7,297 research outputs found

    Energetics of the brain and AI

    Full text link
    Does the energy requirements for the human brain give energy constraints that give reason to doubt the feasibility of artificial intelligence? This report will review some relevant estimates of brain bioenergetics and analyze some of the methods of estimating brain emulation energy requirements. Turning to AI, there are reasons to believe the energy requirements for de novo AI to have little correlation with brain (emulation) energy requirements since cost could depend merely of the cost of processing higher-level representations rather than billions of neural firings. Unless one thinks the human way of thinking is the most optimal or most easily implementable way of achieving software intelligence, we should expect de novo AI to make use of different, potentially very compressed and fast, processes

    Prospectives in Deep Space Infrastructures, Development, and Colonization

    Get PDF
    The realization of the long studied cost reduction benefits of reusable rockets is expected to revolutionize and enable both commercial deep space beyond Geostationary Earth Orbit (GEO) and solar system human colonization. The projections for a myriad of space commercialization activities beyond the current largely positional Earth utilities and Humans Mars both safe and affordable may now be realizable. This report considers these putative commercial and colonizationrelated activities, the emerging technologies, the space functionalities to support and further enable them, and envisions the nature of space developments beyond GEO going forward

    JNER at 15 years: analysis of the state of neuroengineering and rehabilitation.

    Get PDF
    On JNER's 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms - wearable devices, the Cybathlon competition, and human augmentation studies - indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation

    The ecology of exercise: mechanisms underlying Individual variation in behavior, activity, and performance: an introduction to symposium

    Get PDF
    Wild animals often engage in intense physical activity while performing tasks vital for their survival and reproduction associated with foraging, avoiding predators, fighting, providing parental care, and migrating. In this theme issue we consider how viewing these tasks as “exercise”—analogous to that performed by human athletes—may help provide insight into the mechanisms underlying individual variation in these types of behaviors and the importance of physical activity in an ecological context. In this article and throughout this issue, we focus on four key questions relevant to the study of behavioral ecology that may be addressed by studying wild animal behavior from the perspective of exercise physiology: (1) How hard do individual animals work in response to ecological (or evolutionary) demands?; (2) Do lab-based studies of activity provide good models for understanding activity in free-living animals and individual variation in traits?; (3) Can animals work too hard during “routine” activities?; and (4) Can paradigms of “exercise” and “training” be applied to free-living animals? Attempts to address these issues are currently being facilitated by rapid technological developments associated with physiological measurements and the remote tracking of wild animals, to provide mechanistic insights into the behavior of free-ranging animals at spatial and temporal scales that were previously impossible. We further suggest that viewing the behaviors of non-human animals in terms of the physical exercise performed will allow us to fully take advantage of these technological advances, draw from knowledge and conceptual frameworks already in use by human exercise physiologists, and identify key traits that constrain performance and generate variation in performance among individuals. It is our hope that, by highlighting mechanisms of behavior and performance, the articles in this issue will spur on further synergies between physiologists and ecologists, to take advantage of emerging cross-disciplinary perspectives and technologies

    Electrostatic Contributions of Aromatic Residues in the Local Anesthetic Receptor of Voltage-Gated Sodium Channels

    Get PDF
    Antiarrhythmics, anticonvulsants, and local anesthetics target voltage-gated sodium channels, decreasing excitability of nerve and muscle cells. Channel inhibition by members of this family of cationic, hydrophobic drugs relies on the presence of highly conserved aromatic residues in the pore-lining S6 segment of the fourth homologous domain of the channel. We tested whether channel inhibition was facilitated by an electrostatic attraction between lidocaine and {pi} electrons of the aromatic rings of these residues, namely a cation-{pi} interaction. To this end, we used the in vivo nonsense suppression method to incorporate a series of unnatural phenylalanine derivatives designed to systematically reduce the negative electrostatic potential on the face of the aromatic ring. In contrast to standard point mutations at the same sites, these subtly altered amino acids preserve the wild-type voltage dependence of channel activation and inactivation. Although these phenylalanine derivatives have no effect on low-affinity tonic inhibition by lidocaine or its permanently charged derivative QX-314 at any of the substituted sites, high-affinity use-dependent inhibition displays substantial cation-{pi} energetics for 1 residue only: Phe1579 in rNaV1.4. Replacement of the aromatic ring of Phe1579 by cyclohexane, for example, strongly reduces use-dependent inhibition and speeds recovery of lidocaine-engaged channels. Channel block by the neutral local anesthetic benzocaine is unaffected by the distribution of {pi} electrons at Phe1579, indicating that our aromatic manipulations expose electrostatic contributions to channel inhibition. These results fine tune our understanding of local anesthetic inhibition of voltage-gated sodium channels and will help the design of safer and more salutary therapeutic agents

    Survival strategies in arctic ungulates

    Get PDF
    Arctic ungulates usually neither freeze nor starve to death despite the rigours of winter. Physiological adaptations enable them to survive and reproduce despite long periods of intense cold and potential undernutrition. Heat conservation is achieved by excellent insulation combined with nasal heat exchange. Seasonal variation in fasting metabolic rate has been reported in several temperate and sub-arctic species of ungulates and seems to occur in muskoxen. Surprisingly, there is no evidence for this in reindeer. Both reindeer and caribou normally maintain low levels of locomotor activity in winter. Light foot loads are important for reducing energy expenditure while walking over snow. The significance and control of selective cooling of the brain during hard exercise (e.g. escape from predators) is discussed. Like other cervids, reindeer and caribou display a pronounced seasonal cycle of appetite and growth which seems to have an intrinsic basis. This has two consequences. First, the animals evidently survive perfectly well despite enduring negative energy balance for long periods. Second, loss of weight in winter is not necessarily evidence of undernutrition. The main role of fat reserves, especially in males, may be to enhance reproductive success. The principal role of fat reserves in winter appears to be to provide a supplement to, rather than a substitute for, poor quality winter forage. Fat also provides an insurance against death during periods of acute starvation

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 309)

    Get PDF
    This bibliography lists 136 reports, articles and other documents introduced into the NASA scientific and technical information system in February, 1988
    • …
    corecore