterTrace with four metrics 

 EC(kWh) SLATAH VMMs ESV 

EQ-VMC 22.31 1.34 5298.4 0.00446 

EC-VMC 22.03 0.63 2865.7 0.00120 

ACS-VMC 24.25 1.70 2395.1 0.00334 

SA-VMC 27.17 1.84 14030.2 0.00997 

COFFGA 35.76 1.91 14952 0.02155 

Table 7 shows the experimental results on the GoogleClusterTrace. As for the EC 

and SLATAH indices, EQ-VMC is inferior to EC-VMC. In terms of the VMMs and 

ESV indices, EC-VMC and ACS-VMC are superior to EQ-VMC. We note that on the 

GoogleClusterTrace, all of the indices by EQ-VMC are inferior to that of EC-VMC, 

but on Bitbrains trace EQ-VMC is superior to that of EC-VMC. The different 

performance of EQ-VMC between Bitbrains and GoogleClusterTrace, results from 

the difference amount of resource requests in two traces and the regular distribution in 

GoogleClusterTrace, which is shown in Table 4 and Table 5. GoogleClusterTrace has 

resource demands that approximately follow Gaussian distribution [37] and the 

demanded resource is less and more stable, which make EQ-VMC hard to know host 

overloading probability with normal distribution and result in the inferior performance 

than that of EC-VMC. Next, EC-VMC takes host overloading probability as a 

constrain condition to PMs rather than taking host overloading probability as an 
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optimization objective like that in EQ-VMC, which benefits the running PMs to 

improve resource utilization while avoiding host overloading risk. At last, because of 

the distinctive workload characteristics like the Gaussian distribution in 

GoogleClusterTrace, the resource usage of running PMs does not have a strong 

randomness, and even ACS-VMC has better results in VMMs and ESV indices than 

EQ-VMC. 

 

Fig. 8. Comparison of PDM 

 

Fig. 9. Comparison of SLAV 

Fig. 8 compares different schemes in terms of PDM that depends on VMMs and 

memory capacity of the migrated VMs. Fig 8 (a) shows the PDM metric on Bitbrains 

trace. The PDM of EQ-VMC is the lowest and most stable among compared methods, 

and EC-VMC performance is the second lowest. The VMMs of ACS-VMC shown in 

Table 6 is lower than that of EC-VMC, SA-VMC and COFFGA, whereas its PDM is 

the highest among all compared methods. The reason is that the ACS-VMC has to 

migrate VMs with higher resource request to reduce VM migration. SA-VMC and 

COFFGA use MMT for VMs selection, so they obtain lower PDM, despite of more 

VM migrations during their VM consolidation. Fig 8 (b) shows the PDM results on 

GoogleClusterTrace. As we can see, EC-VMC is the best and EQ-VMC is at the 

medium level. The primary reason for it is that, when the host overloading probability 

of PMs is small, the proposed optimization model in EQ-VMC is unable to choose 

proper destination hosts for VM placement. Unfortunately, it further spurs host 

overloading risk, frequent VM migrations and higher PDM value. Finally, compared 
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to SA-VMC and COFFGA, EQ-VMC still performs better. 

Fig. 9(a) and 9(b) show the comparison results on the SLAV index using Bitbrains 

trace and GoogleClusterTrace respectively. We can see that, using Bitbrains trace, 

EQ-VMC is the best, EC-VMC is the second best, and they are better than the other 

compared methods. This result indicates the optimization model proposed in this 

paper facilitate relieving host overloading risk of running PMs effectively. On 

GoogleClusterTrace, the SLAV value of EC-VMC is the best, and the SLAV value of 

EQ-VMC is at medium level among all compared methods. The main reason for that 

is the same as the aforementioned different workload characteristics between 

GoogleClusterTrace and Bitbrains trace, namely, GoogleClusterTrace subjects to the 

normal distribution without enough randomness, and thus the heuristic evolutionary 

optimization-like algorithms are hard to work well with GoogleCluster-like traces.   

In summary, by comparing SA-VMC, ACS-VMC, COFFGA, EC-VMC and 

EQ-VMC on the same indices, we can see that EQ-VMC is capable of decreasing 

energy consumption and guaranteeing QoS, even if it is inferior on a few indices to 

the other compared methods on GoogleClusterTrace. 

B. Effectiveness Evaluation 

To evaluate the practical application of the proposed approach, this part further 

compares EQ-VMC and other compared methods on the number of running PMs, 

VMMs, CPU resource utilization, memory resource utilization and bandwidth 

utilization during VM consolidation.  In our simulation a cycle of VM consolidation 

is conducted every 5 minutes, and the total number of cycles is 288 one day. 

Figs.10-16 show the results. 

 

Fig. 10. The number of running PMs varying with the cycle of VM consolidation on Bitbrains 
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Fig. 11. The number of running PMs varying with the cycle of ongoing VM consolidation using 

GoogleClusterTrace 

Fig. 10 shows the variation for the number of running PMs with respect to each 

cycle of ongoing VM consolidation using Bitbrains trace. Fig. 10(a) shows the 

variation from 1-th to 288-th cycle of VM consolidation. With all five VM 

consolidation methods, the number of running PMs in data centers significantly 

decreases at the initial stage, thus reducing energy consumption. The variation from 

the 20-th to 288-th cycle is further displayed in Fig. 10(b) for detailed comparison. As 

shown in Fig. 10(b), in the initial stages, ACS-VMC, EC-VMC and EQ-VMC have 

the similar changing trend for the number of running PMs, while EQ-VMC has less 

running PMs than the other remainder methods, especially in the later stages; this is 

also supported by the experimental results in Table 6. The EC index in Table 6 

demonstrates that fewer running PMs are equivalent to lower energy consumption in 

data centers. In contrast, COFFGA and SA-VMC have larger number of running PMs 

than the other compared methods, because that they employ FFD for VM placement 

that can easily fall into local optimal region and lead to high host overloading risk.   

Fig. 11 shows the variation in the number of running PMs within each cycle of the 

ongoing VM consolidation on GoogleClusterTrace. As shown in Fig. 11(a), the 

number of running PMs in data centers also is significantly reduced in the initial stage. 

Fig. 11(b) further shows the variation from the 20-th to the 288-th cycle of VM 

consolidation. We can see that the number of running PMs of COFFGA and SA-VMC 

is apparently more than the other methods. This is due to the same reasons as 

mentioned before, namely, the regular distribution in GoogleClusterTrace. In contrast, 

the number of running PMs of EQ-VMC, EC-VMC and ACS-VMC are similar, and 

less than that of the other compared methods. Wherein, with combination analysis of 

Table 7, the EC index of ACS-VMC is still larger than that of EQ-VMC and EC-VMC. 

This is because that the employed optimization model in ACS-VMC is unable to find 

out the proper destination hosts for live VM migration. Unlike ACS-VMC, EC-VMC 

utilizes ABC-like (e.g., Artificial Bee Colony) search way to attempt to find the 

optimum VM placement scheme with lowest EC and VMMs. In contrast, EQ-VMC 

algorithm can effectively reduce the number of running PMs,both on Bitbrains trace 

and GoogleClusterTrace, due to its embedded discrete DEVMP algorithm which is 
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able to search the optimum scheme for VM placement with lowest energy 

consumption and smallest host overloading risk. 

 

Fig.12. CPU utilization of running PMs 

Usually, on one hand, the reduction of the number of running PMs during VM 

consolidation means that a single PM has to undertake more computing tasks and the 

CPU resource utilization of it inevitably increases. Fig. 12 shows the variation of CPU 

utilization on the running PMs during ongoing VM consolidation. On the other hand, 

the increasing CPU resource utilization indicates a higher energy consumption for that 

PM . Fig.12 (a) shows the results using Bitbrains trace and Fig.12 (b) shows the 

results with GoogleClusterTrace. Besides ACS-VMC method, the VM consolidation 

methods show very similar variation trend in CPU utilization. Combined with Fig.11, 

it is easy to find that EQ-VMC and EC-VMC always select the destination hosts with 

large-scale capacity of resources on physical resources, which results in an ideal 

performance for resource utilization and decreasing energy consumption. In contrast, 

as shown in Fig.12 (a), the CPU utilization of ACS-VMC is almost the highest during 

all cycles of VM consolidation. This result means that ACS-VMC has to experience 

more host overloading risk than that of the other compared methods. With 

combination analysis of the number of running PMs in Fig.11, it is obvious that the 

capacity of physical resource of running PMs selected by ACS-VMC method is 

relatively smaller than that of EC-VMC and EQ-VMC, resulting in increasing the 

number of running PMs. Additionally, ACS-VMC also shows the highest CPU 

utilization on GoogleCluster Trace in Fig.12 (b) due to the same reason 

aforementioned of the regular distribution in it. 

 

Fig.13. Memory utilization of running PMs 



 

26 

 

 

Fig.14. Bandwidth utilization of running PMs 

Fig.13 demonstrates the memory utilization of the running PMs during the cycles 

of VM consolidation. Fig.13 (a) is the results with Bitbrains trace and Fig.13 (b) is the 

results with GoogleClusterTrace. Since there is no bandwidth trace in 

GoogleClusterTrace, Fig.14 only shows the experimental results on bandwidth 

utilization using Bitbrains trace. Combining Fig.12 (a), Fig.13 (a), and Fig.14, we can 

see that the CPU and memory utilization of EQ-VMC method locate the medium 

level. This performance results from workload stable yielded by EQ-VMC method, of 

which is accompanied with efficient network transmission and communications. It is 

also demonstrated by the high bandwidth utilization in Fig.14. In contrast, ACS-VMC 

shows the highest resource utilization in CPU and memory, which incurs frequent VM 

migration, higher host overloading risk and QoS deterioration. Besides the high host 

overloading risk, frequent VM migration also consumes extra network bandwidth, 

which results in a higher bandwidth utilization of ACS-VMC method in Fig.14.  

Additionally, as for EQ-VMC method using GoogleClusterTrace, we get the same 

indices distribution due to the identical aforementioned reasons that yield the output 

in Fig. 12(b) and Fig. 13(b). 

 

Fig. 15. The VMMs varying with the cycle of VM consolidation on Bitbrains 



 

27 

 

 

Fig. 16. The VMMS varying with the cycle of VM consolidation on GoogleClusterTrace 

The VMMs reflects the stability of QoS. Generally, the fewer the total VMMs 

result in better QoS. Fig.15 shows the variation of VM migrations during ongoing VM 

consolidation using Bitbrains trace. Fig.15 (a) describes the changes trend from the 

1-th to 288-th cycle. For clearly comparing, Fig.15 (b) is partial of Fig.15 (a), of which 

shows the variation trend from the 20-th to 288-th cycles of VM consolidation. As 

shown in Fig.15 (a), since many PMs have been turned off in initial stage, an army of 

VM migrations occurs. This phenomenon illustrates that these compared methods 

perform well in the early stages for VM consolidation. After the 20-th cycle of VM 

consolidation, the VMMs triggered by EQ-VMC is lower than that of the other 

compared methods. This result indicates that the workload of hosts gets more stable 

after VM consolidation by EQ-VMC, so fewer virtual machines need to be migrated. 

In contrast, the SA-VMC and COFFGA conduct a large number of VM migration and 

vibration, this is supported by their performance in QoS showed in Table 6, Fig. 8(a), 

Fig. 9(a), of which is inferior to that of EQ-VMC.  

Fig.16 shows that the variation of VM migrations during ongoing VM 

consolidations using GoogleClusterTrace. Wherein, Fig.16 (a) shows the changes 

from the initialization to the 288-th VM consolidation. Fig.16 (b) is partial of Fig.16 

(a). ACS-VMC get the lowest VMMs and the curve in Fig.16 is smoother than the 

other compared methods, that mainly results from lower resource request and the 

regular distribution of workload in GoogleClusterTrace, which prevents ACS-VMC 

from suffering from host overloading risk, thus degrading the VMMs. The changes of 

VM migrations by EC-VMC throughout all 288 cycles of VM consolidations is just 

inferior to that of ACS-VMC method, but it get prominent advantage in EC and other 

QoS metrics than ACS-VMC showed in Table 7, Fig.8 (b), Fig.9 (b). The curve of 

VM migrations with EQ-VMC throughout 288 cycles of VM consolidation locates 

medium in all methods. However, EQ-VMC gets obviously improvement in EC than 

the other compared methods. 

Based on the above analytical comparison, the results show that the proposed 

EQ-VMC method can effectively reduce energy consumption and guarantee QoS. The 

presented VMs placement scheme efficiently maintains load balancing and relieves 

host overloading risk. Therefore the optimization objectives are realized through 
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EQ-VMC.  

6. Conclusions and future works 

Data center provides access to shared resources on the Internet as a scalable, 

dynamic and measurable service. The VM consolidation performs live VM migration 

to appropriate destination hosts in order to be able to improve one or more objectives 

and thus it is regarded as NP-hard issues. Generally, heuristic algorithms have shown 

advantages of resolving the complex combination optimization problem. Although 

VM consolidation using heuristic or meta-heuristic algorithms do not provide the best 

allocating solutions between VMs and PMs, they offer VM consolidation scheme 

close to optimal ones.  

This paper addresses VM consolidation with respect of heuristic evolutionary 

algorithms. First, our scheme aims to minimize the mathematical expectation of the 

energy consumption of running PMs while maintaining their lowest probable risk of 

host overloading, and establish a dynamic optimization model for VM placement. 

Next, by abstracting the deployment relationship between each virtual machine and all 

physical machines into a single deployment vector, the deployment vectors of all VMs 

are thus equivalent to an item of mapping between VMs and PMs during a cycle of 

VM consolidation, namely, an individual in the heuristic evolution algorithm. 

Naturally, all probable mappings between VMs and PMs during ongoing VM 

consolidation correspond to a population, that is, the search space in evolutionary 

computations. Afterwards, an improved discrete differential evolution (discrete-DE) 

algorithm is developed to resolve the aforementioned optimization model by finding 

the result in the search space which realizes the optimum VM placement for the 

migrated VMs. Further, a VM placement algorithm is consequently proposed based 

on the presented optimization model. Finally, depend on the study above, a hybrid 

heuristic evolutionary-based EQ-VMC method is developed for VM consolidation. 

Extensive trace-driven experiments are examined to validate the proposed method, 

and the experimental results demonstrate that it significantly reduces energy 

consumption, avoids unnecessary host overloading risk, and improves QoS. 

However, there are a few limitations that need to be further addressed in our future 

works. First, this study only focuses on VM placement with optimization objectives of 

minimizing energy consumption and relieving host overloading risk, the other 

optimization issues such as mminimizing VMMs, maximizing resource utilization 

during VM consolidation need further study to improve the presented algorithm. Next, 

EQ-VMC shows prominent experiment results on Bitbrains trace; but QoS is only at 

medium level with GoogleClusterTrace, thus the proposed optimization model should 

be given priority to adapt to the GoogleCluster-like trace, and also the 

GoogleClusterTrace should be deeply analyzed and data mined for the extremely 

particularity hidden in it due to such as the large-scale Google data center. 
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