

1

Energy-efficient and Quality-aware VM consolidation method

Zhihua Lia,c*, Xinrong Yua, Lei Yub, Shujie Guo a,c, Victor Changd

a Department of Computer Science and Technology, School of Internet of Things
Engineering, Jiangnan University, Jiangsu Wuxi 214122, China
b School of Computer Science, College of Computing, Georgia Institute of Technology,
Atlanta, GA, 30332, USA
c Jiangsu Provincial Engineerinig Laboratory of Pattern Recognition and
Computational Intelligence, Jiangnan University, , Jiangsu Wuxi 214122, China
d School of Computing, Engineering and Digital Technologies, Teesside University,
Middlesbrough, UK

Abstract: To improve resource utilization and energy efficiency, cloud datacenters use VM

consolidation to consolidate VMs to less number of physical machines through VM migration.

However, improper VM placement may cause frequent VM migrations and constant on-off switch

on physical machines (PMs), which results in decreasing service quality and increasing energy

consumption. To address this problem, in this paper, we propose an effective and efficient VM

consolidation approach called EQ-VMC with the goal to optimize energy efficiency and service

quality. In our approach, a discrete differential evolution algorithm is developed to search the

global optimum solution of VM placement. By integrating it with a set of algorithms we propose

for effective host overloading detection, VM selection and under-loaded host detection, EQ-VMC

effectively reduces energy consumption and improves quality of services (QoS). Extensive

simulation demonstrates its effectiveness and shows its advantage compared with previous VM

consolidation methods.

Keywords: Virtual Machine placement scheme; Optimization model; Discrete DE algorithm;

Virtual Machine consolidation

1. Introduction

Virtual machine (VM) consolidation is a critical mechanism to improve the energy

efficiency and resource utilization of cloud computing, by migrating VMs to less

number of running physical machines (PMs). However, an improper VM placement

during VM consolidation may further incur frequent live VM migration and constant

on-off switch of PMs, which lead to serious service quality degradation and resource

overhead. Thus, the algorithm effectiveness of VM consolidation is key for efficiently

fulling its purpose. At the same time, it is a very challenging issue since it involves

multiple different types of resource factors, such as CPU, memory, network

bandwidth and disk I/O, while VM workloads have the dynamic and uncertain

resource demands.

The VM consolidation problem has been receiving significant attention in recent

years. Many methods [1-16] have been proposed with addressing several aspects

involved in VM consolidation, including host overloading detection, VM selection,

VM placement, and under-loaded PMs detection. The methods [1-3] determine

hotspots by comparing the current resource utilization measurements with the given

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322327067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

thresholds. The threshold-based methods however cannot adapt to the dynamic

resource utilization and demand uncertainty. A number of works on VM consolidation

[4-9] analyzed the characteristic of VMs’ resource demands, PMs’ workload in data

centers and propose statistical methods to predict the VMs’ resource demand and PMs’

workload to perform VM migration. Many intelligence-related VM consolidation

methods [3, 4, 15, 17-25] also have been developed, but they easily trap in local

optimal regime and are difficult to obtain an ideal balance between energy

consumption, resource utilization and QoS. Some VM consolidation methods [10-15]

use heuristic algorithms to search the optimal solution of VM placement for reducing

energy consumption but they may suffer easily premature convergence, which leads to

sub-optimal solutions.

In this paper, we present an energy-efficient and quality-aware VM consolidation

(EQ-VMC) method. EQ-VMC method is a heuristic VM consolidation method that

targets to minimize the energy consumption of running PMs while ensuring lowest

overloading risk of host resources through a dynamic optimization model for

VM placement. In our approach, an improved discrete differential evolution (discrete

DE) algorithm is developed to search the global optimization solution to find optimal

VM placement for the migrated VMs. This algorithm regards all the mappings

between VMs and PMs as a population and uses heuristic evolutionary to obtain the

optimal VM placement. At the same time, the developed discrete DE algorithm

fastens the searching process for the global optimization solution by employing the

strategy of multi-evolution routes. Additionally, we propose a set of methods for

different phases in VM consolidation including host overloading detection, VM

selection and under-loaded host detection. Our major contributions can be

summarized as follows.

(1)First, we note that VM placement is an authentic combination optimization issue

with multiple resource constraint;

(2)Then, the probable mappings between VMs and PMs are abstracted as a piece of

limited search space, and which corresponds to a population of heuristic evolutionary

algorithm. Each individual of population is identical to a real mapping between VMs

and PMs during a cycle of VMs consolidation;

(3)Next, we define a combination optimization model for handling VM placement

to achieve the optimal mapping between VMs and PMs in the search space. The

solution of the optimization model is performed by an improved heuristic

evolutionary algorithm to guarantee the globally optimal results, namely, the optimum

VM placement scheme;

(4)At last, the proposed EQ-VMC method integrates sub-algorithms on host

overloading detection, VM selection and under-loaded host detection for VMs

consolidation. Comparison and validation are performed using the CloudSim toolkit.

The experimental results show that the presented EQ-VMC method is promising in

degrading energy consumption and host overloading risk, as well as in improving

QoS. Thereby its effectiveness and efficiency have been validated.

The rest of this paper is organized as follows. The related works are introduced in

section 2. In section 3, we describe the optimization model and scheme for VM

3

placement. In section 4, we derive the framework of the EQ-VMC method and

propose the overview and the detailed design of it. Extensive experiment results are

given in section 5, followed by the concluding remarks and future works in section 6.

2. Related work

A VM consolidation scheme should determine the migrated VMs from where and

where to, as well as the PMs that can be turned off, identically, the issue of identifying

the source and destination hosts for live VM migration. Many works

[3,15,17,18,2,4,20,21,22,23,24,40] handle this issue from different perspectives, such

as VM placement [3,15,17,18], host overloading detection [2,3,4,20,21,22,18], and

VM migration selection [3,23,24]. In this paper, we focus on heuristic evolutionary

based VMs consolidation methods, thus we mainly discuss the topic-related VM

placement and VMs consolidation methods.

2.1 VM placement

Efficient VM placement is critical for VM consolidation, due to the fact that an

inappropriate VM placement scheme easily reduces resource utilization and increases

energy consumption, possibly leading to risk of new host overloading. The core of

VM placement addresses the issue of “where to” for live VM migration, and it has

been approximately characterized as a bin packing problem [17, 26-28]. Mishra and

Sahoo [27] handled this issue as a multi-dimensional bin packing problem, and

optimized the mapping between VMs and PMs as specific optimization objectives by

using an improved genetic algorithm [26], first-fit decreasing (FFD) algorithm [26],

and other intelligence optimization algorithms. Although both Kaaouache et al. [26]

and Mishra and Sahoo [27] addressed improving the quality of service (QoS) and

resource utilization by optimizing the mapping, both of them did not regard the

dynamic scales of the up-allocating VMs and PMs, which easily results in frequent

VM migrations and constant switching between on and off on PMs. Best fit

decreasing (BFD) [38] is an effectively heuristic algorithm employed to resolve this

packing issue. A Power-Aware BFD (PABFD) algorithm [17], which is based on BFD,

is presented. The PABFD algorithm first performs the unallocated VMs in descending

order based on their CPU resource request and then allocates each VM to the

destination host according to this order. Each VM deploys on a PM with minimal

increase of energy consumption. However, both BFD and PABFD algorithms do not

consider the workload changes of the destination host after VM placement, which

may incur a new risk of host overloading and thus cannot ensure the QoS. J. A. Aroca

et al. [28] performed competitive ratio analysis on approximate solutions for the VM

placement issue with restrictions on the number of VMs and PMs. Melhem et al. [29]

proposed a Markov prediction model for VM placement in live VM migration to

determine the set of candidate destination hosts that would be able to receive the

migrated VMs in a way that avoids their VM migration in the near future. However,

they did not consider how to determine the under-loaded, over-loaded, or normal

loaded status, which is also important for VM consolidation.

4

2.2 Heuristic VM consolidation

VM consolidation primarily includes host overload detection, VM migration

selection, VM placement, and running hosts shrinking [2, 13]. Due to the complexity

of VM consolidation, the issue of VM consolidation [13] was divided into several

sub-problems, and the task of VMs consolidation was then conducted by handling and

integrating the sub-problems. When using competitive ratio analysis, this type of

method was very effective in practice in terms of the viewpoints [39], even though it

was unable to guarantee optimal results theoretically. So far, a large number of studies

[1-16] have addressed the VM consolidation involved in the different phases, and

heuristic algorithms have been implemented for VM consolidation, owing to their

outstanding performance in resolving the complex multi-objective optimization model.

Several researches [10, 11, 13-15] have explored this issue, and their performance was

relatively benchmark. Telenyk et al. [14] aimed to improve QoS in terms of reducing

energy consumption and proposed to minimize the imbalance between each resource

of the PMs with a simulated annealing algorithm to find the optimal VM placement.

However, the presented SA-VMC method did not consider stochastic demands, which

could result in new overloading risk for further load imbalance. Generally speaking,

fewer running PMs implies lower energy consumption in data centers. Based on this

idea, Hallawi et al. [11] developed a multi-objective optimization model, minimizing

both the number of running PMs and total resource wastage. The genetic algorithm

COFFGA was proposed to perform VM consolidation, using chromosome encoding

to represent the order of VM placement and obtaining the best order of VM placement

via evolution. However, COFFGA employs an FFD algorithm for VM placement,

which easily results in insufficient reserved resources in PMs, and suffers from

reduction of QoS to improper optimization objective. Farahnakian et al. [10] proposed

to minimize the total number of running PMs with the goal of reducing the frequency

of VM migration (VMMs) to improve QoS. They proposed an algorithm called Ant

Colony System (ACS) to resolve the optimization model. In ACS, a set of tuples, T, is

created, where each tuple consists of three elements: the source PM, the VM to be

migrated, and the destination host, of which each tuple represents a sketch of VM

migration. ACS finds the best tuple set from the total probable VM migration via the

ant colony algorithm. The proposed ACS-VMC decreased energy consumption by

consolidating VMs and reducing the total number of running PMs. But the objective

of minimizing VMMs easily causes new host overloading risk, further increasing SLA

violations. Gao et al. [15] proposed VMPACS, which utilizes an ACS algorithm to

address VM consolidation with the goal of reducing energy consumption directly and

minimizing resource wastage. VMPACS searches for the optimum VM placement

balancing the available resource on each PM along varying dimensions. The method

efficiently, simultaneously minimizes total resource wastage and energy consumption.

Although, VMPACS is superior to the aforementioned algorithms in reducing energy

consumption, it did not regard how to reserve resources of PMs to guarantee QoS.

Li et al. [13] proposed to search optimal mapping between VMs and PMs for live VM

migration to minimize energy consumption and VMMs with simulating artificial bee

colony foraging behaviour. In order to guarantee QoS, the research took overloading

5

probability as a constraint condition for each running PMs. However, the convergence

speed of the algorithm was relatively slow.

The proposed studies treat the researches on VM placement model and the

model-related VM consolidation method. The proposed model focuses on the optimal

balance between the energy consumption and QoS. Accordingly, we present an

EQ-VMC method. The major differences from the previous works are as follows.

(1)First, the presented VM placement model focuses on the balance between energy

consumption and hosts’ workload stability during ongoing VMs consolidation;

(2)Next, searching the finally optimum results in the solution space (e.g.,

population) is performed by the improved heuristic evolutionary algorithm, and it not

only guarantees the global optimization result but fasten the evolutionary process;

(3)At last, by integrating several sub-algorithms with discrete DE based VM

placement algorithm, EQ-VMC globally addresses the issue “where from and where

to” of live VM migration, thereby fundamentally guaranteeing the reliability of the

results. The extensive experiment results demonstrate that the proposed EQ-VMC

manner efficiently reduces energy consumption and host overloading risks while

effectively improving QoS.

3. System model and problem formulation

3.1 Data center model

Suppose a data center consists of a set of PMs denoted by

 1 2, , , , ,j nH h h h h K K , and the VMs are represented as

 1 2, , , , ,i mV v v v v K K . The deployment relation between VMs and PMs

is expressed as a mapping matrix  1 2, , , , ,
T

T T T T

m n i mD d d d d  K K , in which each

vector
id represents a mapping relation between the virtual machine

iv to all PMs in

data centers. The vector id is called the deployment vector for the virtual machine
iv .

If the virtual machine
iv is deployed on the physical machine

jh , then the j-th element

in the vector
, 1i jd  , otherwise

, 0i jd  . Because each VM can only be allocated on a

single PM, the deployment vector id satisfies
,

1

1
n

i j

j

d


 , which is a constraint

condition for the VM placement.

For each resource, the configured resource capacity of virtual machine
iv is

represented by res

ir ,where { , , }res cpu mem band . Each type of resource capacity

on the host
jh is denoted as res

jc . The utilization of each resource on a host is

computed as (1).

i j

res res res

j i j

v V

u a c


  (1)

where
jV indicates the set of VMs deployed on host

jh , and res

ia represents the real

usage of resource of the virtual machine
iv in the host .

As for a physical machine
jh , the total usage for certain type of resources from all

deployed VMs cannot be more than the resource capacity in VMs, namely, res res

i ia r .

6

So, for the destination host, the total requested resource from the deployed VMs must

satisfy the following constraint condition.

i j

res res

i j

v V

r c


 (2)

3.2 Energy consumption estimation

Due to the PMs’ hardware heterogeneity and running status, the energy

consumption of the identical VM deployed on different PMs will also be different. We

follow the energy consumption model proposed in the work [13] that characterizes the

relation between CPU utilization and energy consumption. It says that given a number

p of intervals       0,1 , 1 ,2 , , 1 ,1p p p p p  K on the average CPU resource

utilization, the host energy consumption linearly increases with the CPU resource

utilization ratio in each interval. Thus, the energy consumption of PMs can be

estimated as shown in formula (3).

 

 

1 1

2 2

, 0 1

, 1 2

, 1 1

cpu cpu

j j

cpu cpu

j jpower cpu

j j

cpu cpu

p j p j

u u p

u p u p
PM u

u p p u

 

 

 

    


   
 

     

M M
 (3)

where (1,2, ,)iλ i p K is the slope of the linear function of each power interval,

(1,2, ,)iη i p K is energy consumption at different load levels in watts with respect

to the hardware heterogeneity of PMs (e.g., Table 2).

Based on formula (3), the energy consumption for a host within a certain period of

time can be estimated as

    
1

0

t
power cpu

j j j j
t

EC h PM u t dt  (4)

where {0,1}j  , if 1j  then the host
jh is running; otherwise, if 0j  , the host

jh

is in sleep mode.

3.3 Host overloading probability estimation

Host overloading probability reflects the overloading risk of PMs under the current

deployed VMs. When the resource utilization gets high, the uncertainty of workload

will increase the host overloading risk. In this paper，we follow the approach [37]. It

characterizes the stochastic variation of VM resource requests by normal distribution,

and then estimates the distribution of each resource usage on hosts. The host

overloading probability is determined as.

 
 , ,

1 Pr
i j

res res

over j res i j
res cpu mem band

v V

P h r c




 
    

 
 


(5)

where Prres is a probability distribution function of various resource usage on a host.

3.4 Problem formulation for VM placement

 In terms of the aforementioned energy consumption estimation for data centers

and analysis of host overloading risk, the optimization problem for VM placement in

datacentres can be defined as shown in formula (6). In fact, formula (6) attempts to

obtain the optimum mapping relation between VMs and PMs by taking the

7

mathematical expectation of energy consumption of PMs with lowest overloading risk

to realize the optimization objective.

 

 

()

:

,

1

, , , , ,

1

arg min ()

1, 1,2, ,

, 1, 2, , , , ,

over j

i j

α P h

j

 f vm h

f D

n

i j

j

m

j res j res i res i j j res

i

 f D EC h e

s.t. d i m

 c u r d c j n res cpu mem band











 

 

     







K

K

(6)

where the host overloading probability is () [0,1]over jP h  , the function
()over jα P h

e


adjusts the efficacy of the host overloading probability. Once the overloading risk

increases during VM placement, the importance of host overloading probability arises

exponentially. This policy has the effect of enhancing the sensitivity of the model to

host overload probability. Further, the parameter α is used to control the impact of

overloading probability on the optimization objective. The greater the value of α is,

the more sensitive the destination hosts is to the host overloading probability.

Unfortunately, when the host overloading probability tends to be “0”, it is easy to

cause the phenomenon that the identically migrated VM is able to migrate to multiple

under-loaded destination hosts. Under such situation, the VM placement can be

determined according to energy consumption. Apparently, it can be seen that formula

(6) can fully achieve the optimization objectives of minimizing energy consumption

of running PMs with minimal overloading risk.

4. Our VM consolidation approach

In this section, we present our VM consolidation approach. It consists of

multi-resource host overloading detection (MHOD) algorithm, QoS-aware VM

selection (QVMS) algorithm, discrete DE based VM placement (Discrete DEVMP)

algorithm, and under-loaded hosts detection (ULHD) algorithm. These four

algorithms cooperate and integrate with each other for live VM migration with

guaranteeing QoS, improving resource utilization and reducing energy consumption.

We describe them one by one in the follows.

Additionally, for the clarity, all used notations and their meanings are listed below.

iv the i-th VM

V the set of VMs in datacentres

migV the set of migrated VMs

jh the j-th PM

H

the set of PMs in data center

activeH the set of active PMs

overH the set of overloading PMs

migH the set of new destination PMs

sH the set of PMs need under-loaded detection

spH the set of PMs are suitable to place VMs from under-loaded PM

m

the number of VMs

n

the number of PMs

8

m nD 
a mapping matrix denotes the deployment relation between VMs and PMs

id

the deployment vector for
iv

,i jd

the deployment component for
iv to

jh

res

the resource types of PMs and the set is { , , }cpu mem band

res

ir
the resource demand of

iv

res

ja

the real amount of resource allocated to the VMs on
jh

res

jc

the resource capacity of
jh

res

ju

the resource utilization of
jh

p

the number of intervals on CPU utilization

iλ
the slope of the linear function of each power interval

iη
the intercept of the linear function of each power interval

j
the flag whether

jh is active or not

Prres
the normal distribution function of various resource usage on a host

α

the weight of overloading probability in optimization model

ω the safe parameter to adjust threshold

tX the population of t-th generation

S

the size of population

t

kD

the k-th individual in population

D the difference matrix

1 2 3, ,r r rD D D
 three random selected individuals from population

m

kD

the k-th mutant individual in population

, , , ,,m m

k i k i jd d
 the deployment vector and deployment component in

m

kD
c

kD

the k-th crossover individual in population

, , ,,c c

k i k i jd d
 the deployment vector and deployment component in

c

kD

F

a scalar factor and its value range is [0,2]

randf

a random variable and its value range is [0,2]

CR

a cross constant and its value range is [0,1]

randc

a random variables and its value range is [0,1]

randi a random data in the sequence  1,2, ,mK

(,)tHMatrix i j an element in heuristic information matrix of the t-th generation

β

the relative weight of two factors for initial heuristic values

ρ

the parameter adjusts the proportion between previous generation heuristic

information and current heuristic information
cpu

j ic 

the remain CPU resource of
jh after hosting

iv

on it

res

j iu 
the resource utilization of

jh after hosting
iv

on it

migv

the migrated VMs
mem

miga

the allocated memory for
migv

Pr migv

res



the normal distribution of a resource usage in which hosts exclude

migv

EXP

the rate of exploratory evolution and its value range is [0,1]

exprand

a random value and its value range is [0,1]

violate

jξ

the SLAV duration resulting from overloaded CPU resources for
jh

jξ

the running time of
jh

9

mig

iR

the size of the unsatisfied demand for CPU resources as a result of
iv

migration

iR

the size of the demand for CPU resources from
iv

4.1 VM Placement

To resolve the VM placement problem formulated in section 3.4, we present an

improved Discrete DE algorithm in the following.

4.1.1 Discrete DE algorithm

Differential evolution (DE) algorithm [30] consists of three operations including

mutation, crossover and selection, in which mainly handles continuous variables. The

population of traditional DE algorithm consists of several vectors, and the value in

each dimension is continuous. However, in this paper, we have to conduct the discrete

variable, thus need to discretize the typical DE algorithm. Given a population with S

pieces of individual denoted as  0 1, , , , ,t t t t t

k SX D D D D L L , in which t

kD is a matrix

and t is the generation of population. The detailed processes are as follows.

A. Mutation

Arbitrarily select three individuals
1 2 3
, ,r r rD D D from the population mX , in which

m

kD is performed as

1 2 3(), 1,2, ,m

k r r rD D F D D k S     K (7)

where [0,2]F , which is a scalar factor that adjusts the impact to the difference

vector. The i-th row in difference matrix D is determined according to formula (8).

2, 2, 3,

, 2, 3,

,
1, 2, ,

,0

r i r i r i

i r i r i

d d d
d d d i m

others


 
   



r K (8)

where
, 2, 3,, ,i r i r id d d

 represent the i-th row corresponding to the matrix
2 3, ,r rD D D

respectively. Formula (8) obtains the result (e.g., the row in the difference matrix) by

determining whether the deployment vectors at the locations corresponding to the two

matrices are equal. Further, calculate the mutation individual m

kD by formula (9).

, ,
, 1, ,

1,

,0 & 0
1,2, ,

,

im i
k i r i i

r i

d randf F d
d d F d i m

d others

 


   
    



r

K (9)

where
,

m

k id is the i-th row in matrix m

kD , randf is a random variable and

 0 2randf  ， .

B. Crossover

The cross-calculation is examined by formula (10).

,

 or ,
1,2, ,

&,

m

c i

k i

i

randc CR i randid
d i m

randc CR i randid

  
 

 
K (10)

where
,

c

k id is the i-th row in the cross-mapping matrix c

kD ,  0,1CR and is a cross

constant, randc is a random variables and  0,1randc , randi is a random data in

the sequence 1,2, ,mK .

10

C. Selection

Selection operation is performed by comparing the value of f one by one

between the original individuals in the initial population and corresponding cross

individuals, select individuals with small value of f to join next-generation

populations. The detailed selection process is shown as formula (11).

   1 ,
, 1,2, ,

,

c tc
k kt k

k t

k

f D f DD
D k S

D others




 


K (11)

4.1.2 Discrete DE based VM placement algorithm

 Fig.1 The concept diagram of discrete DE algorithm

The mappings between PMs and VMs in data centers form a limited search space,

and it is abstracted as a population corresponding to the tX in section 4.1.1，where

each individual t

kD in population represents one of the probable mapping matrixes

between VMs and PMs. The i-th row in t

kD is the deployment vector of the virtual

machine
iv , namely,

,

t

k id essentially refers to the deployment map on all running PMs

for virtual machine
iv and is the deployment vector. The corresponding

, ,

t

k i jd

represents the deployment component of the deployment vector
,

t

k id . Here, if the

individual obtained by the mutation, crossover, and selection operations by the

Discrete DE algorithm is the final optimal mapping relation between VMs and PMs,

which is called VM placement scheme in this paper.

In this section, we propose an improved Discrete DE algorithm to solve the VM

placement problem given in the model Eq. (6). In the improved Discrete DE

algorithm, we additionally employ a policy of heuristic information matrix to fasten

the evolutionary process. The concept diagram of discrete DE algorithm shows as

Fig.1.

In Fig.1, given generating the i-th generation population tX ， the individuals are

randomly separated into two evolution routes including t

evolveX and t

exploreX . The

route of t

evolveX depends on the heuristic information matrix, the t

exploreX directly

explore the results in the search space. The heuristic information matrix HMatrix is

updated with the current generated population at the same time, which speeds up the

11

evolution and avoiding premature local optimization. Finally, a new population 1tX 

is achieved.

In the follows, we discuss the different parts including the update of heuristic

information matrix, the evolution routs of t

evolveX and t

exploreX respectively.

A. The update of heuristic information matrix

In Fig.1, each element in the heuristic information matrix has a one-to-one

correspondence with each deployment component. For example, supposing

(,)tHMatrix i j records the heuristic information of the deployed virtual machine
ivm

on host
jh in the current population tX . At this time, if the virtual machine

iv can be

treated to deploy on host
jh , the initial value of 0(,)HMatrix i j can be computed as

formula (12), else the initial value is 0.
0 (,) (/) (1) 1 (, ,)cpu power cpu mem band

j i j i j i j i j iHMatrix i j β c PM β std u u u          

(12)

where ()cpu cpu cpu cpu

j i j j ic c a r    is the remain CPU resource of
jh after hosting

iv

on it , (1) (() /)
i j

power power power cpu cpu cpu

j i j j i i j

v V

PM PM PM a r c



    is the remain power

of
jh , the larger /cpu power

j i j ic PM   represents the higher cost performance of
jh for

other VMs. (, ,)cpu mem band

j i j i j istd u u u  
 is the standard deviation of resources utilization of

jh after hosting
iv , the larger 1 (, ,)cpu mem band

j i j i j istd u u u  
 represents more stable resource

utilization of
jh after finishing VM placement. β is the weight of these two

objectives.

For each t

kD in population tX has a corresponding value ()t

kf D according to the

formula (6), the range of f is determined by the deployment vector

 , . ., 1,2, ,t

k id e g i m K in the current mapping matrix t

kD . Usually, the smaller the

value of f is, the more favourable the VM placement scheme is, conversely, the

worse the VM placement scheme is. Further, quantify the priority level of each

deployment components by 1 ()t

kf D . In addition,  , , , ,

1 1

(1 ())
S S

t t t

k k i j k i j

k k

f D d d
 

 

records the average priority level of the deployment component in population. At the

same time, the heuristic information matrix is updated according to formula (13).

1 1 1 1 1
1 , , , ,

1 1

1(,) (,) (1) ,
()

S S
t t t t t t

t k i j k i j k
kk k

HMatrix i j ρ HMatrix i j ρ D D D X
f D

    


 

 
      

 
  （13）

where [0,1]ρ , and it weights the previous generation of heuristic information and

current heuristic information. In terms of the above element value of heuristic

matrixes and their update process, it can be found that the situation that a deployment

component satisfies
, , 1t

k i jd  more frequently appears in t

kD with a small f value,

the heuristic information value (,)tHMatrix i j of the corresponding deployment

component will get bigger. Namely, the element value of the heuristic information

matrix reflects the rank of priority and inferiority of the corresponding deployment

component, that is, the larger element value of the heuristic information matrix means

that the corresponding deployment component of it contributes more weight to the

optimization objectives.

12

B. The evolution of t

evolveX

Under the guidance of the heuristic information matrix, the mutation operation is

treated at first. The mutation operation conducts to generate more perfect deployment

component of the deployment vector. Given three mapping relation
1 2 3, ,r r rD D D in

population tX are randomly selected. The deployment vector
,id

 in difference

matrix D is computed as formula (14).

2, 2, , 3, ,

1 1, 2, 3,

, (,) (,)

0,
. 1,2, ,

n n
t t

r i r i j r i j

j ji r i r i

d d HMatrix i j d HMatrix i j
d d d

others i m

 

  
   

 

 
v

K

 (14)

where
2,r id ,

3,r id denotes the deployment vector of 2rD ,
3rD respectively and

2, ,r i jd ,

3, ,r i jd are the corresponding deployment components. In fact, the formula (14)

performs the minus operation by comparison between the heuristic information of the

two different deployment vectors. However, when the heuristic information is

relatively small, the vector
,id
 equals “ 0

v
”. The obtained differential matrix by

formula (14) achieves a relative perfect deployment vector. Additionally, since the

obtained differential matrix contains more heuristic information, thus such methods

can guide the subsequent evolutionary route to find the optimum VM placement

scheme fast. At last, the deployment vector
,

m

k id of the mutant individual m

kD is

obtained by formula (9).

Next, the crossover operation treats the mapping relation between the original

mapping relation and mutated mapping relation between PMs and VMs. The updated

crossover individual may have a mapping relation that contains a slice of superior

deployment components identified in heuristic matrix. The crossover individuals c

kD

of the original individuals and mutant individuals are generated by the formula (10). It

can be seen that the crossover operation of equation (10) randomly selects the

deployment components of mutant individuals to cross individuals. However, when

selecting the deployment components of the cross individual one by one, it is

necessary to constrain each deployment vector
,

c

k id in the crossover individual c

kD

according to the hosts’ resource constraints under the presented optimization model，
so as to ensure that the crossover individual becomes a VM placement scheme that

meets the hosts’ resource constraints. When it does not satisfy the hosts’ resource

constraints, the deployment components of the crossover individual is defined as

formula (15).

 , ,

, ,

max{ (,)}&1

0
i j

t m res res

k i j i j
jc

v V
k i j

 HMatrix i j d r c
d

otherwise



  


 


，

，
 （15）

Formula (15) targets to find the most appropriate deployment component, namely,

getting the i-th deployment vector
,

c

k id of the cross-individual c

kD ;

C. The evolution of t

exploreX

If the individual follows the exploratory evolution route, the corresponding mutant

individuals are obtained directly according to formula (8) and (9). Such operation is

conducive to fully explore other feasible mutant individuals in the search space.

13

Similarly, the crossover mapping is the exploration of the original mapping relation to

some deployment components, which can effectively avoid the evolution algorithm

falling inside local optimization. When the deployment vector
,

c

k id dissatisfies the

the hosts’ resource constraints, recalculate each deployment component of
,

c

k id by

formula (16).

 , ,

, ,

,1

0
i j

m res res

k i j i j
c

v V
k i j

d r c wherein random j
d

otherwise



 
 


，
，

 （16）

where there are randomly selected a deployment component in line with the hosts’

resource constraints during VM placement, which fully embodies the generality of the

exploratory evolution route.

D．VM placement Algorithm

The optimum mapping relation between VMs and PMs is obtained through

mutation, crossover, selection, and heuristic information matrix synchronously

updates by Discrete DE algorithm, i.e., the VM placement scheme. Based on this, the

Discrete DE based VM Placement (Discrete DEVMP) algorithm is presented. The

Discrete DEVMP algorithm is described below.

Algorithm 1：Discrete DE based VM Placement

1: Input：V , H

2: Output： ,migMap host vm 

3: Generate  0 0 0 0

0 1, , , SX D D D K ， 0tX X

4: Use equation (12) init
tHMatrix

5: while _ _cur times total times

6: Update tHMatrix using equation (13)

7: for all t

kD in tX

8: if
exprand EXP

9: Use equation (14),(9) to calculate mutated deployment map m

kD

10: Use equation (10),(15) to calculate cross deployment map c

kD

11: else

12: Use equation (8),(9) to calculate mutated deployment map m

kD

13: Use equation (10),(16) to calculate cross deployment map c

kD

14: end if

15: 1 () ()? :t t c t c

k k k k kD f D f D D D  

16: Add 1t

kD  to 1tX 

17: end for

18: end while

19: arg min ()
t
k

t

optimal k
D

D f D

20: Convert
optimalD to ,migMap host vm 

4.2 Host overloading detection

First, we use the normal distribution model to fit the history records of hosts’

resource usage, and get the probability distribution function Prres of each resource

accordingly. Next, the overloading probability of each resource is obtained depend on

14

the Prres . Finally, the overloading threshold of each resource is determined according

to the overloading probability. The overloading threshold is conducted in terms of

formula (17).

1 Pr
i j

res res res

j res i j

v V

T r c


 
    

 
 
 （17）

where res

jT is the upper boundary of the current utilization of each resource on host
jh ;

 is the adjustment coefficient for weight the overloading threshold. By adjusting its

size, the threshold setting can be inclined to make full use of resources or

guaranteeing QoS. During host overloading detection, any resource utilization

exceeding a corresponding threshold value (e.g., res res

j ju T) is recognized an

occurrence of host overloading. In data centers, all PMs with overloading risk need to

be discovered.

Multi-resource host overloading detection (MHOD) algorithm is as follows.

Algorithm 2：MHOD

1: Input：
activeH

2: Output：
overH

3: for all
jh in

activeH

4: if res res

j ju T

5:
over over jH H h U

6: end if

7: end for

4.3 VM selection

In data centers, usually, it is necessary to migrate some VMs from the overloaded

PMs decrease their overloading risk. Thus this paper proposes two criteria for

performing VM selection: (1) the workload on source hosts gets more stable after VM

migration; (2) the time for live VM migration should be as short as possible, so as to

minimize the negative influence on QoS by VM migration. For the first criterion, it

can be measured in terms of the changes of overloading probability on source and

destination hosts after VM migration. For the second criterion, using pre-copy

mechanism [31], i.e., the smaller the memory usage, the less migration time needs,

thus effectively reducing the negative impact by VM migration on QoS. The resource

overloading probability of source hosts is estimated in terms of formula (18) after VM

migration.

 
 , ,

1 Pr ,mig mig

i j

v v res res

over j res i j mig j
res cpu mem band

v V

P h r c v V
 




 
     

 
 
 （18）

where Pr migv

res


is the resource utilization of source host

jh after VM migration.
migv

represents the migrated VM.

Further, the two above described criteria for selecting the VMs to be migrated are

quantified as shown in formula (19), and which is called VM selection criteria.

mig

mem

v mig

over mem

j

a
RaP P

c


  （19）

where mem

miga is the amount of occupied memory by the migrated VM.

For the source host, after VM migration, it is also necessary to continue the

15

overloading risk assessment to confirm whether the current source host has relieved

overloading risk. If the current VM migration does not eliminate the host overloading

risk, it needs to repeatedly perform the aforementioned steps until host overloading

risk is removed.

QoS-aware VM Selection (QVMS) algorithm is as follows.

Algorithm 3：QVMS

1: Input：
overH

2: Output：
migrateV

3: for all
jh in

overH

4: while res res

j ju T

5: arg min
i j

m
v V

v RaP




6:
mig mig mV V v U ，

j j mV V v 

7: end while

8: end for

4.4 Under-loaded hosts detection

During VM consolidation, turning off some under-loaded running PMs is useful to

reduce energy consumption and improve resource utilization. Therefore, in this

section, we address the criteria for under-loaded PMs detection. During the process of

shutting down the under-loaded PMs, the following problems need to be addressed: (1)

detect the under-loaded PMs; (2) migrate all of the VMs from the under-loaded PM;

(3) select the destination host for live VM migration. Obviously, during a cycle of VM

consolidation, (1) the under-loaded PMs must be selected from the current running

PM set. Because the overloading hosts are in a relatively stable status after VM

migration, the previous overloading hosts are impossible to still be at under-loaded

status; (2) those hosts that have been selected as destination hosts in the previous

cycle of VM consolidation should also be excluded so that the under-loaded PMs

candidate set is optimized as
s active over migH H H H   . Further, for the under-loaded

PM candidate set, the comprehensive utilization of each resource is calculated

according to the formula (20), and sorting the comprehensive resource utilization in

ascending order, which in turn turns off the low-utilization PMs and migrates all of

the VMs on it. The candidate set of destination hosts for the migrated VMs is denoted

as
sp active overH H H  .

     
2 2 2

cpu mem band

j j j ju u u u   （20）

Under-loaded hosts detection (ULHD) algorithm is as follows.

Algorithm 4：ULHD

1: Input： sH ,
spH

2: Output： ,sMap host vm 

3: Sort sH by equation (20)

4: for all
jh in sH

5: Get sD from (,)j sp jDiscerte DEVMP V H h

6: if sD null

7: Convert
sD to ,map host vm 

16

8:
sp sp jH H h 

9: end if

10: , , ,s sMap host vm Map host vm map host vm     U

11: end for

4.5 VM consolidation method

The essence of VM consolidation is to optimize the mapping relation between

currently running PMs and VMs and improve resource utilization, reduce energy

consumption while guaranteeing QoS. This paper takes the optimum mapping relation

between VMs and PMs as the optimization objective through minimizing energy

consumption of hosts with lowest host overloading risk; and resolves the optimization

model with the proposed discrete DE algorithm. A Discrete DE algorithm based VM

placement scheme and method are presented. By the full mutation and crossover of

the improved discrete DE algorithm, the optimum mapping relation between VMs and

PMs is fundamentally guaranteed, and the global optimization result is achieved. In

addition, the above presented sub-algorithms, including host overloading detection,

VM selection, and under-loaded PMs detection algorithms, are integrated, and a

hybrid energy-efficient and quality-aware based heuristic VM consolidation

(EQ-VMC) method is proposed.

The detailed EQ-VMC method is as follows.

Algorithm 5：EQ-VMC

1： Input：H ，
activeH

2： Output： ,Map host vm 

3： ()over activeH MHOD H

4： ()mig overV QVMS H

5：
app active overH H H 

6： , (,)j appMap host vm Discrete DEVMP V H 

7：
s active over migH H H H   ，

sp active overH H H 

8： , (,)s s spMap host vm ULHD H H 

9： , , ,sMap host vm Map host vm Map host vm     U

5. Experiment

5.1 Simulation Setting

We employed the CloudSim toolkit [32] as the simulation platform. In experiments,

since the lower bound on the number of VMs in the employed workload traces is

approximately 800, 800 heterogeneous PMs are created in cloud data centers, these

hosts include four types, and the specific configuration and the power measurement

are shown in Table 1, Table 2 (SPEC) [33]respectively. Besides, six types of VMs are

created based on the instance parameters provided by EC2 (Amazon EC2 Product

Details)[34], Table 3 shows their configuration parameters. These VMs are randomly

deployed on different PMs.

In order to properly simulate the real resource request and response in data centers,

two different data sets Bitbrains trace [35] and GoogleClusterTrace [36] are employed

to examine the experiments. Bitbrains includes CPU usage, memory, and workload of

bandwidth, the selected 10 days trace is shown in Table 4. GoogleClusterTrace just

17

includes CPU and memory usage. We equally select 10 days data trace, and 1200

items of data trace are selected randomly from each day respectively.The selected

trace is shown in Table 5. Additionally, The parameters in EQ-VMC are set as follows,

1F  , 0.5CR  , 6α  , 0.5β  , 0.5ρ  , 0.8ω  , _ 10total times  ,

10S H  and 0.7EXP  .

Table 1 The PM instances

Type CPU RAM(GB)

IBM server X3550 M3-1 Intel Xeon X5670
12 cores 2933Hz 12

IBM server X3550 M3-2 Intel Xeon X5675
12 cores 3067Hz 16

HP Enterprise ProLiant DL 360 Gen9 Intel Xeon E5-2699 v3
36 cores 2300Hz 64

HP Enterprise ProLiant DL 360 Gen10 Intel Xeon Platinum 8180
28 cores 2500Hz 48

Table 2 The energy consumption at different load levels in watts with respect to different PMs

Utilization(%) 0 10 20 30 40 50 60 70 80 90 100

M3-1 66 107 120 131 143 156 173 191 211 229 247

M3-2 58.4 98 109 118 128 140 153 170 189 205 222

Gen9(kWh) 45.0 83.7 101 118 133 145 162 188 218 248 276

Gen10(kWh) 38.7 68.9 82.2 94.6 107 121 138 156 178 210 233

Table 3 The VM instances

Type CPU frequency (MIPS) RAM (GB)

m3.medium 2300×1 3.75

m3.large 2300×2 7.5

m3.xlarge 2300×4 15

c4.large 2300×2 3.75

c4.xlarge 2300×4 7.5

c4.2xlarge 2300×8 15

Table 4 The properties of Bitbrains trace

Date Number of VMs
CPU Memory Bandwidth

mean(%) St.dev.(%) mean(%) St.dev.(%) mean(%) St.dev.(%)

2013-08-02 1237 7.20 5.97 8.83 4.35 0.76 1.84

2013-08-04 1233 8.05 4.83 9.75 4.12 0.80 1.77

2013-08-08 1209 10.27 6.64 9.69 4.52 0.70 1.67

2013-08-10 1205 8.17 5.43 9.47 4.36 0.85 2.00

2013-08-12 1202 9.57 6.36 9.25 3.86 0.79 1.79

2013-08-14 1194 4.88 4.54 8.41 3.33 0.59 1.41

2013-08-18 1189 8.39 3.73 8.95 3.16 0.89 1.88

2013-08-20 1186 8.99 3.45 9.10 3.05 0.79 1.46

2013-08-23 1176 9.44 4.64 9.74 3.90 1.01 2.19

2013-08-25 1175 5.48 4.06 8.40 3.63 1.12 2.39

Table 5 Ten items of GoogleClusterTrace

No. Number of VMs CPU Memory

18

mean(%) St.dev.(%) mean(%) St.dev.(%)

1 1200 1.63 0.49 2.16 0.10

2 1200 2.23 0.71 2.30 0.16

3 1200 2.71 0.82 2.31 0.16

4 1200 2.97 0.89 2.25 0.16

5 1200 3.01 0.91 2.27 0.17

6 1200 3.02 0.91 2.24 0.16

7 1200 2.99 0.91 2.23 0.17

8 1200 2.98 0.90 2.21 0.17

9 1200 2.96 0.91 2.20 0.16

10 1200 2.95 0.90 2.20 0.17

5.2 Evaluation Metrics

We use five performance indices to evaluate performance in our experiments [13]:

SLA violation time per active host (SLATAH), performance degradation due to

migration (PDM), SLA violations (SLAV), energy consumption (EC), and energy and

SLA violations (ESV).

a) SLATAH, which measures the service quality of a running PM, is defined as

1

1
violationn
j

j j

SLATAH
n 

 
l

l
 (21)

where violation

jl is the SLAV duration resulting from overloaded CPU resources for a

host
jh ,

jl the running time of host
jh , and n the number of PMs.

b) PDM, given by (22), reflects the extent of VM migration-related performance

decline.

1

1
migm
i

i i

R
PDM

m R

  (22)

where mig

iR denotes the size of unsatisfied demand for CPU resources as a result of

the migration of a given virtual machine
iv ,

iR the size of total demand for CPU

resources from
iv , and m the number of VMs.

c) SLAV evaluates the QoS of a data center on a single day:

SLAV SLATAH PDM  (23)

SLATAH, PDM, and SLAV are inversely proportional to QoS.

d) The comprehensive evaluation index ESV, which is defined in formula (24),

reflects the energy consumption, VMMs, and service quality.

 ESV = ECSLAV (24)

where EC indicates the energy consumption of a data center in a single day，which is

determined according to formula (4) in section 3.2. A low ESV value indicates that

more energy is saved and guarantees the service quality of data centers.

Since VMs always suspend services during live migration, prolonged VM

migrations can further affect QoS. Reducing the number of insignificant VM

migrations is beneficial for improving QoS. Therefore, if limited VM migrations can

yield ideal effects using a given VM consolidation method, this indicates that the VM

consolidation method is highly efficient.

5.3 Experiment Results

In this section, several experiments are arranged to validate the effectiveness and

19

efficiency of the proposed optimization model and VM consolidation method from

different aspects.

5.3.1 Validating the optimization model

To validate the effectiveness and efficiency of the proposed optimization model and

VM placement method, this section performs comparison between the presented

Discrete DEVMP, PABFD and FFD. We combine and evaluate each of them with 4

identical host overloading detection methods and 3 VM selection methods, resulting

in total 36 different combinations. The host overloading detection algorithms [2,3]

include benchmark IQR, LR, MAD, ST, the VM selection algorithms [2,3] including

MC, MMT, RS. These combined schemes are separated into 12 groups; each group

with 3 different colour columns corresponds to Discrete DEVMP, PABFD and FFD

respectively. The experimental comparisons using 36 different combination schemes

are performed on the same measurement including EC, SLATAH, PDM, SLAV, ESV

and VMMs on Bitbrains trace. The results are shown in Figs.2-7.

Fig. 2 Comparison of EC

Fig. 3 Comparison of SLATAH

Fig. 4 Comparison of times of VM migrations

Fig. 5 Comparison of PDM

Fig. 6 Comparison of SLAV

20

Fig. 7 Comparison of ESV

Figs.2-7 are the comparison results on various performance indices. Fig.2 shows

the comparison results based on the EC index between the related schemes. As shown

in Fig.2, the EC index of schemes with Discrete DEVMP is the lowest. Fig.3

compares the SLA violation of all 36 combinations. The Discrete DEVMP algorithm

performs best in all 36 combinations. Fig. 4 shows VMMs during VM consolidation

for each method. The times of VM migration with Discrete DEVMP is the smallest.

Fig. 5 shows the PDM-driven performance of combination schemes with Discrete

DEVMP is the best, and the schemes using PABFD has the worst performance. Fig. 6

shows the comparison of SLAV on the different schemes. Since the SLAV depends on

both SLATAH and PDM, the Discrete DEVMP algorithm outperforms other schemes

in terms of SLATAH, PDM SLAV index. Fig. 7 shows the ESV index and the Discrete

DEVMP algorithm performs best.

The figures above show that the proposed method is prominent in various indices,

which validates the effectiveness of the proposed optimization model and method. In

contrast, the VM placement policy employed by PABFD does not sufficiently predict

the host overloading risk, which resulting in frequent VM migration and a large

number of SLA violations. In addition, due to the local greedy selection of PABFD, it

is unable to reduce the number of running PMs immediately, resulting in energy waste.

Additionally, as shown in the figures, several combination schemes using LR show a

little vibration in EC, SLAV, ESV indices, especially in SLATAH. The most

unexpected changes come from the combination of LR and FFD. The primary reasons

are that the LR algorithm predicts the resource utilization of hosts through linear

regression. When the FFD algorithm performs VM placement according to the

prediction results, although it greatly increases the resource utilization, it also leads to

the occurrence of excessive VM consolidation and causes the QoS deterioration.

5.3.2 Effectiveness and efficiency evaluation

A. Comparisons in different evaluation metrics

In this section, we compare the proposed EQ-VMC method with four VM

consolidation methods, i.e., ACS-VMC [10], SA-VMC [14], EC-VMC [13],

COFFGA [11]. The comparison is examined using different data trace on the same

indices respectively.

Table 6 Simulation results using Bitbrains trace with four metrics

 EC(kWh) SLATAH VMMs ESV

EQ-VMC 37.31 1.35 1842.2 0.00889

EC-VMC 37.33 1.64 6068.3 0.01197

ACS-VMC 39.39 2.62 3502.9 0.04915

SA-VMC 40.75 1.70 10603.3 0.02241

COFFGA 52.70 1.60 10827.9 0.02363

Table 6 shows the experimental results on the Bitbrains trace with the four indices.

For the EC metric, EQ-VMC method is the best, EC-VMC method is the second best,

21

and COFFGA method is the worst. EQ-VMC and EC-VMC perform very similarly in

EC, because they all take the total EC of data centers as one of the optimization

objectives for VM consolidation. The COFFGA method aims at minimizing the

number of running hosts and resource waste, which does not directly optimize energy

consumption and thus the solution process fall into local optimal easily. As for the

SLATAH index, EQ-VMC performs the best, ACS-VMC is 94 % more than EQ-VMC,

though its EC is only 5.6% more than EQ-VMC. This is because that ACS-VMC

targets at decreasing the number of running PMs which can significantly improve

resource utilization. Regarding VMMs index, in Table 6, EQ-VMC has the smallest

number; ACS-VMC has the second smallest. In terms of the estimation of host

overloading risk, EQ-VMC is capable of keeping workload stable for running PMs,

which further reduces VM migrations. ACS-VMC establishes an optimization model

which contains the optimization objective for minimizing VM migrations, which

make it relieve host overloading risk, even if it has less VM migrations. SA-VMC and

COFFGA do not consider the QoS directly when it optimizes VMs placement, so they

have a common performance on VM migrations. Since ESV is a combination metric

covered energy and QoS for VM consolidation. EQ-VMC still has the best

performance in ESV, EC-VMC is the second best. The EQ-VMC and EC-VMC

methods are superior to other compared methods in both EC and QoS indices, because

reducing energy consumption and relieving host overloading risk are the optimization

objectives of the established optimization model in them. This verifies that both

EQ-VMC and EC-VMC methods realize their optimization objective. In summary,

EQ-VMC shows better performance and stability in EC, SLATAH, VMMs and ESV

than other methods.

Table 7 Simulation results using GoogleClusterTrace with four metrics

 EC(kWh) SLATAH VMMs ESV

EQ-VMC 22.31 1.34 5298.4 0.00446

EC-VMC 22.03 0.63 2865.7 0.00120

ACS-VMC 24.25 1.70 2395.1 0.00334

SA-VMC 27.17 1.84 14030.2 0.00997

COFFGA 35.76 1.91 14952 0.02155

Table 7 shows the experimental results on the GoogleClusterTrace. As for the EC

and SLATAH indices, EQ-VMC is inferior to EC-VMC. In terms of the VMMs and

ESV indices, EC-VMC and ACS-VMC are superior to EQ-VMC. We note that on the

GoogleClusterTrace, all of the indices by EQ-VMC are inferior to that of EC-VMC,

but on Bitbrains trace EQ-VMC is superior to that of EC-VMC. The different

performance of EQ-VMC between Bitbrains and GoogleClusterTrace, results from

the difference amount of resource requests in two traces and the regular distribution in

GoogleClusterTrace, which is shown in Table 4 and Table 5. GoogleClusterTrace has

resource demands that approximately follow Gaussian distribution [37] and the

demanded resource is less and more stable, which make EQ-VMC hard to know host

overloading probability with normal distribution and result in the inferior performance

than that of EC-VMC. Next, EC-VMC takes host overloading probability as a

constrain condition to PMs rather than taking host overloading probability as an

22

optimization objective like that in EQ-VMC, which benefits the running PMs to

improve resource utilization while avoiding host overloading risk. At last, because of

the distinctive workload characteristics like the Gaussian distribution in

GoogleClusterTrace, the resource usage of running PMs does not have a strong

randomness, and even ACS-VMC has better results in VMMs and ESV indices than

EQ-VMC.

Fig. 8. Comparison of PDM

Fig. 9. Comparison of SLAV

Fig. 8 compares different schemes in terms of PDM that depends on VMMs and

memory capacity of the migrated VMs. Fig 8 (a) shows the PDM metric on Bitbrains

trace. The PDM of EQ-VMC is the lowest and most stable among compared methods,

and EC-VMC performance is the second lowest. The VMMs of ACS-VMC shown in

Table 6 is lower than that of EC-VMC, SA-VMC and COFFGA, whereas its PDM is

the highest among all compared methods. The reason is that the ACS-VMC has to

migrate VMs with higher resource request to reduce VM migration. SA-VMC and

COFFGA use MMT for VMs selection, so they obtain lower PDM, despite of more

VM migrations during their VM consolidation. Fig 8 (b) shows the PDM results on

GoogleClusterTrace. As we can see, EC-VMC is the best and EQ-VMC is at the

medium level. The primary reason for it is that, when the host overloading probability

of PMs is small, the proposed optimization model in EQ-VMC is unable to choose

proper destination hosts for VM placement. Unfortunately, it further spurs host

overloading risk, frequent VM migrations and higher PDM value. Finally, compared

23

to SA-VMC and COFFGA, EQ-VMC still performs better.

Fig. 9(a) and 9(b) show the comparison results on the SLAV index using Bitbrains

trace and GoogleClusterTrace respectively. We can see that, using Bitbrains trace,

EQ-VMC is the best, EC-VMC is the second best, and they are better than the other

compared methods. This result indicates the optimization model proposed in this

paper facilitate relieving host overloading risk of running PMs effectively. On

GoogleClusterTrace, the SLAV value of EC-VMC is the best, and the SLAV value of

EQ-VMC is at medium level among all compared methods. The main reason for that

is the same as the aforementioned different workload characteristics between

GoogleClusterTrace and Bitbrains trace, namely, GoogleClusterTrace subjects to the

normal distribution without enough randomness, and thus the heuristic evolutionary

optimization-like algorithms are hard to work well with GoogleCluster-like traces.

In summary, by comparing SA-VMC, ACS-VMC, COFFGA, EC-VMC and

EQ-VMC on the same indices, we can see that EQ-VMC is capable of decreasing

energy consumption and guaranteeing QoS, even if it is inferior on a few indices to

the other compared methods on GoogleClusterTrace.

B. Effectiveness Evaluation

To evaluate the practical application of the proposed approach, this part further

compares EQ-VMC and other compared methods on the number of running PMs,

VMMs, CPU resource utilization, memory resource utilization and bandwidth

utilization during VM consolidation. In our simulation a cycle of VM consolidation

is conducted every 5 minutes, and the total number of cycles is 288 one day.

Figs.10-16 show the results.

Fig. 10. The number of running PMs varying with the cycle of VM consolidation on Bitbrains

24

Fig. 11. The number of running PMs varying with the cycle of ongoing VM consolidation using

GoogleClusterTrace

Fig. 10 shows the variation for the number of running PMs with respect to each

cycle of ongoing VM consolidation using Bitbrains trace. Fig. 10(a) shows the

variation from 1-th to 288-th cycle of VM consolidation. With all five VM

consolidation methods, the number of running PMs in data centers significantly

decreases at the initial stage, thus reducing energy consumption. The variation from

the 20-th to 288-th cycle is further displayed in Fig. 10(b) for detailed comparison. As

shown in Fig. 10(b), in the initial stages, ACS-VMC, EC-VMC and EQ-VMC have

the similar changing trend for the number of running PMs, while EQ-VMC has less

running PMs than the other remainder methods, especially in the later stages; this is

also supported by the experimental results in Table 6. The EC index in Table 6

demonstrates that fewer running PMs are equivalent to lower energy consumption in

data centers. In contrast, COFFGA and SA-VMC have larger number of running PMs

than the other compared methods, because that they employ FFD for VM placement

that can easily fall into local optimal region and lead to high host overloading risk.

Fig. 11 shows the variation in the number of running PMs within each cycle of the

ongoing VM consolidation on GoogleClusterTrace. As shown in Fig. 11(a), the

number of running PMs in data centers also is significantly reduced in the initial stage.

Fig. 11(b) further shows the variation from the 20-th to the 288-th cycle of VM

consolidation. We can see that the number of running PMs of COFFGA and SA-VMC

is apparently more than the other methods. This is due to the same reasons as

mentioned before, namely, the regular distribution in GoogleClusterTrace. In contrast,

the number of running PMs of EQ-VMC, EC-VMC and ACS-VMC are similar, and

less than that of the other compared methods. Wherein, with combination analysis of

Table 7, the EC index of ACS-VMC is still larger than that of EQ-VMC and EC-VMC.

This is because that the employed optimization model in ACS-VMC is unable to find

out the proper destination hosts for live VM migration. Unlike ACS-VMC, EC-VMC

utilizes ABC-like (e.g., Artificial Bee Colony) search way to attempt to find the

optimum VM placement scheme with lowest EC and VMMs. In contrast, EQ-VMC

algorithm can effectively reduce the number of running PMs,both on Bitbrains trace

and GoogleClusterTrace, due to its embedded discrete DEVMP algorithm which is

25

able to search the optimum scheme for VM placement with lowest energy

consumption and smallest host overloading risk.

Fig.12. CPU utilization of running PMs

Usually, on one hand, the reduction of the number of running PMs during VM

consolidation means that a single PM has to undertake more computing tasks and the

CPU resource utilization of it inevitably increases. Fig. 12 shows the variation of CPU

utilization on the running PMs during ongoing VM consolidation. On the other hand,

the increasing CPU resource utilization indicates a higher energy consumption for that

PM . Fig.12 (a) shows the results using Bitbrains trace and Fig.12 (b) shows the

results with GoogleClusterTrace. Besides ACS-VMC method, the VM consolidation

methods show very similar variation trend in CPU utilization. Combined with Fig.11,

it is easy to find that EQ-VMC and EC-VMC always select the destination hosts with

large-scale capacity of resources on physical resources, which results in an ideal

performance for resource utilization and decreasing energy consumption. In contrast,

as shown in Fig.12 (a), the CPU utilization of ACS-VMC is almost the highest during

all cycles of VM consolidation. This result means that ACS-VMC has to experience

more host overloading risk than that of the other compared methods. With

combination analysis of the number of running PMs in Fig.11, it is obvious that the

capacity of physical resource of running PMs selected by ACS-VMC method is

relatively smaller than that of EC-VMC and EQ-VMC, resulting in increasing the

number of running PMs. Additionally, ACS-VMC also shows the highest CPU

utilization on GoogleCluster Trace in Fig.12 (b) due to the same reason

aforementioned of the regular distribution in it.

Fig.13. Memory utilization of running PMs

26

Fig.14. Bandwidth utilization of running PMs

Fig.13 demonstrates the memory utilization of the running PMs during the cycles

of VM consolidation. Fig.13 (a) is the results with Bitbrains trace and Fig.13 (b) is the

results with GoogleClusterTrace. Since there is no bandwidth trace in

GoogleClusterTrace, Fig.14 only shows the experimental results on bandwidth

utilization using Bitbrains trace. Combining Fig.12 (a), Fig.13 (a), and Fig.14, we can

see that the CPU and memory utilization of EQ-VMC method locate the medium

level. This performance results from workload stable yielded by EQ-VMC method, of

which is accompanied with efficient network transmission and communications. It is

also demonstrated by the high bandwidth utilization in Fig.14. In contrast, ACS-VMC

shows the highest resource utilization in CPU and memory, which incurs frequent VM

migration, higher host overloading risk and QoS deterioration. Besides the high host

overloading risk, frequent VM migration also consumes extra network bandwidth,

which results in a higher bandwidth utilization of ACS-VMC method in Fig.14.

Additionally, as for EQ-VMC method using GoogleClusterTrace, we get the same

indices distribution due to the identical aforementioned reasons that yield the output

in Fig. 12(b) and Fig. 13(b).

Fig. 15. The VMMs varying with the cycle of VM consolidation on Bitbrains

27

Fig. 16. The VMMS varying with the cycle of VM consolidation on GoogleClusterTrace

The VMMs reflects the stability of QoS. Generally, the fewer the total VMMs

result in better QoS. Fig.15 shows the variation of VM migrations during ongoing VM

consolidation using Bitbrains trace. Fig.15 (a) describes the changes trend from the

1-th to 288-th cycle. For clearly comparing, Fig.15 (b) is partial of Fig.15 (a), of which

shows the variation trend from the 20-th to 288-th cycles of VM consolidation. As

shown in Fig.15 (a), since many PMs have been turned off in initial stage, an army of

VM migrations occurs. This phenomenon illustrates that these compared methods

perform well in the early stages for VM consolidation. After the 20-th cycle of VM

consolidation, the VMMs triggered by EQ-VMC is lower than that of the other

compared methods. This result indicates that the workload of hosts gets more stable

after VM consolidation by EQ-VMC, so fewer virtual machines need to be migrated.

In contrast, the SA-VMC and COFFGA conduct a large number of VM migration and

vibration, this is supported by their performance in QoS showed in Table 6, Fig. 8(a),

Fig. 9(a), of which is inferior to that of EQ-VMC.

Fig.16 shows that the variation of VM migrations during ongoing VM

consolidations using GoogleClusterTrace. Wherein, Fig.16 (a) shows the changes

from the initialization to the 288-th VM consolidation. Fig.16 (b) is partial of Fig.16

(a). ACS-VMC get the lowest VMMs and the curve in Fig.16 is smoother than the

other compared methods, that mainly results from lower resource request and the

regular distribution of workload in GoogleClusterTrace, which prevents ACS-VMC

from suffering from host overloading risk, thus degrading the VMMs. The changes of

VM migrations by EC-VMC throughout all 288 cycles of VM consolidations is just

inferior to that of ACS-VMC method, but it get prominent advantage in EC and other

QoS metrics than ACS-VMC showed in Table 7, Fig.8 (b), Fig.9 (b). The curve of

VM migrations with EQ-VMC throughout 288 cycles of VM consolidation locates

medium in all methods. However, EQ-VMC gets obviously improvement in EC than

the other compared methods.

Based on the above analytical comparison, the results show that the proposed

EQ-VMC method can effectively reduce energy consumption and guarantee QoS. The

presented VMs placement scheme efficiently maintains load balancing and relieves

host overloading risk. Therefore the optimization objectives are realized through

28

EQ-VMC.

6. Conclusions and future works

Data center provides access to shared resources on the Internet as a scalable,

dynamic and measurable service. The VM consolidation performs live VM migration

to appropriate destination hosts in order to be able to improve one or more objectives

and thus it is regarded as NP-hard issues. Generally, heuristic algorithms have shown

advantages of resolving the complex combination optimization problem. Although

VM consolidation using heuristic or meta-heuristic algorithms do not provide the best

allocating solutions between VMs and PMs, they offer VM consolidation scheme

close to optimal ones.

This paper addresses VM consolidation with respect of heuristic evolutionary

algorithms. First, our scheme aims to minimize the mathematical expectation of the

energy consumption of running PMs while maintaining their lowest probable risk of

host overloading, and establish a dynamic optimization model for VM placement.

Next, by abstracting the deployment relationship between each virtual machine and all

physical machines into a single deployment vector, the deployment vectors of all VMs

are thus equivalent to an item of mapping between VMs and PMs during a cycle of

VM consolidation, namely, an individual in the heuristic evolution algorithm.

Naturally, all probable mappings between VMs and PMs during ongoing VM

consolidation correspond to a population, that is, the search space in evolutionary

computations. Afterwards, an improved discrete differential evolution (discrete-DE)

algorithm is developed to resolve the aforementioned optimization model by finding

the result in the search space which realizes the optimum VM placement for the

migrated VMs. Further, a VM placement algorithm is consequently proposed based

on the presented optimization model. Finally, depend on the study above, a hybrid

heuristic evolutionary-based EQ-VMC method is developed for VM consolidation.

Extensive trace-driven experiments are examined to validate the proposed method,

and the experimental results demonstrate that it significantly reduces energy

consumption, avoids unnecessary host overloading risk, and improves QoS.

However, there are a few limitations that need to be further addressed in our future

works. First, this study only focuses on VM placement with optimization objectives of

minimizing energy consumption and relieving host overloading risk, the other

optimization issues such as mminimizing VMMs, maximizing resource utilization

during VM consolidation need further study to improve the presented algorithm. Next,

EQ-VMC shows prominent experiment results on Bitbrains trace; but QoS is only at

medium level with GoogleClusterTrace, thus the proposed optimization model should

be given priority to adapt to the GoogleCluster-like trace, and also the

GoogleClusterTrace should be deeply analyzed and data mined for the extremely

particularity hidden in it due to such as the large-scale Google data center.

Acknowledgment

This work is supported by the Smart Manufacturing New Model Application Project

Ministry of Industry and Information Technology (Grant No.ZH-XZ-18004), Future

29

Research Projects Funds for the Science and Technology Department of Jiangsu

Province (Grant No.BY2013015-23), the Fundamental Research Funds for the

Ministry of Education (Grant No. JUSRP211A 41) and the 111 Project (Grant

No.B2018)

Reference

[1] X. Zhu, D. Young, B.J. Watson, Z. Wang, J. Rolia, S. Singhal, 1000 Islands: Integrated

Capacity and Workload Management for the Next Generation Data Center, in: International

Conference on Autonomic Computing, IEEE Computer Society,(2008) pp. 172-181.

[2] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient

management of data centers for cloud computing, Future Generation Computer Systems.

28(5) (2012)755-768.

[3] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic consolidation of virtual machines in Cloud data

centers, Concurrency & Computation Practice & Experience, 24(13)(2012),pp.1397–

1420.

[4] F. Farahnakian, P. Liljeberg, J. Plosila, LiRCUP: Linear Regression Based CPU Usage

Prediction Algorithm for Live Migration of Virtual Machines in Data Centers, Software

Engineering and Advanced Applications, IEEE,(2013), pp. 357-364.

[5] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, D. Pendarakis, Efficient resource

provisioning in compute clouds via VM multiplexing, in: International Conference on

Autonomic Computing, Icac 2010, Reston, Va, Usa. DBLP,(2010),pp. 11-20 .

[6] H. Lin, X. Qi, S. Yang, S. Midkiff, Workload-Driven VM Consolidation in Cloud Data

Centers, Parallel and Distributed Processing Symposium, IEEE, (2015), pp.207-216.

[7] J. Cao, Y. Wu, M. Li, Energy Efficient Allocation of Virtual Machines in Cloud Computing

Environments Based on Demand Forecast, Journal of Chinese Computer Systems.

7296(4)(2013), pp.137-151.

[8] A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consolidation of virtual

machines in cloud data centers under quality of service constraints, in: IEEE Transactions on

Parallel & Distributed Systems, 24(7)(2013),pp. 1366-1379.

[9] Z. Li, C. Yan, X. Yu, N. Yu, Bayesian network-based virtual machines consolidation method,

Future Generation Computer Systems. 69(2017), pp.75-87.

[10] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres, Using ant colony

system to consolidate vms for green cloud computing, in: IEEE Transactions on Services

Computing, 8 (2)(2015), pp.187-198.

[11] H. Hallawi, J. Mehnen, H. He, Multi-capacity combinatorial ordering ga in application to

cloud resources allocation and efficient virtual machines consolidation, Future Generation

Computer Systems. 69(2016), pp.1-10.

[12] J. Jiang, Y. Feng, J. Zhao, K. Li, Dataabc: a fast abc based energy-efficient live vm

consolidation policy with data-intensive energy evaluation model, Future Generation

Computer Systems. 74(2016),pp. 132-141.

30

[13] Z. Li, C. Yan, L. Yu, X. Yu, Energy-aware and multi-resource overload probability

constraint-based virtual machine dynamic consolidation method, Future Generation

Computer Systems. 80(2018), pp.139-156.

[14] S. Telenyk, E. Zharikov, O. Rolik, Consolidation of virtual machines using simulated

annealing algorithm, in: International Scientific and Technical Conference on Computer

Sciences and Information Technologies, IEEE, (2017),pp. 117-121.

[15] Y. Gao, H. Guan, Z. Qi, Y. Hou, L. Liu, A multi-objective ant colony system algorithm for

virtual machine placement in cloud computing, Journal of Computer & System Sciences.79

(8) (2013), pp.1230-1242.

[16] R.W. Ahmad, A. Gani, S.H.A. Hamid, et al. A survey on virtual machine migration and

server consolidation frameworks for cloud data centers, Journal of Network & Computer

Applications. 52(C) (2015),pp.11-25.

[17] M.R. Chowdhury, M.R. Mahmud, R.M. Rahman, Implementation and performance analysis

of various vm placement strategies in cloudsim, Journal of Cloud Computing. 4(1)

(2015),pp.1-21.

[18] S.S. Masoumzadeh, H. Hlavacs, A Cooperative Multi Agent Learning Approach to Manage

Physical Host Nodes for Dynamic Consolidation of Virtual Machines, Network Cloud

Computing and Applications, IEEE,(2015), pp.43-50.

[19] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing, Future generation computer

systems. 28(5)(2012),pp. 755-768.

[20] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, Energy Aware Consolidation Algorithm

Based on K-Nearest Neighbor Regression for Cloud Data Centers, in: International

Conference on Utility and Cloud Computing, IEEE,(2014), pp. 256-259.

[21] S.S. Masoumzadeh, H. Hlavacs, An Intelligent and Adaptive Threshold-Based Schema for

Energy and Performance Efficient Dynamic VM Consolidation. Energy Efficiency in Large

Scale Distributed Systems. Springer Berlin Heidelberg,(2013), pp. 85-97.

[22] S.B. Shaw, A.K. Singh, Use of proactive and reactive hotspot detection technique to reduce

the number of virtual machine migration and energy consumption in cloud data center,

Computers & Electrical Engineering, 47(2015),pp.241-254.

[23] H. Shen, L. Chen, Distributed autonomous virtual resource management in datacenters using

finite-markov decision process, in: Proceedings of the ACM Symposium on Cloud

Computing. ACM, (2014),pp.1-13.

[24] S. Sohrabi, I. Moser, The effects of hotspot detection and virtual machine migration policies

on energy consumption and service levels in the cloud, Procedia Computer Science, 51

(2015),pp. 2794-2798.

[25]Li, M., Bi, J., & Li, Z. . Improving consolidation of virtual machine based on virtual switching

 overhead estimation. Journal of Network and Computer Applications, 59(C)2015, 158-167.

[26] M.A. Kaaouache, S. Bouamama, Solving bin packing problem with a hybrid genetic

algorithm for vm placement in cloud, Procedia Computer Science. 60 (2015), pp.1061-1069.

31

[27] M. Mishra, A. Sahoo, On Theory of VM Placement: Anomalies in Existing Methodologies

and Their Mitigation Using a Novel Vector Based Approach, in: IEEE, International

Conference on Cloud Computing, IEEE Computer Society, 17 (2011), pp.275-282.

[28] J.A. Aroca, A.F. Anta, M.A. Mosteiro, C. Thraves, L.Wang, Power-efficient assignment of

virtual machines to physical machines, Future Generation Computer Systems. 54(C)

(2016),pp. 82-94.

[29] S.B. Melhem, A. Agarwal, N. Goel, M. Zaman, Markov prediction model for host load

detection and vm placement in live migration. IEEE Access. 6 (2018), pp.7190-7205.

[30] R. Storn, K. Price, Differential evolution-A simple and efficient adaptive scheme for global

optimization over continuous spaces, Berkeley: ICSI, 1995.

[31] K.Z. Ibrahim, Optimized pre-copy live migration for memory intensive applications, High

PERFORMANCE Computing, Networking, Storage and Analysis, IEEE, 26(b) (2011),

pp.1-11.

[32] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, R. Buyya, Cloudsim: a toolkit

for modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms, Software Practice & Experience. 41(1) (2011),pp. 23-50.

[33] SPEC [Online]. Available: https:// www.spec.org/power_ssj2008/results.

[34] Amazon EC2 Product Details [Online]. Available: http://www.amazonaws.cn/en/ec2/details.

[35] S. Shen, V.V. Beek, A. Iosup, Statistical Characterization of Business-Critical Workloads

Hosted in Cloud Datacenters, in: 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing. IEEE, (2015), pp.465-474

[36] [dataset] ClusterData2011_2 traces [Online]. Available:

https://github.com/google/cluster-data/blob/master/ ClusterData2011_2.md.

[37] L. Yu, L. Chen, Z. Cai Z, et al., Stochastic Load Balancing for Virtual Resource Management

in Datacenters, IEEE Transactions on Cloud Computing, 99(2016), pp.1-1.

[38] F. Farahnakian, T. Pahikkala, P. Liljeberg, et al., Utilization Prediction Aware VM

Consolidation Approach for Green Cloud Computing, 2015 IEEE 8th International

Conference on Cloud Computing, IEEE,(2015),pp. 381-388.

[39] Z.A. Mann, Rigorous results on the effectiveness of some heuristics for the consolidation of

virtual machines in a data center. Future Generation Computer Systems 51(2015),pp.1-6.

[40] M. Vitali, B. Pernici, U.M. O'Reilly, Learning a goal-oriented model for energy efficient

adaptive applications in data centers. Information Sciences, 319(C) (2015),pp.152-170.

http://www.spec.org/power_ssj2008/results

