30 research outputs found

    System Configuration and Control Using Hydraulic Transformer

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2018. Major: Mechanical Engineering. Advisor: Perry Li. 1 computer file (PDF); xii, 294 pages.Hydraulic power transmission offers multiple benefits over competing technologies including an order of magnitude higher power density than electric systems, relatively low cost, fast response, and flexible packaging. Hydraulics are often used in high-performance mobile robots that demand power, precision, and compactness. However, typical hydraulic systems suffer from low system efficiency from the wide usage of throttle valves. The research described in this dissertation focuses on developing hydraulic transformers that transforms hydraulic power from one set of pressure and flow to the other set of pressure and flow to replace throttle valves such that a compact and efficient fluid power system can be realized. A dynamic model capable of capturing operating characteristics and losses is developed to establish a quantitative comparison between two major designs of the hydraulic transformer. A traditional design where a pump and motor are coupled together in a single package is chosen for the research. This design has three possible configurations with unique operating characteristics, and if these configuration modes can be switched, the resulting transformer is shown to be more compact and efficient. A trajectory tracking controller for a cylinder and force controller for a hydraulic human power amplifier is developed to demonstrate potential applications for the hydraulic transformer. The controller developed proves that utilizing hydraulic transformer need not sacrifice the control performance. Control methodologies ensuring efficiency of the transformer driven system are developed. Transformer operating speed is optimized to minimize the power loss through the transformer. Transformer configuration is switched actively to operate the transformer in its most optimal mode. These methods further improve the efficiency benefit of using the transformer. A hydraulic transformer system utilizing developed controllers compared against a throttle valve system tracking a trajectory with various loading conditions reveals that transformer system can achieve an efficiency of 81.2% which is more than threefold increase over the throttling system with an efficiency of 26.2%. This efficiency improvement is possible with the ability of a transformer to capture regenerative energy to reduce the net energy consumption. This dissertation successfully presents the controller development for a hydraulic transformer that captures both precision and efficiency

    Simulation And Control At the Boundaries Between Humans And Assistive Robots

    Get PDF
    Human-machine interaction has become an important area of research as progress is made in the fields of rehabilitation robotics, powered prostheses, and advanced exercise machines. Adding to the advances in this area, a novel controller for a powered transfemoral prosthesis is introduced that requires limited tuning and explicitly considers energy regeneration. Results from a trial conducted with an individual with an amputation show self-powering operation for the prosthesis while concurrently attaining basic gait fidelity across varied walking speeds. Experience in prosthesis development revealed that, though every effort is made to ensure the safety of the human subject, limited testing of such devices prior to human trials can be completed in the current research environment. Two complementary alternatives are developed to fill that gap. First, the feasibility of implementing impulse-momentum sliding mode control on a robot that can physically replace a human with a transfemoral amputation to emulate weight-bearing for initial prototype walking tests is established. Second, a more general human simulation approach is proposed that can be used in any of the aforementioned human-machine interaction fields. Seeking this general human simulation method, a unique pair of solutions for simulating a Hill muscle-actuated linkage system is formulated. These include using the Lyapunov-based backstepping control method to generate a closed-loop tracking simulation and, motivated by limitations observed in backstepping, an optimal control solver based on differential flatness and sum of squares polynomials in support of receding horizon controlled (e.g. model predictive control) or open-loop simulations. v The backstepping framework provides insight into muscle redundancy resolution. The optimal control framework uses this insight to produce a computationally efficient approach to musculoskeletal system modeling. A simulation of a human arm is evaluated in both structures. Strong tracking performance is achieved in the backstepping case. An exercise optimization application using the optimal control solver showcases the computational benefits of the solver and reveals the feasibility of finding trajectories for human-exercise machine interaction that can isolate a muscle of interest for strengthening

    Design of a Knee Exoskeleton for Gait Assistance

    Get PDF
    abstract: The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated. A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and safe. A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N路m. It can be used as a rehabilitation device for patients affected with knee joint impairment. A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N路m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg. The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton. An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Wearable exoskeletons to support ambulation in people with neuromuscular diseases, design rules and control

    Get PDF
    Neuromuscular diseases are degenerative and, thus far, incurable disorders that lead to large muscle wasting. They result in constant deterioration of activities of daily living and in particular of ambulation. Some common types include Duchenne muscular dystrophy, Charcot-Marie-Tooth disease, polymyositis and amyotrophic lateral sclerosis. While these diseases individually have a low rate of occurrence and are mostly unknown to most people, collectively they affect a significant part of the population. About 1 person in 2000 suffer from neuromuscular diseases, which means an approximate total of 370芒000 people over the European continent. Recent technology breakthroughs have made possible the realization of advanced powered orthotics, which are commonly called exoskeletons. The most advanced devices have successfully been able to support patients in walking despite a debilitating condition such as complete spinal cord injury. Such technology could be ideal for people with mid-stage neuromuscular diseases as it provides more mobility and independence. This work investigates the definitions and requirements that would need to be fulfilled for any proposed orthotic device to assist people living with neuromuscular diseases. To define the needs of patients with neuromuscular disease, a large literature review is conducted on gait compensation patterns. The research also includes the data collection of experimental gait measurements from fourteen people with heterogeneous neuromuscular diseases. Conclusions show that orthotics for people with neuromuscular diseases require tunable assistance at each joint and a collaborative control strategy in order to let the user control motion. Eventually, most people may not be able to use crutches. A full lower limb exoskeleton, AUTONOMYO, is designed, realized and evaluated. A particular attention is put on the optimization of the actuator and transmission units. In order to reduce the effects of inertia and weight of those units, a design is explored with actuation remotely located from the joints. The transmission is realized by custom cable wire and pulley systems, combined with standard planetary gears. The dynamics of different coupling between the hip and the knee flexion/extension joints are explored, and their benefits and tradeoffs analyzed. A novel control strategy based on a finite-state active impedance model is designed and implemented on the AUTONOMYO device. The controller consists of three states of different active impedances mimicking a visco-elastic behavior. The switching condition between states is uniquely based on the hip flexion velocity to detect the user intent. The performance of the strategy regarding the detection of intention and the modulation of the assistance is evaluated on a test bench and in real conditions with healthy pilots and with a person with limb girdle muscular dystrophy. The preliminary results are promising since all pilots (including the one with muscular dystrophy) are able to initiate and terminate assisted walking on demand. They are all able both to walk with a good stride rate and to reach moderate velocities. Healthy pilots are able to ambulate alone with the exoskeleton, while the pilot with muscular dystrophy requires human assistance for the management of balance
    corecore