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Abstract

The work described in this thesis consisted of a study of powered upper limb exoskeletons
and the posterior design, implementation and validation of a low-cost control system for a 1 DoF
elbow joint exoskeleton.

The current state of the art on exoskeleton sensing, control and actuation strategies and tech-
nologies was explored, with a focus on intention estimation technologies, namely electromyogra-
phy.

With these guidelines, a myoelectric simultaneous and proportional control system for the
manipulation of a 1 DoF 3D printed robotic arm, actuated by a DC motor, was designed and
implemented. The control system has three main components: an EMG data acquisition system,
an intention estimation algorithm based on a random forest regressor and a motor controller. It
also features a motion tracking system for measuring the current elbow joint flexion/extension
angle, based on inertial magnetic sensors, an AHRS based on the Madgwick filter and a sensor-to-
segment estimation algorithm.

The solution was validated in an experiment where the random forest model was trained using
data from various trials, tuned with 20 iterations of Bayesian optimization and subsequently tested
offline and online. System performance was evaluated and the offline and online performances
compared, as well as performances before and after optimization. In offline testing, the model’s
coefficient of determination was R2 = 0.6499 before optimization and R2 = 0.7134 after Bayesian
optimization. Under regular online testing circumstances, the lowest coefficient of determination
obtained was R2 = 0.5393. On average, the system was able to compute motion intention esti-
mates as fast as every 202 [ms] before optimization, and 325 [ms] after optimization, both within
the functional requirements early in the project.

Keywords: sEMG, simultaneous and proportional control, upper limb, exoskeleton, random for-
est, Bayesian optimization.
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Resumo

O trabalho descrito nesta tese consistiu no estudo de exoesqueletos de membros superiores
alimentados externamente e a subsequente conceção, implementação e validação de um sistema
de controlo low-cost de um exoesqueleto de 1 grau de liberdade para a articulação do cotovelo.

O estado da arte das estratégias e tecnologias de sensorização, controlo e atuação de ex-
oesqueletos foi explorado, com ym foco em tecnologias de estimação de intenção, nomeadamente
a eletromiografia.

Foi projetado e implementado um sistema de controlo mioelétrico simultâneo e proporcional
para a manipulação de um braço robótico de um grau de liberdade, impresso em 3D e atuado por
um motor DC. O sistema de controlo tem três principais componentes: um sistema de aquisição
de dados de EMG, um algoritmo de estimação de intenções baseado em florestas aleatórias e um
controlador de motor. O sistema também incorpora um algoritmo de motion tracking, baseado
em sensores inerciais magnéticos, um AHRS baseado no filtro de Madgwick e um algoritmo de
estimação das orientações de sensores para segmentos, para medição do ângulo de flexão/extensão
do cotovelo.

A solução foi validada num estudo experimental em que o modelo de floresta aleatória foi
treinado com dados de ensaios, calibrado com 20 iterações de otimização Bayesiana e seguida-
mente testado offline e online. O desempenho do sistema foi avaliado e os seus desempenhos
offline e online, assim como antes e após otimização, comparados. Nos testes offline, o coeficiente
de determinação obtido para cada modelo foi R2 = 0.6499 antes de otimização e R2 = 0.7134 após
otimização. Dentro de circunstâncias de teste online normais, o coeficiente de determinação mais
baixo obtido foi R2 = 0.5393. Em média, o sistema foi capaz de produzir estimativas de intenção
de movimento a cada 202 [ms], antes de otimização, e 325 [ms], após otimização, encontrando-se
ambos os valores dentro dos requisitos funcionais estabelecidos no início do trabalho.

Palavras-chave: sEMG, controlo proporcional e simultâneo, membros superiores, exoesqueleto,
floresta aleatória, otimização Bayesiana.
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Chapter 1

Introduction

In this chapter, context and motivation are provided for the present work, objectives are drawn

and the document’s structure is briefly detailed.

1.1 Context and Motivation

According to the World Health Organization, strokes and cardiovascular diseases take the lives

of more than 17 million people worldwide every year (Organization, 2004). Of those who survive,

more than 77% incur acute upper limb dysfunction and and about 60% of those will not achieve all

the functional movements at 6 months post-stroke (Vieira, 2016).This comes with costs that affect

their lives, their families, their communities and, of course, the economy (Rahman et al., 2015).

Fortunately, studies have found robot-aided therapy to significantly reduce arm impairment

and improve motor function, to the point where the subject regains at least partial upper limb

function of motion (Rahman et al., 2015).

In industries, exposure to postural loads, repeatable motions and tasks of very short duration

increase the likelihood of workers to develop Musculoskeletal Disorders (MSDs), and the risk

seems to be increasing (O’Sullivan et al., 2015; Sylla et al., 2014). Sylla et al. (2014) mentions

the usage of robotic assistive devices as a relevant solution in preventing MSD and improving the

quality of life of workers. The authors assert the use of collaborative robots, in particular, powered

exoskeletons, as being of great interest to the industry.

Evidently, there is interest in powered exoskeletons in many fields, and several solutions have

been presented thus far (Gopura et al., 2016). On the other hand, because these technologies are

relatively new and definitely complex, prices tend to be very high (Pina, 2018). Beyond reducing

costs, there is still a lot of room for improvement. Gull et al. (2020) acknowledge ergonomics

and standardized design, modeling, compliant joints and actuation, performance assessment and

adaptive control as areas that require further improvement.
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2 Introduction

1.2 Goals

With the previous considerations in mind, the main objective of this work is to design and

implement a low-cost control system for an early prototype of a powered orthosis or exoskeleton.

The device will simulate assistance to a 1 DoF human joint, more specifically, flexion/extension

of the human elbow joint. The reasoning for the selection of the elbow joint is primarily due to

how much simpler it is in comparison to other joints.

Designing and implementing a low-cost control system for a powered orthosis for the elbow

joint is, still, an elaborate endeavour. It is an integrated automated system, complete with sensing,

control and actuation. In addition, it has to account for the presence of a human, and not just any

human - a patient in rehabilitation or recovery. The standards for safety, comfort and ergonomics

are very high (O’Sullivan et al., 2015).

To embark on the development of an enterprise such as the one just presented, it is necessary to

perform a careful review of the existing literature. Thereby, another, but in no way lesser than the

first, objective is to study and assess, within the time constraints of the project, the current state-

of-the-art in design and development of powered exoskeletons. This review can give guidance for

the design and implementation of the prototype.

Finally, once the system has been designed and implemented, it is paramount to properly

evaluate the solution. For this reason, an experiment must be appropriately devised and the results

stringently analyzed.

In summation, there are three main objectives to the present work:

• To study and assess the current state-of-the-art on the design of upper limb powered ex-

oskeletons. The focus should be on existing theory and most prevalent technologies and

methods.

• To design and implement a low-cost control system for an early prototype of a powered 1

DoF elbow exoskeleton, based on the theory, technologies and techniques reviewed in the

state-of-the-art.

• To conduct an experiment for validation of the system built, in an effort to highlight limita-

tions of the solution adopted, as well as provide insight into future works.

1.3 Document Structure

This thesis is organized into seven chapters, the first being the present one.

In Chapter 2, a concise state-of-the-art of powered exoskeletons is presented, with a focus on

upper body exoskeletons. It covers intention estimation technologies, typical control strategies

and prevalent choices of actuation.

In Chapter 3, design goals and project requirements are established, thus enabling an overall

system architecture to be designed. Based on the latter, component selection is presented, as well

as a succinct wiring schematic.
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In Chapter 4, the control system solution and the reasoning behind most design choices are

presented in considerable detail. In brief, the control system constitutes sensor data acquisition,

an intention estimation algorithm and a motor controller, all of which being thoroughly explained

in the chapter.

In Chapter 5, implementation of the aforesaid design is presented. Component manufacture

and system assembly are summaringly addressed. Codification of the control system is discussed,

along with supplementary steps taken in implementing the system.

In Chapter 6, the design and execution of the experiment for validation of the solution are

detailed. This involves experiment objectives, delineation of hypotheses, an experiment protocol

and, at last, presentation and discussion of the experiment’s results.

The last chapter, Chapter 7, is dedicated to the most important insights taken from this work.

This chapter is followed by a bibliography and appendices to the present work.



4 Introduction



Chapter 2

State of the Art

In this chapter, a brief overview of rehabilitative engineering is presented, with a focus on

upper body exoskeletons. This is followed by a review of intention estimation technologies, of

which surface electromyography is discussed in greater detail. A review on myoelectric control

systems ensues. Finally, actuation strategies for exoskeletons are concisely addressed.

2.1 Rehabilitative Engineering and Powered Exoskeletons

The use of external aids to enable or facilitate movement is not, by any means, an innovative

endeavour. When thinking of rehabilitative engineering, the first images to form in one’s mind

are those of healthcare professionals, such as occupational therapists, medical doctors and nurses,

providing aid and guidance to a debilitated patient who is trying to recover from a certain ailment.

With the help of engineers and specialists, they seek to restitute the person’s mobility to that of

times past.

The first prostheses in history were, as is known today, rudimentary in both methods and

materials (Thurston, 2007). Since then, the number and variety of technologies and devices has

grown quite substantially (Gopura et al., 2016; Gull et al., 2020).

Figure 2.1: Examples of pas-
sive prostheses available for
the arm and hand. Source:
ottobock. (2020).

Generally speaking, rehabilitation devices can be discerned

depending of the degree of damage the patient’s body has suf-

fered (Gopura et al., 2016): prostheses and orthoses. Prostheses

are devices that seek to restore function by substitution of a miss-

ing element of the patient’s body, namely, amputated limbs or parts

thereof. Orthoses, on the other hand, are complementary devices

used when the body, fully present, is incapable of performing tasks

up to a sufficient standard.

Additionally, rehabilitation devices can be classified accord-

ing to the level of automation present in the developed solution

(Gopura et al., 2016; Advanced Arm Dynamics, Inc., 2020):

5
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• Passive: Calling a passive rehabilitation device a device could be seen as a bit misleading.

Indeed, as their name implies, these solutions are not automated and tend to lack moving

parts. When capable of motion, the purpose is customarily not to improve performance, but

their realism. This is especially true for passive prostheses (Figure 2.1), where the concern

is mostly cosmetic, such as with solid, static prosthetic arms, hands and fingers (ottobock.,

2020). Passive prostheses with a greater functional focus do exist, however. When replacing

the lower limbs, maintaining a healthy gait is crucial, hence one of the greatest difficulties

in treating partial foot amputees is that their conditions imply, more often than not, some

form of foot desensitization, which could lead to further foot breakdown if the prosthetic

device isn’t properly fitted and maintained (Kennedy and Meler, 2011). Undeniably, am-

putations alter the biomechanics of limbs, so proper compensation is due. Passive orthoses

are also extremely common, predominantly as tools of correction of movement patterns and

distribution of loads (Mnatsakanian et al., 2016).

• Body-Powered: Just about unique to prostheses, this flavour of the technology consists of

utilizing, incidentally, the patient’s own body as the source of power. By adapting the bionic

mechanism to the underlying kinematics of the actuator (the patient’s remaining body), an

intuitive operating system of cables, harnesses, and occasionally, manual control, is elabo-

rated (Advanced Arm Dynamics, Inc., 2020). In spite of missing electrical power and its

collaborative bells and whistles, body-powered prostheses are among the best when it comes

to mechanical performance and robustness, which makes them a reasonable choice for ath-

letes (Figure 2.2) and people who are engaged in manual labour (Advanced Arm Dynamics,

Inc., 2020).

• Externally Powered: Instead of utilizing the user’s own body as a source of mechanical

energy, these systems employ one or several of existing power technologies (Advanced Arm

Dynamics, Inc., 2020), by and large of electrical nature, yet also hydraulic, pneumatic, etc.

Motion estimation is mainly built on either electromyographic or force inputs, which are

fed to a sophisticated control system that operates the actuators. Relative to body-powered

devices, solutions rooted in external sources of power bring all sorts of novel problems

to the table, like weight reduction of all the incumbent actuating paraphernalia, treatment

and analysis of the input signals, cost management, etc. This comes with the potential of

intelligent, responsive artificial limbs and externally powered orthoses (exoskeletons), the

latter being the focus of this thesis.

• Hybrid: The last category is a combination of the ones before. Hybrid devices utilize both

the user’s body and external sources of power for actuation (Advanced Arm Dynamics,

Inc., 2020). This comes as a necessity when there is extensive loss or damage of body parts,

requiring an extremely complex structure that inevitably makes use of both approaches.
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Figure 2.2: Bob Radocy, founder of TRS Prosthetics, after winning the 2016 Cybathlon in Zurich
for body-powered prosthetics, wearing the Grip 5 Prehensor his team developed. Source: Caruso
(2016).

2.1.1 The Choice for Powered Exoskeletons and Associated Challenges

Apropos orthoses, body-power is very rarely a viable solution when projecting assistive or-

thotic devices, for there are clear advantages to electing external power.

For starters, if the intent of orthoses is to assist movement, then taking as little energy as

possible from the user is an absolute must. Consequently, external power should not be seen as an

option, rather a necessity.

There are, of course, consequences to the use of external power. For instance, as it was pre-

viously mentioned, these actuators and power supplies come with an inevitable and substantial

increase in weight, which leads, in addition, to significant changes in the conjugated system’s in-

ertia. This extraneous loading can severely impair or difficult the free motion of the user (Jin et al.,

2017).

It’s not clear the way in which assistive devices help in reducing the user’s effort. When

measuring the effect of an on-body ergonomic aid on oxygen consumption during a repetitive

lifting task, Whitfield et al. (2014) found no statistically significant impact in oxygen consumption.

Wearing the PLAD (the Personal Lifting Assistive Device, Figure 2.3) didn’t seem to change the

metabolic expenditure. Some sense could be made out of this finding, since the energy exchanges

should be internal to the person-PLAD system, ergo the total energy demand is unchanged. The

way in which energy demand is distributed throughout the body, nevertheless, can differ - some

muscles will be assisted and others will have to work harder.
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Figure 2.3: Depiction of a user performing a lift task, while wearing the PLAD (Personal Lifting
Assistive Device) for assistance. Source: Whitfield et al. (2014).

Hence, knowing how to deal with the likely redistribution of loading becomes paramount.

Given the kinematic complexity they introduce, it’s not uncommon for exoskeletons to miss their

pre-established goals or even work against them. When seeking to evaluate the impact of an

upper limb exoskeleton for OHW (Overhead Work) on muscular activity of other muscles, as

well as cardiovascular stress and kinematics, Theurel et al. (2018) found that perceived effort was

higher when using the exoskeleton (relative to without it). Moreover, even though there were clear

reductions in shoulder RPE (Rate of Perceived Exertion, a relative scale, from 0 to 10, rated by

the user) and loading, not only was the lower back more loaded than without the assistance, but

the test subjects’ postures were also compromised.

An advantage of powered exoskeletons is that their control systems, by being more complex

have greater conceptual potential. Assuming the array of required sensors can provide with enough

information, the dream of accurate, seamless control of an adjustable exoskeleton is still very much

alive (Whitton, 2019). Motion intention estimation is more accurate than ever (Artemiadis, 2012)

and the expectation is for these technologies to become increasingly more precise and alike their

biological counterpart: the human body.

Purely body-powered solutions also suffer from an intrinsic and ineradicable limitation: the

power they provide can only go as far as the human body is capable. When human enhancement

is taken in consideration, the only viable option is external power (Artemiadis, 2012). Superhu-

man physical prowess may not be a predominant market, howbeit there are several practical uses

for technologies looking to explore this side of assistive devices. First responders, the military

and the industry are all excellent examples of use cases for these technologies (Lockheed Martin

Corporation, 2020).

Strikingly, the fact that powered exoskeletons have external, independent power sources gives

rise to multiple safety concerns. The vast majority of assistive devices already have to take into
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Table 2.1: Standards developers (TCs) identified by O’Sullivan et al. (2015) as potential target
stakeholders for developing industrial exoskeleton specific standards. It should be emphasized
how varied the standards developed by the aforementioned committees are, which highlights the
multidisciplinary nature of powered exoskeletons.

Standards Technical Committees - evaluated as potential target stakeholders

ISO/TC 184 Automation systems and integration

ISO/TC 159 Ergonomics

ISO/TC 94 Personal safety: Protective clothing and equipment

ISO/TC 173 Assistive products for persons with disability

ISO/TC 168 Prosthetics and orthotics

ISO/TC 199 Safety of machinery

ISO/TC 39 Machine tools

CEN/TC 122 Ergonomics

CEN/TC 310 Advanced manufacturing technologies

account critical issues like mechanical failure and ergonomics, and even so, exoskeletons require

further supervision. Electrical power, human-robot interaction, numerous issues plague the stan-

dardization of these devices, cursed from the bureaucratic demands of being both robots and wear-

able machines. Some could see these problems as superfluous, but the truth is products that are

manufactured in compliance with applicable standards adhere to minimum quality and safety de-

sign criteria, are comprised of acceptable materials and components, and have been tested and

evaluated (O’Sullivan et al., 2015). Additionally, the application of standards can assist in meet-

ing legal requirements, can minimize costs associated with material selection and production, and

facilitate interoperability within the European and global markets. O’Sullivan et al. (2015) high-

lights some of the issues that could be key to the development of such standards (Table 2.1).

2.1.2 Upper Limb Exoskeletons

The present work pertains to upper limb exoskeletons, which are, essentially, a small subset

of the umbrella category of powered exoskeletons. Similarly to their parent devices, upper limb

exoskeletons are electromechanical systems designed to interact with the user for the purpose of

power amplification, assistance, or substitution of motor function (Gull et al., 2020).

Even though most research and commercially available products concern lower limb exoskele-

tons, an extensively large variety can still be found in upper limb exoskeletons (Gopura et al.,

2016). Exoskeletons purposed to in some way support the back are, technically speaking, upper

limb exoskeletons and they are, too, abundant, they will not be, however, the subject of this work.

That being said, a simple way to split existing upper limb exoskeletons into different groups is to

separate them according to the joints that they assist. Having left the lower back out, the remaining

major joints of interest would be the shoulder, the elbow and the wrist. Assistance is customar-

ily delivered starting from the most distal point, and in consequence, to exemplify, some of the
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most common combinations are the hand and wrist, the hand, wrist and elbow, and the whole arm,

shoulder joint included (Gull et al., 2020). To better understand the kinds of problems that arise

from these different configurations, let us first briefly delve into the anatomy of the arm, pictured

in Figure 2.4.

Figure 2.4: Simplified anatomy of the arm, displaying the shoulder complex, the elbow complex
and the wrist joint. A shows the posterior (from the back) view of the arm, whereas B shows the
anterior (from the front) view. The arm is an outstandingly complex structure, even in the simplest
of its three joints, the elbow. Source: Gull et al. (2020).

At the top of the upper arm, the shoulder complex comprehends four articulations, each of

them greatly influencing the kinematics of the arm. For proper ergonomic functioning of an ex-

oskeleton, they have to, at the very least, be taken into account, since, for instance, the gleno-

humeral joint greatly impacts the position and orientation of the shoulder’s centres of rotation.

Connecting the upper arm and the forearm, the elbow joint is a synovial compound joint con-

sisting of two articulations, namely the humeroradial and the humeroulnar joints. The movement

enabled by this joint is essentially a 2-DOF motion, but most researchers streamline it to a 1-DOF

joint for flexion-extension.

The wrist joint connects the forearm to the hand. Despite not being completely static, most

exoskeletons have assumed that the centers of rotation of the wrist joint are fixed. This allows for

a very significant simplification in an already extremely complex structure. With several movable

parts, the wrist and hand is frequently an isolated target in exoskeleton research.

As mentioned above, for all joints, it is commonplace to simplify the kinematics involved and

use approximations or directly ignore degrees of freedom and axes of rotation (Gopura et al., 2016;

Gull et al., 2020). These streamlined robots, whereas easier to build, calibrate and control, can

suffer from serious joint misalignment and excessively bounded range of motion. Misalignment

is a likely cause for discomfort and clunkiness of usability and can even lead to slippage between
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the human and the exoskeleton, which might translate to an undesired distribution of loads in

the different human body parts, ultimately posing a safety and health risk. Again, one of the

main difficulties felt with discomfort and misalignment is the current inexistence of standards that

address them (Gull et al., 2020).

When the exoskeleton encompasses several joints, to ensure proper functionality and dynamics

of the human-exoskeleton system, a comprehensive musculoskeletal model is recommended (Gull

et al., 2020) to analytically study the effects at play in the upper limb exoskeleton system. This

methodology leads to an accurate evaluation and exact optimization of the robot design. To this

end, some popular modeling tools are the AnyBody Modeling System™(AnyBody Technology

A/S, 2020), the Virtual Interactive Musculoskeletal System (VIMS) (Lin et al., 2005), OpenSim

(OpenSim, 2020) and MB Dyn (MBDyn, 2020). There is not a unified standard biomechanical

model for the human body, mostly due to an excessive complexity of the latter that forces speci-

ficity of design of the prior (Gull et al., 2020). In the present case, the exoskeleton will only

assist the elbow joint and, as such, the aid provided by a musculoskeletal model did not justify the

additional work.

2.2 Electromyography as a Study of Motion Intention

The estimation of motion intention is not, presently, an exact science, nevertheless there are

sundry practical methods and technologies that can be applied in the deconstruction of this fea-

ture. The truth is, motion in the human body is characterized, like many processes, by a chain

of events, in this case, the actualization of the self’s will to move, the production of a nervous,

electrical signal, and the journey of this signal, through the body, to the muscles of pertinence

to the intended movement, and the subsequent firing of the muscles’ motor unit action potential,

ultimately realizing the intended motion (De Luca, 1997).

From here, it can become obvious that there are, in theory, multiple paths through which to

estimate motion intention, assuming there is information to be extracted at each point of this chain

of events. Since consciousness is still a fairly misunderstood concept, trying to extract anything

from the expression of will (which is in itself an unproven abstraction) is currently impossible. Ex-

tracting information from the nerve signals coming from the brain is also exceedingly convoluted,

knowing that several ends can come from the same common origin and traverse neighbouring

nerves. In conclusion, there seems to be three viable alternatives: detection of the movement

command at the brain, at the muscle or detection of the movement itself at the extremities.

When it comes to brain computer interface, the most popular technology for rehabilitative

devices is, without a doubt, the EEG, or electroencephalogram (Nicolas-Alonso and Gomez-Gil,

2012), as is pictured in Figure 2.5. Brain cells, or neurons, communicate with each other through

electrical pulses that travel accross the vast networks that make up the nervous system. The ac-

tion potentials of this electric activity can be physically detected and measured in multiple ways
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Figure 2.5: Illustration portraying a traditional electroencephalogram (EEG) and the respective
signals that could be measured. Source: Siuly et al. (2016).

(Nicolas-Alonso and Gomez-Gil, 2012), one of them the basis for the electroencephalogram (Fig-

ure 2.5): small flat metal discs, called electrodes, are attached to the scalp, wired to an amplifica-

tion and data acquisition system, tracking and recording brain wave patterns (Blocka, 2018). The

study and analysis of electroencephalograms is critical for the diagnostic of certain neurological

diseases and the treatment of others(Siuly et al., 2016).

As these electrical signals leave the brain, they run through the body, to the target muscles,

firing the muscle’s motor neurons, or motor units, that is, the nerve cells responsible for the acti-

vation and relaxation patterns of muscles (Moore, 2018). When attempting to measure the muscle

motor unit’s firing activity, EMG, or electromyogram, is the clear choice (De Luca, 1997). By

placing electrodes in certain points of the muscles, this information is collected, amplified (due

to the extremely low voltages of these signals) and sampled by data acquisition systems. This is

called surface EMG data. Alternatively, EMG signals can be measured with the intramuscular

EMG methodology (Figure 2.6), which employs monopolar needle electrodes (a highly conduc-

tive thin wire of great purity, to measure the motor unit’s electrical potentials in situ. The resulting

signals have much higher fidelity than their surface counterpart (which are more likely to be con-

taminated by surrounding noise), at the cost of a more invasive setup, requiring specific medical

knowledge for the positioning of the electrodes, which, when done incorrectly, could be painful or

even damaging (Moore, 2018). For powered exoskeletons, this variant is mostly useless, since it

strongly restricts the user.

By opposition, the detection of movement can be achieved in multiple ways. Regardless,

researchers frequently opt for FSR’s, or Force Sensing Resistors (Gull et al., 2020). A Force

Sensing Resistor (Figure 2.7) is a two-terminal passive piezoresistive device that suffers a change

in its electrical resistance when stress is exerted over the Stress Sensitive Area (SSA). The SSA is a
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Figure 2.6: Intramuscular EMG illustrated. The needle electrode is a highly conductive thin wire
that measures the motor units’ action potentials. Source: A.D.A.M., Inc. (2018).

polymer composite of conductive particles dispersed in a non-conductive matrix that is sandwiched

between two metal electrodes, the terminals for measuring voltage, thus forming a Traditional

Sandwich Element (TSE) (Paredes-Madrid et al., 2017). The electrical resistance of the SSA

changes because the spatial input causes the average inter-particle distance to change. Different

topologies, configurations and materials are possible, making the FSR a truly flexible measuring

unit, with plenty of design parameters and applications (Paredes-Madrid et al., 2017).

Figure 2.7: Diagram showcasing
the components of Force Sens-
ing Resistors, namely, a polymer
matrix composite, the SSA, and
two highly conductive electrodes.
A stress σ exerted on the sen-
sor leads to a change in its mea-
sured terminal resistance. Source:
Paredes-Madrid et al. (2017).

Each methodology has its own advantages and disadvan-

tages in rehabilitative engineering. To begin with, the earlier

in a chain of command a signal is detected, the earlier the con-

trol system responsible for the powered exoskeleton can issue

an output command. For this reason, EEG and EMG could,

in theory, provide with the fastest possible track to actuation,

resulting in a responsive, intuitive device. The reality is that

there is a considerable innate delay between the onset of the

first electric signals in the brain and the realization of move-

ment, so the fastest controller may not be, necessarily, the op-

timal one (Smith et al., 2011). On the other hand, an unrea-

sonably slow controller is obviously not good either (Smith

et al., 2011). Ergo, signal complexity must, too, be taken into

account, and measured quantities that require a tremendous

number of computations to be used are at odds with the end

goal. By reason of the fact that force-based control measures

the motion itself, the intention behind it should, in theory, be more closely related to the movement

performed than any of the other methods. Other than trying to solely predict the intention behind

the motion, force control follows the imminent motion, allowing for fast, accurate control (Gull

et al., 2020).
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Figure 2.8: The NEUROExos exoskeleton. A is a front view, B is a lateral view and C is demon-
strating the double-shelled link technology. Adapted: Vitiello et al. (2013).

EEG might be subject to a lot of noise compared to, say, force control, only it is relatively

more accessible to use. Aside from being conceptually easier to grasp than, say, EEG, surface

EMG can be implemented more simply, thanks to its electrode-based functionality. EEG is most

used in research when patients suffer from severe spinal cord disabilities that make them unable

to use their limbs and, consequently, have no EMG signals to be collected (Gull et al., 2020).

A downside of force control is that it is often more complex to integrate in an exoskeleton,

mechanical design wise. Vitiello et al. (2013), for example, for the NEUROExos Powered Ex-

oskeleton, shown in Figure 2.8, employed a sophisticated double-shelled links design to make the

best use of the force control strategy and achieve a comfortable, ergonomic human-robot interac-

tion.

Overall, sEMG stands out as the most commercially appropriate technology, thanks to how, in

relation to the remaining technologies, practical, intuitive and cheap it is.

2.2.1 Recommended Setup for an Electromyogram and Factors Influencing the
Output

Doing electromyographic analysis requires a number of conditions to be met. At the outset, the

contact surface must have been properly conditioned to minimize chemical noise and interference.

In other words, the skin has to be cleaned, disinfected and lightly abraded, to remove excess

dead skin and improve electrical conductivity (De Luca, 1997). Depending on the subject and
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the muscles being studied, hair might have to be preemptively shaved (Xiao, 2019; Xiao et al.,

2018a,b). The use of special conductive gels to improve conductivity is not uncommon (Ulrey and

Fathallah, 2013a,b; Tang et al., 2014). In this case, the electrodes are said to be wet, as opposed to

the regular dry electrodes, still preferred for their greater comfort and practicality (Bi et al., 2019).

As soon as the skin is ready for attaching the electrodes, the exact electrode positioning has to

be established. In accordance with De Luca (1997), there are five main parameters for precisely

defining the electrode positioning and configuration (Figure 2.9):

Figure 2.9: Influence of electrode positioning in the measured signal. On the left, four differ-
ent placements, from top to bottom, over an innervation zone, between an innervation one and a
myotendinous junction along the mid line of the muscle, between an innervation one and a my-
otendinous junction near the edge of the muscle, and over a myotendinous junction. The middle
column shows the respective normalized amplitude responses of the electromyograms and the
rightmost column shows the respective frequency responses of the electromyogram. It should be
clear that the second configuration gives both the highest amplitude measurements and the most
compact frequency spectrum. Source: De Luca et al. (2010).

• Electrode configuration: area and shape (which determine number of muscle motor units

detected) and distance between electrodes (determines the bandwidth of the differential elec-

trode configuration). Shape is usually circular with a diameter of 10 [mm]. The distance

between electrodes should not be too small, otherwise the formation of sweat could shunt

the signal, decreasing amplitude, signal to noise ratio and filtering out the higher frequency

components. Similarly, sensors with electrodes spaced further apart detect sEMG signals

having a more compressed frequency spectrum (Lindstrom, 1970). The conventional inter-

electrode distance is 20 [mm], but different values are not that rare: Ulrey and Fathallah

(2013a,b) use a distance of 40 [mm] and De Luca et al. (2010) uses a distance of 10 [mm].

• Electrode location along the muscle: distance relative to the myotendinous junction (the

site of connection between tendon and muscle) affects amplitude and frequency character-

istics of the signal. The preferred location is between the myotendinous junction and the

nearest innervation zone, which tends to line up with the middle of the muscle.
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• Electrode location across the muscle: proximity to the lateral edges of the muscle can lead

to significant amounts of crosstalk from adjacent muscles. It is therefore recommended that

the electrodes are placed along the mid line of the target muscle.

• Orientation with respect to the muscle fibers: affects the value of the measured con-

duction velocity of the action potentials and, consequently, amplitude and frequency. The

recommended orientation is parallel to the muscle fibers.

These parameters are, as stated by De Luca (1997), extrinsic causative factors that influence

the measured surface EMG amplitude and bandwidth. Causative factors have a basic or elemental

effect on the signal and can be extrinsic or intrinsic. Factors, as defined by De Luca, are any

and all variables that determine the output of an electromyogram. For this reason, the factors that

influence the motor units’ action potentials themselves are factors that should be taken into account

and thoroughly understood. This is the case of intrinsic factors, the other subset of causative

factors. To enumerate some intrinsic causative factors:

• Number of active motor units at any particular time of the contraction, which influ-

ences signal amplitude.

• Fiber type composition of the muscle, which changes interstitial fluid pH during a con-

traction.

• Blood flow. It influences the rate at which metabolites are removed during the contraction.

• Fiber diameter, which affects the amplitude and conduction velocity of the action poten-

tials.

• Depth and location of the fibers. It determines spatial filtering and, consequently, impacts

amplitude and frequency characteristics.

• Volume of tissue between the muscle and the electrode, determines spatial filtering and

therefore affects amplitude and frequency of the signal.

De Luca (1997) defines, in addition, two more broad categories of factors affecting the mea-

sured EMG. Intermediate factors, that is, phenomena that are influenced by causative factors and,

in turn, influence factors belonging to the third broad category, deterministic factors, which have

a direct effect in the measured sEMG. Examples of intermediate factors are:

• Band-pass filtering, which is inherent to the differential electrode configuration.

• Detection volume of the electrode, which determines number of motor units detected.

• Superposition of action potential signals, which influences amplitude and frequency.

• Conduction velocity of action potentials. It influences amplitude and frequency.
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• Spatial filtering due to the electrode position and active muscle fibres. This factor is

a consequence of variations in relative position of the electrodes to the motor units as the

muscle contracts and extends, while the skin remains mostly static. Because of this relative

motion, the active motor units that are being detected can vary throughout the muscle con-

traction and consequently affect the signal’s stability. A conclusion that follows from this is

that only isometric contractions can provide the maximum stability.

• Crosstalk from nearby muscles that contaminates the signal with noise. De Luca and

Merletti (1988) showed that, for example, in the leg, as much as 17% of electrical activity

from nearby muscles may be detected on the surface of the muscle of interest. Crosstalk

is a difficult problem to overcome since the tissues between and within the muscles are

inhomogeneous and anisotropic, causing multiple diffractions of the electric field vectors at

the discontinuities and generate multiple paths of differing impedances between the source

and the detection sites, causing the detected signal to be filled with artifacts. De Luca

(1997) considers using a double differential setup the optimal way for dealing with crosstalk.

Crosstalk can also be detected by analyzing the bandwidth of the signal - whereas local EMG

produces broad frequency spectrums, signals from more distant muscles that suffered spatial

filtering during travel will come at more discrete frequencies.

Finally, the following are examples of deterministic factors:

• The number of active motor units.

• Motor unit force-twitch.

• Mechanical interaction between muscle fibres.

• Motor unit firing rate.

• The number of detected motor units.

• Amplitude, duration and shape of the muscle unit action potentials (MUAP).

• Recruitment stability of motor units.

2.2.2 Acquisition, Preprocessing and Feature Extraction of the Raw EMG Signal

The raw, unprocessed signal of surface EMG, obtained immediately at the electrodes, is essen-

tially useless (De Luca, 1997). It suffers from several problems that make it very hard to extract

any sort of information, unless properly treated. The stages that precede motion estimation can be

summarized as three (Bi et al., 2019): acquisition, amplification and sampling of the EMG signal,

preprocessing of the sampled signal and, finally, feature extraction from the stream of EMG input

data. Over the next few pages, the process required to transform the raw EMG signal into an

extremely rich source of data will be comprehensively detailed.
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Acquisition and Amplification

Firstly, the EMG signal has to be measured using a differential setup. This is due to its low

amplitude in relation to other environmental signals that could otherwise easily interfere with it

(De Luca, 1997). This differential arrangement acts as a comb band-pass filter or, if the spacing

between electrodes is chosen so as to not alias the EMG signal, the differential electrode should

behave as a high-pass filter, since the entire spectrum of the signal fits in the low end of the band-

pass filter (De Luca, 1997). As mentioned before, the differential setup greatly helps, too, with

avoiding crosstalk noise in the signal (De Luca, 1997).

The low voltage of the motor unit’s action potentials has to subsequently be amplified and

sampled, as recommended by De Luca (1997), with a CMRR (Common Mode Rejection Ratio)

of at least 80 [dB]. A device’s CMRR is the ratio between the differential voltage gain to the

common mode gain (Fischer-Cripps, 2002). That is, if a signal was to be applied equally to both

inputs of an operational amplifier (a common mode voltage), so that the differential input voltage

was unchanged, the output should, in theory, be unaffected. In practice, there is a deviation in the

output voltage that stems from this common mode voltage and is related to the differential voltage

gain. This relationship is what the CMRR describes. A CMRR of at least 80 [dB] allows for the

rejection of common mode noise with some degree of certainty.

According to the Nyquist sampling theorem, the rate at which a signal is sampled should be

at least twice the highest frequency of interest in the signal. The brunt of the surface EMG signal

is capped at around 500 [Hz] (De Luca, 1997) and the higher frequencies are largely explained by

noise and other artifacts, as seen before. To prevent aliasing problems, the signal should, in theory,

be sampled at a frequency of, at least, 1000 [Hz]. A sampling rate of about 1000 [Hz] does seem

to be the norm across the literature, even though values of 2000 [Hz] (Theurel et al., 2018), 4000

[Hz] (Colebatch et al., 2016) and 5000 [Hz] (De Luca et al., 2010) were also found. In the cases

where sampling rate was different from the norm, no explanation was found.

Sampling at rates below 1000 [Hz] is generally against convention. Nevertheless, the disad-

vantages of using higher sampling frequencies are clear - the components have to be more powerful

and the control loop faster. By opposition, using a lower sampling frequency allows costs to be

slashed, components to be smaller and the system response speed to be faster (Li et al., 2010). Li

et al. (2010) tested the effect of sampling rate on the classification performance of an LDA (Lin-

ear Discriminant Analysis, refer to Section 2.3.1 for a study of intention estimation algorithms)

classifier for 11 motion classes. The original sample, obtained at a sampling rate of 1000 [Hz]

and band-pass filtered (5 to 400 [Hz]), was downsampled with sampling rates ranging from 1000

[Hz] to 100 [Hz], in increments of 20 [Hz]. The authors found a meaningful relationship between

classification accuracy and sampling rate, as depicted in Figure 2.10.

However, the loss of classification accuracy between 1000 [Hz] and 400 [Hz] was not found

to be statistically significant (p = 0.15, t-test), the second being 1.3% lower than the first. Oppo-

sitely, when downsampling to 300 [Hz], the classification accuracy drop of 2.3% was found to be

statistically significant (p = 0.02, t-test). In short, the authors asserted that sampling rates as low
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Figure 2.10: Classification accuracy of an LDA classifier versus sampling rate in five able-bodied
subjects. For sampling rates above 400 [Hz], the loss of accuracy was found to be statistically
insignificant. Source: Li et al. (2010).

as 400 to 500 [Hz] could be optimal when attempting to control a powered prosthesis in real time.

Noise Reduction and Filtering

Common mode rejection is just the tip of the iceberg when it comes to addressing noise in

surface EMG data. Aside from mandating amplification, the low voltages at work in electromyo-

graphy represent a massive vulnerability to noise. De Luca et al. (2010) distinguishes several

factors as potential sources of noise, separating them into baseline noise and movement artifact

noise, as shown in Figure 2.11. Baseline noise is attributed to both extrinsic noise sources and

intrinsic noise sources. Extrinsic noise sources, which can be targeted with modern electronics

and proper circuit design, are:

• Power line noise;

• Cable motion artifacts.

Intrinsic noise sources are generally static and their attenuation is thus easy to ensure. Accord-

ing to the authors, they are:

• Thermal noise originated in the electronics of the amplification system;

• Chemical noise originated at the skin-electrode surface.

Movement artifact noise, on the other hand, is due to the relative motion of the motor units to

the electrode, more specifically:

• The relative motion between muscle and skin;
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• External forces travelling through the body.

And is, therefore, highly time-variant with a lot of underlying dynamics. For this reason, it

typically constitutes the brunt of the intellectual obstacle.

Figure 2.11: De Luca et al. (2010) studied the effect of baseline noise and an induced movement
artifact noise in the sEMG signal and the performance of different high-pass filters when dealing
with these inconveniences. The time domain and frequency domain characteristics of (A) the
baseline noise (obtained during a 0% MVC), (B) the sEMG signal (naturally contaminated by
baseline noise, obtained during a 50% MVC), (C) the induced movement artifact noise (naturally
contaminated by baseline noise, during quiescent baseline conditions) and (D) the sEMG signal
contaminated by baseline noise and movement artifacts (during a 50% MVC). The spectra of
the individual signals are shown on the right, with the lower traces showing the expanded low-
frequency portion. Source: De Luca et al. (2010).

To remove noise from a signal, knowing what the signal should ideally look like is vital. In the

case of the electrical signals produced by the motor units, it is known that they occur in a bandwidth

range somewhere between approximately 20 and 500 [Hz] (De Luca, 1997). Therefore, an evident

step that should be taken is filtering anything that is out of this range. This can be accomplished in

a plurality of ways. The most straightforward way would be to run the signal through a band pass

filter, but this cannot be done on imprecise guesses of the cutoff frequencies and roll-off. De Luca

(1997) recommends a roll-off of at least 12 [dB/oct].

Regarding the low-pass cut-off frequency, since EMG signals are less intense on the higher

end of the spectrum, various authors use and recommend a value slightly lower than 500 [Hz].
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SENIAM guidelines recommend a near 500 [Hz] low-pass cut-off (Stegeman and Hermens, 2007).

Usually, 450 [Hz] filtering with a 4th order Butterworth (roll-off of 24 [dB/oct], rather sharp to

ensure high frequency noise is promptly eliminated) is done (Whitfield et al., 2014; De Luca,

1997; De Luca et al., 2010).

With respect to the high-pass filtering, a lot more thought is given to the filter selection, by

reason of movement artifact noise being more prevalent at the lowest frequencies. SENIAM guide-

lines recommend a 10-20 [Hz] high-pass cut-off (Stegeman and Hermens, 2007). De Luca et al.

(2010) tested three different values for the high-pass cut-off frequency, at 10, 20 and 30 [Hz].

Exclusively attending to metrics such as signal-to-noise ratio was deemed inadequate, for noise

was still very present at higher frequencies and its removal, while effective, would come at the

expense of equally large amounts of surface EMG information. As a matter of fact, as the cor-

ner frequency was increased beyond 30 [Hz], loss of the EMG signal became more pronounced

than that of movement artifacts. At 40 [Hz], the loss of sEMG was determined to be as high as

13%. The authors highlighted that this issue would be felt the most in less intense contractions of

the target muscles, since the surface EMG signals tend to be the faintest there. Another problem

could arise from the distortion of the frequency spectrum of the signal, which the authors warned

as most pronounced when the corner frequency is the largest. The value recommended by the

authors, which allowed for the highest noise reduction while preserving the most signal, was 20

[Hz].

As mentioned above, another potential source of noise is the power line noise (De Luca et al.,

2010). In an electric circuit, power line noise exists in an extremely narrow interval of frequencies,

ordinarily around a preset nominal value of 50 or 60 [Hz], depending on what the national standard

is. The quintessential way of eliminating this noise is by utilizing some sort of band-reject filtering.

This can itself be achieved in a variety of ways, with notch filters (Mewett et al., 2001), the

regression-subtraction method (Mewett et al., 2001), the spectrum interpolation method (Mewett

et al., 2001) or, surprisingly, state-of-the-art methods such as IIR notch filters with non-zero initial

conditions (Piskorowski, 2013).

IIR filters, or Infinite Impulse Response filters, are a type of recursive filters, that is, filters

that not only use past input values as a means to produce an output, but additionally consider past

outputs in their computations (Smith, 2003).

These filters offer frequency selective gain, and can thus function as band-pass or band-reject

filters. Figure 2.12 shows the frequency responses for the band-pass (a) and the band-reject (b)

filters, as well as the band-reject step response (c). The band-reject variant, id est, an IIR notch

filter, comes in extremely handy, for it is capable of filtering out very specific noise, in this case,

the 50 [Hz] power line “hum”.

Rectification and Smoothing

The instantaneous value of sEMG is seldom useful due to its random nature. As De Luca

(1997) notes, the instantaneous value of sEMG has a large stochastic component that is highly
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Figure 2.12: The IIR band-pass and band-reject filters. One the left, the frequency response for the
IIR band-pass filter, in the middle, the frequency response for the IIR band-reject filter, or notch
filter, and, on the right, the step response for the notch filter. There is some visible overshoot and
ringing in the step response of the notch filter, but it should be noted that it is not expected to have
a significant impact on the EMG signal. Source: Smith (2003).

variable around a mean value. On account of this, the signal has to be smoothed to extend the

action potential spikes and improve the quality and fidelity of the sample.

Unfortunately, the bipolar nature of the EMG signal implies that the habitual smoothing tech-

niques, like time-domain filters and high-selective acquisition systems, don’t work, seeing that the

average of a symmetric, bipolar signal should be, to some approximation, zero. What is more is

that datasets with an average of zero are not particularly useful from a statistical analysis stand-

point. If the measured signal doesn’t average zero, correction for baseline offset can be performed,

for instance, by subtracting the mean from all data points (Bi et al., 2019). There are two main

methods for getting around this problem (Negro et al., 2015): rectification and Fourier transforms.

The repercussions of the application of Fourier transforms are complex and its use fairly rare and

will therefore not be broached here.

Rectification consists of taking the absolute value of EMG, achieved by either eliminating

the negative portions (half-wave rectification) or changing the signal of the negative part (full-

wave rectification) (Figure 2.13). It is an exceptionally trivial process with advantages that are

quick and clear to understand. Its impact should not, however, be understated. At the end of the

day, it consists of a non-linear transformation of the signal, which can have serious, unexpected

consequences when attempting to extract features and apply regression algorithms (Negro et al.,

2015). The truth is rectification acts, beyond intended, as a low-pass transfer of function and as

such dampens the higher frequency components of the signal. This morphs the original frequency

spectrum into something else, makes the end result more sensitive to the duration and magnitude

of action potentials and can introduce peaks of coherence in the signal, that is, false patterns

can appear in the rectified EMG that were otherwise nonexistent in the original electromyogram

(Negro et al., 2015).

If certain data points are considered frivolous or extravagant, removal of outliers or applica-

tion of thresholds can be considered. This should only be done after most data transformations,

to prevent unnecessary warping of the data. With regards to removing outliers, the most com-

mon approach other than smoothing (which will be covered just next) would be to exclude all
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Figure 2.13: A rectifier’s voltage output for an input sinusoid. Full-wave rectification returns the
absolute value of the input, whereas half-wave rectification only returns the positive parts of the
original sine wave. Source: ROHM Co., Ltd. (2020).

data points that are positioned a minimum number of standard deviations away from the mean

(Whitfield et al., 2014). The usage of thresholds, on the other hand, can be slightly more nu-

anced. Roberts and Gabaldón (2008) recommends removing all data that is within one to two

standard deviations of the signal. Naturally, removing data can have unintended consequences, so

it shouldn’t be done arbitrarily. Nowadays, thresholds are valued the most in feature extraction of

unique characteristics for motion intention estimation.

At last, smoothing can be performed. The smoothed signal, as was previously mentioned, is

a more reliable, more stable version of the original signal. For the most part, smoothing removes

outliers and stochastic patterns in data, making it in total less noisy, at the potential cost of infor-

mation. The smoothed signal boasts multiple treasured properties, though, that can make it better

suited for regression algorithms and machine learning (Rocha et al., 2012), the prevalent means of

interpretation and information extraction in the field.

The run-of-the-mill smoothing method, simple, effective and uncostly, is applying moving av-

erages (rolling averages) in the time domain, effectively replacing every data point sampled to the

moment, within a time window of length Ta (Figure 2.14), for the average of all data points in that

same window, just like an uniform one-dimensional filter. Moving averages can, alternatively, be

weighted, like the Hamming and Hanning windows, as well as triangular and rectangular windows

(Rocha et al., 2012). Window lengths vary significantly across literature, more often than not be-

tween 10 and 500 milliseconds (Rocha et al., 2012). Nevertheless, the selection of the window

length is not trivial.

According to Smith et al. (2011), the implications of moving averages are such that any given

estimation at any point in time results from all data points sampled during the pertaining analysis

window. This estimation consists of a computation that puts an algorithm into effect, ultimately

introducing a delay, equal to the processing time, Td (Figure 2.14), of a single step of said al-

gorithm, into the control process. Simultaneously, the system is also generating new batches of

samples, and the time needed to advance the analysis window is given by Tinc (Figure 2.14), that

is, the length of the window increment. As Td approaches Tinc, idle time converges to zero and

the processing stream becomes as dense as possible. If Td is bigger than Tinc, the system will end

up skipping samples, and thus data is lost and the actual processing delay is increased, due to idle

time. Since a movement command results not only from the samples from the latest increment,
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Figure 2.14: Relevant time frames of the EMG signal during processing. Ta, the length of the
moving window, Tinc, the time increment needed for the next iteration, and Td , the time needed to
process the last window of data. Source: Smith et al. (2011).

rather from all the samples taken during the totality of the analysis window, delay is not only a

function of the processing time, Td , but also of Ta and Tinc.

This would make it tempting to significantly reduce the moving window average length, how-

ever, as Lock et al. (2005) showed, the average classification error increases with shorter window

lengths. Smith et al. (2011) confirmed that lengthening the window led to higher accuracy in

movement estimation, since the classifiers had more data to work with at each iteration, up until

the point where the delay increased so much that the estimations caused overshooting. In addition,

even before this point, increasing the delay had its disadvantages, as it generally led to a decrease

in user-friendliness of the system, since users noticed the interference of excessive delay with their

intents. Ultimately, the authors (Smith et al., 2011) determined a window length of 250 [ms] to be

the best choice.

A more sophisticated alternative that has been explored a few times in the literature is to em-

ploy an adaptive window length. It has been shown that window length should be varied depending

on certain factors, such as walking pace (Lobov et al., 2019). In principle, the dependence of out-

put signal characteristics on the length of the smoothing window could, too, justify an adaptive

window and a general rule could be formulated as such: as the EMG amplitude changes more

rapidly, the window length should be decreased, and if the rate of changes decreases, the win-

dow should be widened. Regardless, studies are yet to show sufficiently conclusive results that

legitimize adaptive transformation’s increased computational costs (Lobov et al., 2019).
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Normalization, EMG-Force Relationship and Feature Extraction

One of the greatest downsides of the EMG signal is that when rectified and sufficiently smoothed

for use, it shows very little quantitative relationship to the torque about a joint, and even if the ex-

istence of a qualitative relationship is clear, the instantaneous EMG signal is mostly random (De

Luca, 1997).

There are a variety of factors that impede such a straightforward quantitative approach to be

used with EMG signals. As is well established, the ideal conditions for studying surface EMG

sinals is during isometric contractions, which is of little interest when devising, say, a proportional

myoelectric control system (refer to Section 2.3.1). The presence of movement artifacts in EMG,

as previously seen, is well documented (De Luca et al., 2010), and surface EMG, specifically,

suffers from significant nonstationarity of the signal caused by relative motion of the electrode to

the motor units. When studying EMG signals in anisometric contractions, De Luca (1997) recom-

mends splitting the analysis into multiple near-isometric epochs of the record and extrapolate from

there. In applications where periodic movements are expected (for example, in gait), the epoch

could be extended to a whole period.

Nonetheless, even when restricting sampling to short epochs, the EMG-force relationship is

hardly rigid. For starters, the electrode only covers part of the muscle activity, so it is essentially

a sample that can easily get biased if motor unit activation isn’t completely uniform. This is why

HD-EMG (High Density EMG), sensors that cover a muscle with tens or hundreds of electrodes,

has recently been gaining noticeable traction (Bi et al., 2019). Unfortunately, while it is well-

established that increasing the number of electrodes leads to performance improvements, Hahne

et al. (2014) showed that diminishing returns could plague HD-EMG and lead to a quick saturation

of performance.

In addition, as De Luca (1997) notes, the EMG-force relationship is highly nonlinear, showing

saturation of force and different patterns of recruitment depending on muscle composition (not

all muscles show the same relationships between developed force and its respective surface EMG

signal, as shown in Figure 2.15), loading of the joints, patterns of muscle activation during an ani-

sometric contraction (as the load, say, the limbs, moves through space, the required torque changes

with time) and muscle length and geometry. In more complex, compound movements, compen-

satory strength is, evidently, another problem that can confound interpretation of the sEMG signal.

A common practice is to normalize the data with respect to the maximal isometric force a

subject can generate at a monitored joint. Nonetheless, there is evidence that this is not without

downsides (De Luca, 1997).

Unfortunately, there is no certainty that the so-called maximal isometric force is, indeed, max-

imal. There’s a reasonable chance that the subject’s contraction might have been sub-maximal. On

the other hand, this force might not have originated in exactly the way the researchers assumed.

Compensatory strength mechanisms might be at play. In order to estimate, to one’s best ability,

the maximal isometric force, the individual must be tightly restrained during the contraction, in an

effort to minimize compensatory contributions of other muscles. This is obviously a convoluted,
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Figure 2.15: Normalized force-EMG relationships for three different muscles, with force charted
as a percentage of the force developed during MVC. Source: De Luca (1997).

impractical task that requires extensive knowledge of biomechanics. De Luca (1997) suggests a

strategy for determining the maximal isometric contraction EMG response. The author also sug-

gests not using the MVC when normalizing the data and using about 80% of it, since the absolute

maximum value would be too unstable and unreliable.

Consequently, when trying to estimate motion intention, the recurrent practice is to extract,

besides the smoothed, rectified EMG signal, called the MAV (Mean Absolute Value), several

other features. This is called feature extraction, and the result is a feature vector, a representation

of features reduced from the raw EMG data that, in theory, better and more accurately describe the

data that is being recorded by the system (Phinyomark et al., 2013). Features can also be selected

as a mechanism of eliminating noise. This is done by selecting for features that are less sensitive

to, say, white Gaussian noise (Phinyomark et al., 2008).

As a matter the fact, the inclusion of feature extraction in the EMG data preparation pipeline

is so commonplace that a variety of features and even sets of features, like the fabled Hudgin’s set

(Hudgins et al., 1993), are, at present, well-defined.

sEMG features can be divided into three distinct categories: time-domain, frequency-domain

and time-frequency or time-scale. Time-frequency features cannot be used by themselves and,

on top of that, suffer from high dimensionality, thus requiring the application of dimensionality

reduction techniques (Phinyomark et al., 2012, 2013). Ergo, they were not further investigated in

the present thesis.

Conversely, time-domain features generally do not require transformations and are easy to use

(Phinyomark et al., 2012, 2013). They are, however, most vulnerable to interference, especially
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when motion is dynamic, particularly those that are energy based. Elseways, frequency-domain

features are most used for characterizing the fatigue of muscles and other spectrum-related phe-

nomena (De Luca, 1997).

Phinyomark et al. (2012) divided time-domain features into four distinctive groups, according

to the type of information provided by them:

• Energy and complexity features: measures of signal amplitude and energy, like the MAV

(Mean Absolute Value), the WL (Waveform Length) and the SampEn (Sample Entropy)

features.

• Frequency information features: like the ZC (Zero Crossings), the MYOP (Myopulse Per-

centage) and the WAMP (Willison Amplitude).

• Prediction model features: features that fit regressions to the signal, like the AR (Auto-

Regressive Coefficients) and the CC (Cepstral Coefficients) features (Kang et al., 1995).

• Time-dependence features: measures of the signal’s behaviour across time, such as MAVS

(MAV Slope).

Regardless of final choice, the following remains true: not all features are created equal. Nu-

merous studies have been conducted in an attempt to determine which features and sets of features

provide the highest level of unique and valuable information for classification and proportional

control purposes, the former being the most frequent motivation of the two.

Most research pertaining to myoelectric control systems (MSCs) is performed over discrete in-

tervals of time, in relatively brief experiments. While some efforts have been done to study EMG

and its classification algorithms across long periods of time, they’re not common. Phinyomark

et al. (2013) investigated the robustness of fifty time-domain and frequency-domain features to

the consequences of recording fluctuating EMG across a period of 21 days, with five to six trials

per day. The authors compared the performance of LDA (Linear Discriminant Analysis), a robust,

low-cost, high performance classifier, to two other classification algorithms, RF (Random Forests,

an ensemble of decision trees) and QDA (Quadratic Discriminant Analysis, a technique that gen-

eralizes LDA to quadratic surfaces, rather than linear). The classifiers were also tested for three

overlapped window sizes ( Ta of 125, 250 and 500 [ms]) and three increment interval sizes (Tinc of

62.5, 125 and 250 [ms]).

The best performing robust single feature was, across the board, SampEn (Zhang and Zhou,

2012), with a 93.37% accuracy. As expected, classification accuracy was found to increase with

sets of more than one feature. The best performing two, three and four feature sets were, respec-

tively, SampEn + CC, SampEn + CC + MAV2 (Modified Mean Absolute Value 2, Oskoei and Hu

(2008)) and SampEn + CC + RMS (Root Mean Square, Kim et al. (2011)) + WL or AAC (Average

Amplitude Change, Kim et al. (2011)), the last with a 97.75% accuracy. It should be noted that the

CC feature represents, by itself, a four-dimensional vector, so the four feature set has, in actuality,

a dimension of seven.
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In addition, LDA yielded the best performance out of all three classifiers, as seen in Fig-

ure 2.16, not only in classification accuracy, but in variability and computational cost. The 500

[ms] window provided the highest performance, however the increase from 250 [ms] was barely

noticeable, in contrast to the jump from 125 to 250 [ms]. The impact of Tinc was deemed negligible

by the authors.

Figure 2.16: Average classifier test accuracy (%), as determined by Phinyomark et al. (2013),
for the best single and multiple-feature sets, when trained in the first five trials using the LDA,
RFS and QDA algorithms, with a window size of 250 [ms] and and increment interval of 125
[ms]. Error bars correspond to the first standard deviation for each bar. Source: Phinyomark et al.
(2013).

In thermodynamics, entropy is a measure of the total number of possible microscopic states

that a system can adopt, given its macroscopic state. When applied to other fields, the concept of

entropy can provide information on the complexity, randomness and rate of information creation

of a dynamic system. With regards to the EMG signal, a time series, entropy should, in theory,

be capable of measuring alterations of state and detect the onset of muscle activation, as a burst

of voluntary muscle activity would be accompanied by a similar increase in complexity, which

should not be the case for spurious spikes of activity.

These spurious spikes of muscular activity are an unexpected downside of the advancement of

signal acquisition technologies (Zhang and Zhou, 2012). As signal fidelity improves, the greater

signal to noise ratio of surface EMG has the unintended consequence of exposing most traditional

EMG features to spurious background spikes, caused by anomalous motor unit activity (all the

more important in stroke and spinal cord injury patients), momentary electrode displacement,

electrical interference and other parasitic sources, that they wouldn’t, otherwise, be as sensitive to.

Zhang and Zhou (2012) compared the Sample Entropy feature with two other onset detection

strategies, the AMP-based method (amplitude thresholding of rectified EMG) and a TKE-based

method (a Teagar-Kaiser Energy operation on raw EMG). The latency of the SampEn detection

threshold was found to depend on the sample’s SNR. In spite of showing a middle-of-the-pack
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latency for low noise samples, SampEn vastly outperformed all other features for the noisy data

group, with an averaged onset detection latency of a mere 20 [ms] and a comparably small variance

at that.

Given a data series N = {x1,x2, ...,xN} with a constant time interval τ , SampEn is the negative

natural logarithm of the probability that two similar sequences of equal length m remain similar

at the next point m+ 1, by counting each vector over all the other vectors except on itself. The

mathematical expression for the sample entropy, given a time series of length N with a constant

time interval τ and a template vector of length m, is expressed in Equation 2.1 (Zhang and Zhou,

2012):

SampEn(m,r,N) =− log
[

Am(r)
Bm(r)

]
(2.1)

where Am(r) and Bm(r) are the number of template vectors at a distance, respectively, greater and

shorter than r. r, computed according to a distance function (typically the Chebyshev distance),

quantifies the similarity between the two template vectors. Phinyomark et al. (2013) recommends

values of 0.2 and 2 for the variables r and m.

The cepstrum (the name derived by reversing the order of the first four letters of spectrum) of

a signal is defined as the inverse Fourier transform of the logarithm of the magnitude of the power

spectrum of the signal data (Zecca et al., 2002). The cepstrum of a signal provides information

about periodic structures and the underlying dynamics in a signal’s frequency spectrum - it is, in a

sense, the spectrum’s spectrum - and has multiple applications in signal processing.

Unfortunately, as discussed in Section 2.2.2, the instantaneous EMG signal is highly stochas-

tic, nonstationary and nonlinear. In consequence, to obtain its power spectrum, an approximation

is necessary. In a short time interval, it can be regarded as a stationary Gaussian process and xk, the

signal’s magnitude at a set time k, modeled with an nth order autoregressive (AR) model (Zecca

et al., 2002), such as:

xk =
n

∑
i=1

ai xk−1 + ek (2.2)

where ai are the model’s coefficients and ek is the residual white noise. The coefficients can be

obtained through an optimization algorithm.

Now that an approximation to the EMG signal is available, its cepstrum can be determined.

The system function H(z) for the AR model in the z-domain is:

H(z) =
1

n

∑
l=1

(ai z−1)

(2.3)

As already mentioned, the signal’s cepstrum is the inverse Fourier transform of the logarithm

of the magnitude of the power spectrum:
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C(z) = ln(H(z)) =
∞

∑
l=1

ci z−1 (2.4)

Substituting Equation 2.3 in Equation 2.4, differentiating both sides with respect to z−1 and

equating the coefficients of like powers of z−1, the Cepstral coefficients can, at last, be computed

directly from the AR model’s coefficients (Kang et al., 1995):

c1 =−a1

ci =−ai−
i−1

∑
l=1

(
1− l

i

)
al ci−l, 1 < i≤ P

(2.5)

where P is the AR model’s order, i.e., it means that the approximation for the cepstrum should

have an order, at most, as high as the AR model’s. An order of 4 was chosen for both the AR

model and the cepstral regression, with each coefficient being fed into the algorithm as a distinct

feature.

The root mean square (RMS) has an extremely simple mathematical definition, being:

RMSk =
1
N

N

∑
i=1

x2
i , ti ∈ [tk−1, tk] (2.6)

Its simplicity should not, nevertheless, detract from its worth. It is, still, one of the most

widely used features for quantifying the magnitude of a sample and, in EMG analysis, it holds

great descriptive power (De Luca, 1997).

A signal’s waveform length is the cumulative length of the signal over an interval of time,

that is, it is the sum of the absolute of all differences between every consecutive point in the time

segment (Zecca et al., 2002):

WLk =
N

∑
i=1
|∆ xi |, ti ∈ [tk−1, tk] (2.7)

Not only does it provide information regarding the signals amplitude, its sensitivity to fre-

quency makes it a carrier of frequency and time information, too.

2.3 Control Strategies for Powered Exoskeletons

Exoskeletons are, essentially, human-robot collaborations (Bi et al., 2019). Unlike cooperation

tasks, in which the human and the robot are unaware of what the other is doing and, instead,

focus on their job, which is complete when both parts have performed their respective functions,

collaboration tasks require a much higher level of interaction, such that both partners need to

know, at all times, where their partner is, in order to ensure not only a swift performance but

also the safety of both agents. To this end, human-robot collaborations require a vastly superior

amount of information, gathered from sophisticated sensors, inferring power, present in the form
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of advanced control algorithms, and fast, effective feedback, to avoid, at best, conflict of interests.

A diagrammatic representation of an exemplary control system behind a powered exoskeleton can

be seen in Figure 2.17.

Figure 2.17: A possible control solution for a powered exoskeleton, with sensors, EMG-based
intention estimation and torque control. The measured quantities could be angular positions, ve-
locities, inertial measurements, etc.

This section pertains to the control strategies and modes used in powered exoskeletons.

2.3.1 Main Types of Control Strategies

Once all stages of EMG data treatment are complete, the newly acquired information is ready

to be fed into the control algorithm. Generally speaking, there are two types of control method-

ologies in EMG-based intention estimation (Bi et al., 2019): model-based and model-free.

2.3.1.1 Model-Based Control

In model-based control, a relationship is established between variables of the problem, allow-

ing for the development of a model that is grounded, to some degree, in reality. They can be

kinematic, dynamic or musculoskeletal, and are the basis for the control system, that acts within

the model constraints. Model parameters are adjusted until the model behaves as expected.

Kinematic Model
Kinematic models are simplified models that do not take into account inertial properties of

the human bodies and the devices (Bi et al., 2019). Instead, they deal only with movements,

trajectories, velocities, accelerations, and orientations. The human is thus modeled as a set of

several rigid limbs that are connected through joints that have a determinate number of degrees of
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freedom, with the intent of replicating human kinematics. This results in a relatively concise model

that does not require extensive anatomical knowledge, apart from basic functional and anatomical

understanding of the human body.

When dealing with upper limb exoskeletons, the kinematic model (Bi et al., 2019) is frequently

employed with a total of 7 degrees of freedom (if the upper limb model is unilateral), that is, three

for the shoulder joint, two for the elbow joint and two for the wrist joint. Fingers are typically not

considered in this approach.

Evidently, kinematic models suffer from egregious accuracy problems and are barely applica-

ble when energetically dynamic motion is expected.

Dynamic Model
In essence, dynamic models are an extension of kinematic models. By considering, in addi-

tion to the baseline kinematics, the weight and mass distributions of limbs, they allow for a very

accurate representation of the dynamics of the human body. This is oftentimes used in tandem

with muscle force estimation from either EMG signals or FSRs (Bi et al., 2019).

When it comes to the implementation and parametrization of these models, the control algo-

rithms can be quite varied. Both run-of-the-mill least squares optimization algorithms and state-

of-the-art artifical neural networks can be found in the literature (Bi et al., 2019), to the point

where choice becomes terrifically dependent on project objectives and restrictions.

Musculoskeletal Model
If dynamic models improve on kinematic models, musculoskeletal models go above and be-

yond to precisely mimic the properties, characteristic behaviours and dynamics of the limbs being

studied, taking into account the stark differences between the tissues, organs and structures that

make up each limb and body part, because, ultimately, they have an effect on the mechanical

behaviour of the human-robot system.

The level of complexity can vary immensely, yet the predominant approach is the Hill muscle

model, that reduces muscles to a contractile component (CC) in series with an elastic component

(SEC) (Miller, 2018), in order to somewhat approximate the muscle behaviour, dynamics and un-

derlying relationships between relevant variables. The redundancy of human kinematics becomes

chiefly pertinent in this approach, posing a great challenge (Bi et al., 2019).

2.3.1.2 Model-Free Control

With model-free control, rather than grounding the control system’s inferential capabilities in

palpable analytical relationships, the curated EMG data is fed into a classification or regression

algorithm that internally establishes black-box type relationships between the input variables and

the intended output behaviours.

Classification and regression algorithms are used in EMG-based control function in identical

ways. Put simply, they receive a set of inputs that are mapped to a set of outputs and the whole

algorithm is optimized in an effort to achieve the best predictive performance (Bi et al., 2019).
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When the algorithm is a classifier, the inputs are used to estimate if the user is enacting a certain

pattern of movement or a specific static position, and the control system’s performance hinges

on the aggregate accuracy of all classifications. When the algorithm is a regressor, then a math-

ematical relationship is established between the inputs and the outputs, and the control system’s

performance is evaluated by a measure of the quantitative difference to the real values.

The complexity of such an algorithm depends on the researchers’ goals and knowledge and

is, fundamentally, a trade-off between computational cost and performance. As an example, an

algorithm as simple as an ON/OFF threshold for EMG could be employed, but its performance

would be poor at best. By contrast, an infinitely complex algorithm could make picture perfect

predictions, but it would take eons to compute. For both classification and regression, the state-of-

the-art approach is to train a machine learning algorithm (Gull et al., 2020).

Classification algorithms, however, even when extremely accurate, might not be the ideal con-

trol strategy, given that human motion is continuous and, therefore, the type of control that mimics

humans best is continuous, proportional and simultaneous. As a matter of fact, most commercially

available prostheses forego using classification algorithms altogether (Jiang et al., 2014). This is

the reason why a much greater emphasis will be placed, throughout this work, on regression algo-

rithms.

Classification Algorithms

When it comes to classification, the prominent technique is the SVM, or Support Vector Ma-

chines, machine learning algorithm (Gull et al., 2020; Roy et al., 2020). In the literature, a vast

number of algorithms and machine learning-based control strategies can be found, like KNN (K-

Nearest Neighbours), RF (Random Forests), ANN (Artificial Neural Network), NB (Naïve Bayes),

etc. As (Roy et al., 2020) note, RF, ANN and SVM seem to, at present date, provide some of the

best prediction accuracies.

Regression Algorithms

Regression algorithms, better known in the field as proportional myoelectric control algo-

rithms (Xiao, 2019) or continuous EMG-based control (Bi et al., 2019), are not as widespread as

classification algorithms. This is mainly due to the increased difficulty caused by the nonexistence

of a clear, linear relationship between EMG and developed force in the muscles, as seen in Section

2.2.2.

This inherent nonlinearity of the EMG signal tends to favour nonlinear methods, which have

recurrently been shown to obtain the best performances (Hahne et al., 2014). This is not to say

linear methods are without any advantages. For one, linear algorithms are comparably inexpensive

from a computational point of view and suffer from less overfitting issues. For a more detailed

description of overfitting and the bias-variance trade-off, refer to Section 4.3.2.

In addition, Hahne et al. (2014) showed that transformations can be used to linearize the EMG

data and subsequently improve the linear method’s estimation performance. The authors also split
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the data into positive and negative displacements and attributed a different linear regressor to each

set, which was proved a success.

There have already been several techniques and methods presented in a large number of papers

(Gopura et al., 2016; Bi et al., 2019; Hahne et al., 2014). Weighted regressions, support vector

machines, artificial neural networks and fuzzy control are some of the broad types of control

archetypes found in the literature, usually present with smaller attempts at innovation. Other

attempted algorithms include nonnegative matrix factorization (NMF) (Jiang et al., 2014), mixture

of linear experts (ME) (Hahne et al., 2014), multilayer-perceptron (MLP) (Hahne et al., 2014) and

kernel ridge regression (KRR) (Hahne et al., 2014), etc.

Xiao (2019), for instance, proposed a universal control strategy, as shown in Figure 2.18, for

joint angle estimation based on SVM that, in tandem with a PID controller with feed-forward ac-

tion, achieved proportional myoelectric control of a cable-conduit mechanism-driven upper limb

exoskeleton. The control method was labelled universal, in view of the advantage of being inde-

pendent of the model and, therefore, applicable to different joints and, even, multiple-joint motion.

The feed-forward compensators were added to correct flat peaks in the output joint angle when the

motion direction is changed.

The integral signal of sEMG was selected as the feature of sEMG in that work. Previously,

RMS and the linear envelop of RMS had been used as features, still the integral signal of sEMG can

be easily obtained with an integrated circuit, which allows for significantly faster feature extraction

than when using a logical computation. In addition, time-delayed instances of these features were,

too, fed to the machine learning algorithm. The authors hypothesized that time-delayed features

would improve the predictive behaviour of the model, given the fact that these time-delayed feature

signals of sEMG contain additional information that is crucial to the motion of the limbs and,

conceivably, relates to the real electromechanical delay that exists between muscle activation and

limb movements. The LSSVM model was optimized using a particle swarm optimization method

and the value of RMSD was applied as the evaluation criteria.

The results in performance for the three methods were shown to be very similar and all three

showed great improvements when using the time-delayed features. Overall, use of the time-

delayed feature signals of sEMG and the feed-forward controllers was proved successful in im-

proving estimation performance. The controller type, specifically, succeeded in showing that these

additional control mechanisms can help with minimizing the hysteresis of cable-conduit exoskele-

tons, at a lesser computational cost than, say, an adaptive controller.

More papers have delved into the potential benefits of time-delayed features. Xiao et al.

(2018a) used multiple feature signals and their time-delayed signals in an attempt to improve

performance in motion estimation. Being a very high dimensional set of data, the authors opted

for a random forests (RF) algorithm as the solution. Even though they were used here as regres-

sors, for EMG-based intention estimation purposes, they are more often employed as classifiers.

A more detailed description and explanation of random forests can be found in Section 4.3.4.

Xiao et al. (2018a) thus compared their RF algorithm with MTDF (Multiple Time-Delayed

Features) with a BP (Back-Propagated) neural network, a RBF (Radial Basic Function) neural
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Figure 2.18: Diagram of the control system behind the time-delayed feature based LSSVM, with
PID and feed-forward motor control. Source: Xiao (2019).

network and a LSSVM (least squares SVM, due to its simplicity and linearity of solving) with a

Gaussian kernel function. The five hyperparameters of the RF were determined using a Genetic

algorithm, and for the SVM parameters in common with the RF, the same values were used. All

methods were applied with and without the time-delayed features, to investigate the impact of

including them.

Five features were extracted from the EMG signal: MAV, WL, ZC, SSC (Number of Slope

Changes) and DASDV (Difference Absolute Standard Deviation Value), all normalized using a

MVC method. Performance of the estimation was evaluated with RMSD (Root Mean Square

Difference) and RF with MTDF had the best predictive performance. Not only that, all algorithms

performed better with the time-delayed features included.

Neural networks, albeit more complex, seem to be a promising technology. Tang et al. (2014),

for example, used a back-propagation neural network for proportional myoelectric control of an

upper limb power-assist exoskeleton. Selecting the RMS of the sEMG signal as the feature and
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evaluating prediction performance using RMSE, results obtained were satisfactory. Predictive

performance was worst at the limits of the range of the movement, since acceleration was highest

at those points, especially in the shortest interval motions. This goes in line with the theory - as

the dynamics increase, the non-linearity of the sEMG single rises and prediction becomes much

more difficult.

To combat that, a possible solution is to increase the amount of training data. When comparing

the performance of various regression algorithms (LR, ME, KRR and MLP) when predicting hand

movements of wrist flexion/extension and radial/ulnar deviation, the authors found that less train-

ing data considerably reduced performance across the board (Figure 2.19a). Surprisingly, when

cross-validating the mixture of linear experts across training sets of different combinations of tra-

jectories, the sensitivity of the algorithm to the number of training sets was found to be nearly

independent of the trajectories used for training the algorithm, which showed no strong influence

given enough samples (Figure 2.19b).

Figure 2.19: (a) Effect of number of samples for LR, ME, MLP and KRR algorithms on cross-
validation performance (r-square). Curves indicate the median subject and whiskers show the
quarter and three quarter percentiles. Above a minimum acceptable number of samples, the al-
gorithms performed with consistence. (b) Effect of training trajectories for the ME algorithm on
cross-validation performance (r-square). Shown is the median subject. Given enough samples, the
algorithm showed some ability to generalise results to higher dimensional movements. Adapted:
Hahne et al. (2014).

The authors concluded that the mixture of linear experts algorithm was able to generalize

to regions of the dependent variable that weren’t included in the training data set. This is an

even more fascinating finding when taking into consideration the fact that such generalization

happened with multiple degrees of freedom, that is, that small regions of coactivation were enough

to generalize to the whole multi-DOF space.
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In essence, intelligent, intuitive design seems to trump raw computational complexity. When

studying the relationship between offline training and testing and online performance, Jiang et al.

(2014) obtained results that indicate that the former does not necessarily provide a good predictive

performance for the latter. This conclusion serves to highlight the subject’s plasticity and capa-

bility for adaptation in real time. As long as the algorithm works with passable consistence, the

users, who had no experience (naïve subjects) with these sorts of appliances, could always adapt

and learn to work with the control system’s shortcomings, provided enough feedback was returned

to the user. Likewise, despite not being statistically significant, Smith et al. (2011) found a marked

decrease in classification error from the first to the second sessions, which strongly suggests the

users adapted to the system.

Another peculiar finding was that subjects could not tell, with much certainty, which algo-

rithms performed best, nor why. According to the authors, there seems to be no dire need for

“super machine intelligence”. The active, though sometimes forgotten, role of “human embed-

ded control” could be a pivotal contingency in designing successful interactions with imperfect

machines.

These discoveries produce real insights into the nuclear traits that should, in practice, be pur-

sued in proportional myoelectric control systems. Speed, efficiency, consistency and propensity to

overshooting are a few of the core issues to optimize in these applications.

2.3.2 Control Modes

Powered exoskeletons, when used for assistance, can perform functions that, at heart, can be

split in three groups, or control modes. These control modes help define exactly what kind of

aid the robotic exoskeleton will provide. There are three main control modes for robotic assistive

devices (Gull et al., 2020): assistive mode, corrective mode and resistance mode.

Assistive Mode

In an assistive control mode (Gull et al., 2020), the exoskeleton helps the user perform the

movement by providing force to support the limbs, its own weight and perhaps even external

loads. This can be passive or partially assistive control.

Passive control means that the user doesn’t contribute to the movement - the impaired limb is

taken through the trajectory by the robot. Passive control is usually done through passive trajectory

tracking, nonetheless passive mirroring of the healthy limb is another technique that can be found.

It is worth noting that mirroring doesn’t mean symmetric EMG, so one limb cannot be used to

train for the opposite limb (Roy et al., 2020).

Partially assistive control can take many forms, one of the most common being impedance/ad-

mittance control, a model-based force controller with position feedback. In partially assistive

control, the exoskeleton cannot suppress any movement from the user. It is intended to aid the

user in whatever motions they wish to perform.
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This thesis regards an exoskeleton of partially assistive control mode, where an EMG-based

control system estimates the user’s intentions and provides motor aid to perform them.

Corrective Mode
In corrective mode (Gull et al., 2020), the exoskeleton only intervenes when the user makes

errors when performing a set of predetermined movements that, typically, comprise a trajectory.

Once a mistake is detected, the system then guides the user through a portion or the remainder of

the trajectory, to help/force the user to learn the movement.

The most common technique in corrective mode control is tunneling (Gull et al., 2020). This

technique devises a virtual trajectory that is enveloped in a channel, an error band that, when

crossed, acts a force on the user in an attempt to bring the limb back to the trajectory. The force

acts as though a spring impedance connects the limb to the center of the trajectory, increasing in

magnitude if the user distances him/herself from the channel.

Resistance Mode
In resistance mode control, the robot resists the movements in certain directions to help correct

or strengthen motion, and can even stop providing assistance or directly block movement. It does

not, in spite of this, provide any further assistance or correct the movement - users have to complete

it themselves. This can be also employed to reduce tremors (Gull et al., 2020).

2.4 Motion Tracking in Powered Exoskeletons

To evaluate the intention estimates, it is indispensable to employ means to record and measure

the output, in this case, the resulting movement, as issued by the user’s nervous system. A move-

ment can, in generality, be described with one of three components: the trajectory, the velocity at

all times and the acceleration at all times, provided the initial conditions are well-known. This is

called motion tracking. In theory, any of these can be obtained from the others, by integration or

differentiation of the measurements. There are other variables and factors that could be monitored

in an EMG-based control system, but they are not essential to the process and will thus not be

studied here.

The easiest way to track position and motion in an exoskeleton is to keep track of joint angles

at all times. In similarity to what was aforesaid, this can be done with sensors for angle, angular

velocity and angular acceleration. For this purpose, the most common solutions are potentiome-

ters, goniometers, encoders, accelerometers, magnetometers, gyroscopes and IMUs, the likes of

which will be addressed next. Finally, a state-of-the-art algorithm for joint angle estimation will

be detailed.

2.4.0.1 Goniometers

In essence, a goniometer is a device that directly measures an angle or tracks an object’s angu-

lar position in solidarity with it. They come in distinctive variants, such as universal goniometers,
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flexible goniometers and fluid goniometers (Figure 2.20). Interestingly, potentiometer-based go-

niometers have been called potentiometric goniometers in the literature (Tesio et al., 1995).

Figure 2.20: Some variants of goniometers, namely, (a) a universal goniometer being used for
quantifying hamstring flexibility and different models of flexible or strain goniometers. Adapted:
Williams and Welch (2015).

The universal goniometer is a manually operated device with two moving arms that measures

the angle of one arm relative to the other, usually fixed. They are virtually useless in automated

systems.

Flexible and fluid goniometers, also known as electrogoniometers, are extensively used in re-

habilitative applications, especially the flexible goniometer. Originally proposed by Nicol (1987),

this variation consists of a flexible measuring element, a strain-gauge steel strip, mounted between

two plastic end blocks. One end is fixed and the other end is left free to glide, attached to a low-

stiffness spring. The output is proportional to the angle of reciprocal orientation of the two bases

in one or two planes (Tesio et al., 1995). Flexible goniometers are expensive, though reasonably

priced - they are intuitive and precise. In spite of being physically incapable of measuring angles

greater than 180º, this is not an inconvenience when applied to human joints, which have a limited

range of motion.

Fluid goniometers use gravity’s influence on a fluid to change the angular position of that fluid

relative to a moving recipient (Rome and Cowieson, 1996). They consist of circular, 360º tubes

half-filled with a coloured fluid that moves relative to a scale as the device is rotated. The position

of the meniscus determines the position. They are only useful in mostly static or slow applications,

where external accelerations beyond that of gravity have little to no effect in the fluid.

2.4.0.2 Inertial Measurement Units and Sensor Fusion

A sensible way to address the limitations of the foregoing sensors is to fuse multiple sensors

that can counterbalance and complement each other. Sensor fusion is the process of using the
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information provided by more than one sensor, in an effort to aid the system in performing its

intended task. When correctly applied, it provides the control system with a more accurate repre-

sentation of the environment in which it operates. This can be done by taking advantage of certain

design principles (Tzafestas, 2014):

• Redundancy: By using more than one sensor to measure the same quantity, the system be-

comes less vulnerable to problems that target a system in asymmetric ways. It is noteworthy

that they are unable to provide any sort of protection against perturbations that affect the

system evenly and completely.

• Complementarity: Sensors can complement each other and provide different information

that helps create a more complete understanding of the world. This can be done with sen-

sors that measure the same quantities in distinct pockets of space or sensors that measure

disparate quantities.

• Coordination: When sensors complement each other not along spatial dimensions, rather

across time, they are acting in coordination.

In motion tracking, one of the most common sensor fusion techniques is to combine an ac-

celerometer and a gyroscope, the obligatory components of an Inertial Measurement Unit (IMU),

also known as inertial sensors. The addition of a magnetometer results in what is known as an

inertial/magnetic sensor, another type of IMU.

The pairing of an accelerometer and a magnetometer is also a sensible decision - while keeping

the device still or barely moving, the accelerometer should detect almost exclusively the gravita-

tional acceleration of the object and give a sense of its orientation relative to a vertical axis. With

that knowledge, the magnetometer could then provide information on its orientation relative to the

Earth’s magnetic north and finish establishing the device’s absolute orientation in space.

The latter works well in slow and stable movements. Be that as it may, it provides no solution

to the problems that arise when dynamics become increasingly prevalent (Douglas, 2019). Angular

velocities and even variable linear accelerations throw off the accelerometer’s estimation of the

direction of gravity. It becomes unusable. This is where the gyroscope finds its use. A sensor

that measures angular velocity is, indeed, indispensable to the magnetometer and accelerometer

couple. In addition, the magnetometer and accelerometer pairing give the gyroscope the initial

absolute orientation that it needs. In essence, the inertial/magnetic sensor is an excellent example

of fusing complementary sensors.

Finally, IMU’s can help solve the problem of magnetic interference in magnetometer mea-

surements (Douglas, 2019). Most activities of daily living (ADLs) take place in environments

where magnetic disturbances transpire in great number and varying effects. The nature of these

disturbances can be sorted according to the object causing them, and labeled as either hard or

soft iron sources. Hard iron sources are agents that produce a magnetic field of their own, like

magnets, coils and the Earth, generally resulting in offsets in measurements. Soft iron sources, on

the other hand, are objects that interact with magnetic fields without being magnetically charged
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themselves. They tend to distort magnetic fields around them. These sources of parasitic magnetic

activity can be, to a reasonable extent, be taken out of the equation through calibration, especially

if they move in tandem with the sensor.

In powered exoskeletons, the process of calibration then becomes a necessity for ensuring

proper and accurate measurements are performed by the IMU, otherwise the measured joint angles

could be negatively affected (Laidig et al., 2017). It requires precise alignment and configuration

of the measuring units relative to the body segments, such that the joint’s degrees of freedom, their

kinematic constraints and geometric irregularities in the body are accounted for and the sensors

have a common reference Müller et al. (2017).

This process of alignment and calibration can be quite cumbersome. Laidig et al. (2017)

proposed a method for sensor-to-segment orientation estimation of a pair of IMU’s when used

for measuring the angle of a two DoF joint, namely, the elbow. By taking into account the innate

kinematic restrictions of the joint, online computation of the real joint angle is possible without any

specific alignment procedures and calibration motions. The authors showed that their algorithm is

reasonably efficient and can quickly converge to solutions that are in accordance with traditional

optical motion tracking systems.

This technique is invaluable when attempting to develop a consumer friendly wearable pow-

ered device, since precise alignment and configuration can be cumbersome and, even, impractical.

Accounting for the deviations caused by errors in sensor placement requires specific knowledge

that users should not be expected to have. For this reason, this method was an obvious choice for

the present work. In this section, a detailed explanation of the algorithm is given over the next few

pages.

2.4.0.3 Attitude Estimation

In order to compute the relative orientation of the inertial units, sensor fusion is required a

priori to estimate each sensor’s orientation relative to a fixed frame (the World frame, from hereon

denoted by the letter W ).

A 9 DoF MARG sensor measures three 3-axis quantities: acceleration, angular velocity and

magnetic activity. These 9 values have to be fed into a sensor fusion algorithm that extrapolates

the orientation of the sensor’s frame relative to the World frame. Several viable techniques exist

for building what is commonly known as an AHRS (Attitude and Heading Reference System),

since it provides a system with knowledge of its current roll, pitch and yaw, these being measures

of a body’s relative orientation to the World frame (as show in Figure 2.21).

Each algorithm has its own advantages, with some being direct improvements on older ones.

The Complementary Filter and the Kalman Filter are two extremely popular techniques for build-

ing simple, yet very powerful motion tracking devices. Nowadays, the state of the art is composed

mainly of improved versions of popular methods (e.g. the Extended Kalman Filter), recursive

algorithms like the Recursive Optimal Linear Estimator of Quaternions (Zhou et al., 2018) and

complex mathematical techniques like the QUEST algorithm, originally described by SHUSTER
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Figure 2.21: The three measures of an aerial body’s orientation in space. Source: Glenn Research
Center (2015).

and OH (1981). Most of them use purely inertial sensors, others include magnetometers and/or

GPS, etc.

In 2010, Sebastian Madgwick proposed a novel orientation filter in Madgwick (2010), which

later became known as the Madgwick algorithm. It uses a quaternion representation and Gradient

Descent optimization (refer to Section 2.4.0.4 for a representative use case of the Gradient Descent

algorithm) to compensate for gyroscope bias drift and magnetometer distortion, and compute the

body’s current orientation. The method is computationally efficient and extremely accurate. The

mere fact that it compensates for magnetic distortion and is fairly fast to compute make it a stellar

choice for a wearable device.

The output of the algorithm is the sensor’s relative orientation in the World frame in the form

of a quaternion. A quaternion is a 4-dimensional complex number of the general form:

a+b i+ c j+d k (2.8)

where a, b, c and d are real quantities and i, j and k are the complex fundamental quaternion units,

in most use cases equivalent to the orthogonal unit-length vectors that represent the coordinate

directions in a three-dimensional space.

Quaternions are commonplace in computer vision and motion tracking applications, given the

low computational cost of operations involving quaternions and their invulnerability to gimbal lock

(exemplified in Figure 2.22), a problem that plagues more traditional rotation coordinate systems

such as the three-dimensional Euler angles.

The major downside of quaternions is their glaringly less intuitive understanding when com-

pared to customary coordinate systems. On the grounds of clarity of the forthcoming joint angle

estimation algorithm, quaternions can be converted to three-dimensional rotation matrices, which
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Figure 2.22: The gimbal lock phenomenon: when a body’s rotations are (a) tracked with gimbals
(either physical or abstract), (b) certain combinations of rotations can cause two gimbals to become
superimposed, leading to the loss of an effective degree of freedom. In practice, this phenomenon
alone can introduce singularities and other glitches in the interpolation of trajectories, as a body is
taken through multiple positions and orientations. Source: Zeitlhöfler (2019).

are representations of a rotation belonging to SO (3) (the 3D rotation group for all rotations about

the origin in three-dimensional Euclidean space R3).

The sensor’s orientation is, essentially, the rotation it suffered relative to the W frame, and

as such the rotation of a body can be transformed from a quaternion representation to a rotation

matrix representation (Kuipers, 2020):

R =


2(a2 +b2)−1 2(bc−ad) 2(bd +ac)

2(bc+ad) 2(a2 + c2)−1 2(cd−ab)

2(bd−ac) 2(cd +ab) 2(a2 +d2)−1

 (2.9)

where a, b, c and d are the quaternion’s real quantities and R ∈ SO (3).

The relative orientation RB
A (rotation from the second to the first sensor’s frame, as defined in

Figure 2.23) can then be determined from each sensor’s orientation relative to the World frame

such that:

RB
A = RW

A RB
W = RW

A (RW
B )T (2.10)

With RW
1 and RW

2 being obtained from the Madgwick filter based on each sensor’s accelerometer,

gyroscope and magnetometer measurements.

2.4.0.4 Alignment-Free Online Joint Angle Estimation

Müller et al. (2017) describe an algorithm for computing the joint angle without previously

aligning the inertial sensors to their respective body segments or doing extensive calibration. The

technique leverages the fact that the elbow joint is constrained to movement according to its two
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degrees of freedom, flexion/extension and pronation/supination (for a brief explanation of the

anatomy of the human arm, refer to Section 2.1.2). Over the next few pages, the algorithm will be

succintly explained. For a more complete understanding, refer to Laidig et al. (2017), Müller et al.

(2017) and Lehmann et al. (2020).

To start with, it is necessary to determine ωA
AB, the vector three-dimensional angular velocity of

frame B relative to frame A, as seen on frame A. The upper index refers to the frame on which the

angular velocity is mapped and the bottom two indexes indicate that the angular velocity pertains

to the second sensor relative to the first. This angular velocity can be obtained by subtracting the

angular velocities of both frames relative to the World frame W, all defined in the first frame:

ω
A
AB = ω

A
WB−ω

A
WA = RB

A ω
B
WB−ω

A
WA (2.11)

where RB
A is the relative rotation matrix as previously defined and ωA

WA and ωB
WB are the angular

velocities as output by each sensor’s gyroscope.

Figure 2.23: Schematic of the elbow joint model: two segments connected by two revolute joints
(the first, for flexion/extension, the second, for pronation/supination). Frames A and B are those
of IMUs 1 and 2, respectively, which are attached to their corresponding segment in an arbitrary
way. From accelerometer, gyroscope and magnetometer measurements, the IMUs estimate their
frames’ orientation relative to the World frame. By taking into account kinematic constraints, the
directions of the two degrees of freedom can be obtained. Source: Müller et al. (2017).

The two angular velocities relative to the fixed frame can be described in totality by an axis-

angle representation (represented in Figure 2.24), which consists of a unit-length vector represent-

ing the direction of the axis of rotation and a scalar quantity, the angle, in radians or degrees, that

determines by how much the body is rotated around the axis. The relative angular velocity ωA
AB

can then be defined as:

ω
A
AB = α âA +β RB

A b̂B (2.12)

where α âA is the axis-angle representation of ωA
WA and β b̂B is the axis-angle representation of

ωB
WB, with âA and b̂B being the directional unit-length vectors of the joint’s degrees of freedom for
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Figure 2.24: Axis-angle representation of a rotation ~ω . The unit-length vector k̂ provides direction
of rotation and the scalar θ provides the quantity of rotation.

flexion/extension and pronation/supination, respectively, as defined in their respective frames.

These quantities can be determined from measurements, but may not represent the true rotation

axes and angles, especially if alignment and calibration that would account for sensor-to-segment

orientations were not performed in advance. For this reason, an error vector e is to be considered:

ω
A
AB = α âA +β RB

A b̂B + e (2.13)

The errors are not linear and instead vary in magnitude with the magnitude of the angular

velocities at play. A normalized error vector en can be defined as:

en =


α âA +β RB

A b̂B−ωA
AB

(ωA
AB)

T ωA
AB

if
∥∥ωA

AB

∥∥
2 > 0

0 if
∥∥ωA

AB

∥∥
2 = 0

(2.14)

where (ωA
AB)

T ωA
AB and

∥∥ωA
AB

∥∥
2 are two equivalent ways of computing the second order Euclidean

norm of the relative angular velocity.

Finding the true axes and angles of rotation would then consist of optimizing Equation 2.13

such that the error term is as small as possible. This is equivalent to minimizing a loss function,

namely, the quadratic cost function of the sum of the squares of the normalized errors:

J(α,β , âA, b̂B) =
1
N

N

∑
k=1

eT
n,k en,k =

1
N

N

∑
k=1

eT
k ek

(ωA
AB)

T ωA
AB

, ∀
∥∥ω

A
AB

∥∥
2 > 0 (2.15)

where measurements were taken for each interval k for a total of N times.

This problem requires the minimization of a cost function in an eight-dimensional space, that

is, subject to the manipulation of eight different variables, namely, one angle and three coordinates

for each axis of rotation. Nonetheless, given any pair of axes âA and b̂B, provided âA 6= ±RB
A b̂B

(that is, assuming the two degrees of freedom have non-parallel axes of rotation), finding α and β

should be a linear and convex problem, which can be solved using the Moore-Penrose pseudoin-

verse:
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α

β

= (MT M)−1 MT wA
AB (2.16)

where M =
[
âA RB

A b̂B
]
. The problem has thus been reduced to a six variable optimization.

In addition, knowing that the directional vectors are unit-length, they can be mapped to spher-

ical coordinates, where unequivocally ra,rb = 1 and the dimensionality of the problem is further

reduced to four:

aA =


sinθa cosρa

sinθa sinρa

cosθa

 , bB =


sinθb cosρb

sinθb sinρb

cosθb

 (2.17)

The optimization has henceforth been reduced to a minimization about four variables. The

resulting vector of features is:

φ = [θa ρa θb ρb]
T (2.18)

The optimization problem can then be mathematically defined as:

min
φ

J(âA, b̂B) =
1
N

N

∑
k=1

eT
k ek

(ωA
AB,k)

T ωA
AB,k

, ∀
∥∥ω

A
AB,k

∥∥
2 > 0 (2.19)

A number of algorithms can be employed for finding the loss function’s local minima. The

Gradient Descent algorithm is a first-order iterative optimization algorithm for finding the local

minimum of a differentiable function. Every iterative step, the variables are taken in the opposite

direction of the loss function’s gradient, which is known to be the direction of steepest descent in

any surface. Figure 2.25 illustrates the algorithm for the case of a two-dimensional feature vector.

In practice, the algorithm can be applied to feature vectors of higher dimensions.

In the present case, the Gradient Descent algorithm’s feature update rule is:

φn+1 := φn− γ
∂J(âA, b̂B)

∂φ
(2.20)

where γ is the step size. Müller et al. (2017) recommend a starting step size of 0.02 and progres-

sively decreasing it as the algorithm converges.

The loss function is differentiable and its gradient can be simplified to (Müller et al., 2017):

∂J(âA, b̂B)

∂φ
=− 2

N

N

∑
k=1

αk eT
k

∂ âA

∂φ
+βk eT

k RB
A,k

∂ b̂B

∂φ

(ωA
AB,k)

T ωA
AB,k

, ∀
∥∥ω

A
AB,k

∥∥
2 > 0 (2.21)

where RB
A,k, ωA

AB,k, ek, αk and βk can be respectively obtained from Equations 2.10, 2.11, 2.13 and

2.16 with the measurements at time k. The partial derivatives of âA and b̂B are given by:
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∂aA

∂θa
=


cosθa cosρa

cosθa sinρa

−sinθa

 , ∂aA

∂ρa
=


−sinθa sinρa

sinθa cosρa

0


(2.22)

∂bB

∂θb
=


cosθb cosρb

cosθb sinρb

−sinθb

 , ∂bB

∂ρb
=


−sinθb sinρb

sinθb cosρb

0


and

∂aA

∂θb
=

∂aA

∂ρb
=

∂bB

∂θa
=

∂bB

∂ρa
= 0 (2.23)

The joint’s DoF angles can subsequently be computed by comparing the relative orientation

RB
A,k at a time k compared to an initial relative orientation RB

A,0. The rotation matrices can then be

decomposed into three separate axis-angle rotations, using the joint’s axes of rotation âA and b̂B.

Figure 2.25: The Gradient Descent algorithm for a two-dimensional feature vector. X and Y are
the feature axes and Z is the optimization function axis. In this case, the step size of the algorithm
is too large and it fails to converge in a stable manner. Instead, it remains in proximity to the local
optimum. Source: Kathuria (2018).
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2.4.0.5 Computation of Joint Euler Angles

One technique for determining the angles is to compute the body’s Euler angles for the rota-

tion. When representing rotations via Euler angles, the axes of rotation move with the body as it

rotates in space, changing the direction of the axes of rotation themselves. Decomposing a rota-

tion into a set of Euler angles is called Euler decomposition, and a three-dimensional example is

illustrated in Figure 2.26.

Figure 2.26: Decomposition of a rotation into three rotations about Euler angles. The rotation
from xyz to XY Z can be decomposed into three successive rotations about z, x′ and z′′, with α , β

and γ being the Euler angles.

Lamentably, the joint’s axes of rotation are not orthogonal, due to the existence of a carrying

angle between the arm and the forearm (Figure 2.27).

Figure 2.27: The human arm’s carrying angle between the arm and forearm. Source: Cao et al.
(2007).

Euler angles can be computed about non-orthogonal axes, as long as certain assumptions are

met. A more complete proof and explanation of Euler decomposition about non-orthogonal axes
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can be found in Piovan and Bullo (2012).

Let r̂1, r̂2 and r̂3 be three arbitrary unit-length vectors in R3. If r̂2 is neither parallel to r̂1 nor

r̂3, then the following condition:

∣∣r̂T
1 (R− r̂2 r̂T

2 ) r̂3
∣∣≤√1− (r̂T

1 r̂2)2
√

1− (r̂T
3 r̂2)2 (2.24)

Is sufficient for a rotation matrix R∈ SO(3) to admit the Euler angles {θ1,θ2,θ3} ∈ [−π,π[3 about
{r̂1, r̂2, r̂3}:

exp(θ1 [ r̂1 ]) exp(θ2 [ r̂2 ]) exp(θ3 [ r̂3 ]) = R (2.25)

where exp(θi [r̂i]) is the matrix exponential representation of the rotation matrix Ri that performs

a rotation of θi around the unit-length vector r̂i, as defined in Rodrigues’ rotation formula:

~vrot = R(θ [ n̂ ])~v (2.26)

R(θ [ n̂ ]) = I+ sinθ [ n̂ ]+ (1− cosθ) [ n̂ ]2 (2.27)

where~v is an arbitrary vector in R3,~vrot is that same vector rotated around a unit-length vector n̂
for an angle θ and [ n̂ ] is the cross-product matrix operator of unit-length vector n̂, such that:

n̂×~v =


nyvz−nzvy

nzvx−nxvz

nxvy−nyvx

=


0 −nz ny

nz 0 −nx

−ny nx 0




vx

vy

vz

= [ n̂ ]~v (2.28)

The Euler angles can be computed, starting with θ2, which is one of the two solutions to:

(θ2)1,2 = arctan2(b,a)± arctan2(
√

a2 +b2− c2,c) (2.29)

where a =−r̂T
1 [ r̂2 ]

2 r̂3, b = r̂T
1 [ r̂2 ] r̂3 and c = r̂T

1 (R− I− [ r̂2 ]
2) r̂3.

If RT r̂1 6=±r̂3, θ1 and θ3 can, too, be uniquely determined:

θ1 = arctan2(ŵT
1 r̂1× v̂1, v̂T

1 ŵ1− (v̂T
1 r̂1)(ŵT

1 r̂1))

(2.30)

θ3 =−arctan2(ŵT
3 r̂3× v̂3, v̂T

3 ŵ3− (v̂T
3 r̂3)(ŵT

3 r̂3))

where v̂1 = exp(θ2 [ r̂2 ]) r̂3, ŵ1 = Rr̂3, v̂3 = exp(−θ2 [ r̂2 ]) r̂1 and ŵ3 = Rr̂1.

The rotation sequence consists of the flexion/extension, followed by the fixed carrying angle

rotation and, to finish, pronation/supination. In summary, the joint DoF angles at a given time k

can be computed as Euler angles by considering r̂1 = âA, r̂2 =
âA×b̂B

‖âA×b̂B‖2

, r̂3 = b̂B and R = RB
A,k.
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2.5 Actuation in Powered Exoskeletons

To put the foregoing intention estimation techniques into practice, systems capable of convert-

ing algorithmic commands into mechanical power are required. This is achieved through actuators,

usually paired with complementary devices, such as power supplies.

A wearable robotic assistive device has to fulfill a wide range of requirements. First and

foremost, the system’s torque-to-weight and torque-to-volume ratios have to be as high as possible

(Pina, 2018), so as to not overload the already strict weight budget or impede natural movement

trajectories. This can become very problematic and difficult to overcome when the power supply is

considered. For example, the most popular actuator (Figure 2.28), the DC motor, is often powered

by batteries which, although mobile, come with a sizeable increase in weight and volume.

Noise and other comfort-related concerns can, too, impose constraints in the actuator selection.

Pneumatic compressors, for example, are too noisy and too heavy for quotidian use (Pina, 2018).

Perhaps the single most critical factor when designing a wearable robotic device is safety

(Pina, 2018). Be it imprecise movement, limited range of motion, added weight, uneven loading,

leakage of harmful substances, overheating, risk of explosion, the potential for danger is prevalent,

pervasive and unpredictable.

Hence, these characteristics will be delved into to a reasonable, though shallow, extent, over

the next few pages.

2.5.1 Types of Actuators in Robotic Exoskeletons

There are three main forms of actuation in exoskeletons (Gopura et al., 2016):

• Electric actuation: moderately high in power-to-weight proportions, one of the main criti-

cisms to this mechanism of actuation is the excessive impedance when considering rehabili-

tative applications. Additionally, their energy sources (batteries) tend to be large and heavy,

thus cumbersome.

• Hydraulic actuation: Hydraulic actuators are extremely power dense and can produce

fantastic torques. They tend to be, however, heavy, large and complex, requiring the solution

of problems such as leakage and user safety.

• Pneumatic actuation: despite being less expensive than their hydraulic counterpart, pneu-

matic actuators require heavy systems for air treatment, storage and conditioning. They are

less vulnerable in hazardous environments, they have less impedance and are lighter than

electric motor systems, but, above all, they lack precision and accuracy.

Beyond these three main categories, other solutions that can be found in the literature are,

essentially, either hybrid combinations of technologies or experimental and prototypical in nature.

A few examples of these alternative actuation technologies are Electro-Active Polymers (EAPs),

Shape Memory Alloys (SMAs) and Series Elastic Actuators (SEAs). In the upper-limb segment
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Figure 2.28: Estimated distribution of actuation technologies in upper limb exoskeletons, based
on 67 different robotic assistive devices found in the literature by Gopura et al. (2016). Adapted:
Gopura et al. (2016).

of the field of exoskeleton technology, EAPs and SMAs are not as common as other types of

actuation.

Regardless, hybrid and alternative solutions together make up only a nugatory fraction of the

robotic assistive devices found in the literature (Figure 2.28). The choice traditionally boils down

to the electric, pneumatic and hydraulic actuation.

2.5.1.1 Electric Actuation

The vast majority of rehabilitative robotic devices use electric actuation as their primary form

of actuation, as shown in Figure 2.28. This is understandable, considering the wide array of electric

motors readily available, such as servomotors, stepper motors and the conventional DC motor.

Of these, the DC motor is, by far, the most prevalent in the literature. This can be largely

attributed to its near-unbeatable power-to-weight ratio at a surprisingly low cost. Servomotors and

stepper motors come respectively with an increment in price or weight, which only exacerbate the

exoskeleton’s main design obstacles. As mentioned before, increasing the exoskeleton’s weight

will result in a heavier loading of the user and more stringent mechanical design necessities.

Whereas DC motors can be selected for countless combinations of power, speed and torque,

servomotors and stepper motors are often designed for applications where torques are higher and

speeds are lower. DC motors, on the other hand, are, in general, built for high speed and low torque

output, which can be easily converted, in lieu of the mechanical design requirements, into a lower

speed and higher torque output through power transmission mechanisms, such as gear reduction,

at the cost of added weight.
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Servomotors customarily come with integrated sensors, which can be both a relief or a hassle,

depending on the application. When it comes to the design of wearable exoskeletons, the budgets

for weight and accessories are outstandingly tight, and so the choice frequently gravitates towards

a custom build which typically involves a conventional DC motor. Servomotors also require more

sophisticated controllers, which, given the time it already takes to run the control algorithms (refer

to Section 2.3.1), is not practical.

The same happens with stepper motors. Their bulk, weight (they incorporate several magnets

for turning in steps), and inflexible design (found, for instance, in the number of steps per turn) are

seldom appropriate for an application where every kilogram is, at the outset, off-budget. As shown

in Figure 2.28, of all 46 reviewed robotic assistive devices that used electric actuation, only 10 did

not explicitly use DC motors. Of these 10, only 3 authors specified servomotors, 6 used unspecified

"Electric motors", and not even one, perhaps to circumvent opprobrium, mentioned using a stepper

motor. All in all, the choice of a DC motor in exoskeletons is essentially uncontested.

The working principle of a DC motor is on display in Figure 2.29. A current is run through a

coil winded around a rotor (rotating part of a motor), creating a strong magnetic field. Magnets in

the stator (static part of a motor) induce electromagnetic forces in the rotor, causing it to turn, thus

producing mechanical power from an electric current.

Figure 2.29: Principle of operation and most important components of a brushed DC motor. A
current ia is fed through the rotor’s armature, crossing the stator magnet’s electromagnetic field
inducing an electromagnetic force, causing the armature to rotate. The shaft attached to the rotor
can then be used to transmit mechanical power to an application. Source: Pedersen (2013).

The motor shown is a brushed DC motor, due to the presence of contacts named brushes,

which act as electric commutators. Certain motors, suitably called brushless, lack these elements.

Brushes are in constant relative motion to the rotor, under risk of severe wear from the resulting

friction. By changing the configuration of the motor and switching the armature current electron-

ically, friction is avoided and the longevity of the motor is increased dramatically. The efficiency
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of the motor is increased and the absence of the contact commutators makes them considerably

more silent.

Barring their differences, both of these DC motor variants are reliable, inexpensive actuators,

admitting of precise control and wide-ranging speeds. They offer infinite range of motion, which

is wasted in a device that seeks to mimic human kinematics. They require mechanical or logical

stops that only add to the device’s complexity.

Their biggest flaw, nevertheless, is having a strikingly low torque-to-energy ratio, consequently

requiring speed reduction in their transmission. The generality of speed reduction mechanisms

come with a conspicuous weight increase, which reduces the overall power-to-weight ratio of the

actuation system.

These limitations have caused researchers to look for solutions elsewhere. By far, the second

most prolific actuation archetype in robotic assistive devices is pneumatic power.

2.5.1.2 Pneumatic Actuation

The number one pneumatic actuator found in robotic assistive devices is the McKibben actu-

ator, also known as Pneumatic Artificial Muscle or Braided Muscle (Pina, 2018).

A McKibben actuator is a biomimetic actuator that contracts and expands similarly to a human

muscle by inflating a rubber bladder, causing it to expand and shorten, and moving its ends closer

together, as shown in Figure 2.30.

Pneumatic muscles have a great deal of exceptional advantages over DC motors, such as an

appreciably high torque-to-weight ratio, being fairly lightweight and having an exceptionally con-

venient range of motion at a high torque (Pina, 2018).

Being gas powered (most of the times, air) makes them safe, and their actuation speeds and

intrinsic histeresis (caused by mechanical friction), albeit a little too slow for certain applications,

only curtail the already low risk they present to users (Pina, 2018).

Their biggest flaw is their nonlinear actuation and they are, in similar fashion to other pneu-

matic actuators, substandard in their position control. They, too, require compressed air supplies,

which tend to be both bulky and heavy, and are markedly more expensive and complex than elec-

tric actuators Pina (2018).

Figure 2.30: Overview of the basic components of a pneumatic muscle and its function. As
the pressure inside the inner recipient increases, it expands sideways while contracting in length,
mimicking a human muscle. Source: Johnson and Sensinger (2019).
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Second to pneumatic muscles are traditional pneumatic cylinders and rotary actuators. The

first, although simple, suffer from the same major problem that haunts the pneumatic muscle:

unsuitability for precise control. Rotary actuators, while capable of slightly more meticulous

movement, are heavier and bulkier.

2.5.1.3 Hydraulic Actuation

Hydraulic actuators are very rarely used by themselves. In spite of boasting sensational power-

to-weight ratios, hydraulic cylinders pose larger safety risks to the user. Not only are their working

pressures several orders of magnitude higher than those of pneumatic actuators, the working fluids

can be hazardous (Pina, 2018).

The near incompressibility of liquids allow for proportional control and modestly sophisticated

logic (Pina, 2018). Sadly, they are vastly more expensive than their pneumatic counterparts and,

even further, when compared to the DC motor.

When used as the sole actuation technology, they come with large volume and weight burdens

(Gopura et al., 2016), necessitating mechanically strong components (usually heavy) and fluid

transmission and storage systems, such as pipes, conduits and recipients, as well as filters and

lubrication equipment.

2.6 Conclusions

Briefly to conclude, rehabilitation engineering is field that has seen substantial growth over

the last few years (Gopura et al., 2016; Gull et al., 2020). Advancements in several fields have

contributed to the realization of powered exoskeletons, a technology that shows great promise

when compared to the more traditional passive and body-powered assistive devices.

Leading the charge is the study of intention estimation, which seeks to act directly from the

user’s will. The most prominent technology in intention estimation applied to powered exoskele-

tons is EMG, that is, electromyography (a technique for the diagnostic of electrical activity in

skeletal muscles). Researchers around the world have found breathtaking success in estimating

subject intention from EMG signals. Their findings have now been widely employed to achieve

proportional control of powered exoskeletons and numerous other devices.

Central to these control systems are machine learning algorithms. The new AI trend was

adeptly adopted by the academia and to great results. When it comes to regression algorithms,

neural networks seem to hold the most potential, just not exclusively. Random forest regressors,

support vector machines, the list of performant algorithms grows every day.

In order to make their use possible, the EMG signal has to first be adequately conditioned.

Pre-processing steps and feature extraction are a few of the cares that help produce a source rich

in information for the learning algorithms to take advantage of.

The other crucial element of a powered exoskeleton is the actuation system. A myriad of

actuation technologies have been incorporated in exoskeletons. Regardless, the DC motor remains

the quintessential choice. It boasts high power-to-weight ratio, ease of use and is very accessible.
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In this project, the objective is to design and implement a proportionally and simultaneously

controlled one DoF robotic device using myoelectric signals from the flexor and extensor muscles

of the arm. It serves as a proof of concept system to demonstrate, as accurately as possible, the

challenges involved in the creation of a competitively priced powered exoskeleton, using run-of-

the-mill components.

At the heart of the control system is a random forest regressor. As shown by studies, this

ensemble algorithm has been used to achieve accurate intention estimation and fine control of

exoskeletons. It possesses various properties that suit the EMG signal very well, such as not

requiring normality of data or a priori transformations and being robust to noise. Random forests

will be delved into in Chapter 4, Section 4.3, where an extensive introduction to the algorithm is

presented. Perhaps it would have been more sensible to implement a more powerful algorithm,

say, a neural network. However, correctly implementing a neural network would require far too

much knowledge and experience than was possible given the author’s lack of previous experience

with machine learning algorithms and the project’s time constraints. Regardless, to recompense

for this limitation, the author ensured modularity was a core feature of the system, so that, in future

work, the machine learning algorithm at the nucleus of the control system could be dexterously

replaced.

Actuation is done by a DC motor. The preference for this actuation technology was moti-

vated, quite straightforwardly, by economic factors. The DC motor is, indisputably, the most cost

effective choice, while still providing excellent results.

In closing, supported by the literature review undertaken, the foregoing outlines were paramount

in actualizing the present project, whose design, implementation and validation will be detailed

over the next few chapters.
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Chapter 3

Project Goals, System Architecture and
Component Selection

In this chapter, much needed direction is established for this work. Assumptions are made

and goals and requirements are defined. Then, a system architecture for the solution is discussed.

Finally, components are selected and the wiring schematic is presented.

3.1 Design Assumptions, Goals and Project Requirements

As was previously mentioned, the primary objective of this work is to design and test a low-

cost control system for an early prototype of a 1 DoF robotic assistive device for the elbow joint,

based on simultaneous and proportional myoelectric control.

In accordance to the literature review (Chapter 2), the system will feature all customary com-

ponents of a system based on EMG, namely, acquisition and processing of EMG signals, intention

estimation based on a random forest algorithm and actuation, in this case, by a DC motor.

At the current stage, the device will not be implemented directly on the user, instead this

thesis’ work will serve as a proof of concept, a test bed for future in situ implementations. The

main motive behind this decision is that a wearable, externally powered robotic device poses an

uncomfortably high number of safety risks to a potential user, which, paired with the complex

nature of the EMG technology, would require more time than was otherwise available to reduce

the underlying uncertainties to a negligible level.

The implementation will be done in a laboratory bench or workstation, where vital testing

equipment is readily available. The device itself will be 3D printed and serve as a rudimentary

prototype.

There are many simplifications that not building the prototype for on-person testing enables.

For starters, the necessity for a portable power supply is essentially nullified. This will in-

evitably allow for a relaxation of the device’s mechanical requirements, since most energy supplies

come with a substantial increase in weight and volume. Moreover, the electrical complexity of the
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system will be lessened. In place of meticulous management of voltage levels, separate bench

power supplies can be configured individually for devices that have disparate energetic demands.

Likewise, not having to assist a human arm in moving means there is no loading from the

limbs themselves. This could be seen as negligible. In reality, the forearm and hand together can

account for up to 2% of the total body mass (de Leva, 1996), which is not negligible. Not having

to factor in this excess loading makes mechanical design of the robotic arm more manageable, if

at all restrictive.

Finally, not implementing in vivo immediately eliminates considerations of ergonomics and

comfort, which can almost entirely be left out for a future implementation.

To come to the point, the project has four main practical objectives:

• Design and implement a system for EMG data acquisition.

• Design a control system that processes the acquired EMG signals, extracts features and

predicts motion intention. The motion intention, in this case, will be portrayed by the elbow

joint’s angle of flexion, defined according to the International Society of Biomechanics (Wu

et al., 2005): positive for flexion and negative for extension, as illustrated in Figure 3.1.

• Use the estimated motion intention to simultaneously and proportionally control a 3D printed

1 DoF robotic device.

• Conduct experiments in such a way that the results can be evaluated and reproduced in

future, more realistic and complete conditions.

Figure 3.1: Convention for measurement of the human elbow joint’s angle of flexion. Source: n.d.
(2011).

For the purpose of achieving these objectives, certain nonspecific tasks have to be performed.

They are:

• Establish overarching requirements for component selection and select them accordingly.

• Design a circuit schematic for wiring and assembly.
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• Program the components according to intended functionality and underlying logic.

• Design and assemble a 3D printed 1 DoF mechanism for online testing and evaluation.

• Test portions of the system whenever necessary, to ensure operability as a whole.

Furthermore, design and implementation are subject to certain non-functional project require-

ments, to be specific:

• The system has to be as inexpensive as possible. The objective is to build it with ordinary

components.

• The experiment has to be reproducible. Being reproducible means that the system can be

successfully copied and tested for similar and consistent results.

• In order to be reproducible, the control system has to be implemented in a clear and modular

way (for example, with regards to codification), so that the final solution is understandable

and intuitive. The system has to be testable.

• Modularity will give the system some necessitous adaptability and flexibility of design.

These qualities are crucial for iteratively improving the design in future works.

• Being reproducible is not enough. The design will have to display an objective level of

similarity to an in vivo implementation, that is, a wearable exoskeleton, if conclusions are

to ever be generalized.

With these requirements in mind, the following functionality is to be expected:

• The 3D printed device must feature a 1 DoF joint with a range of motion of at least 0 to 135

degrees, similar to that of a human elbow.

• The device must be capable of reproducing the elbow flexion/extension angle with a delay

in the same order of magnitude as that of the length of a sampling window of EMG data.

• The data acquisition system must be easy and intuitive to fit on the user, which makes

experimental procedures more time-efficient and user-friendly.

• The user interface must be intuitive and allow the user to save data from trials and experi-

ments, for posterior treatment of it.

3.2 System Architecture

Predicated on the previous directions, a system architecture can be specified, so that hard-

ware components can be selected and the system design furthered. This architecture can be seen

in Figure 3.2. Over the next few paragraphs, a macroscopic inspection of this solution will be

discussed.
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Figure 3.2: Illustration of the system architecture. The surface EMG sensors acquire the electric
signals from the muscles during movement and send them to the microcontroller. Simultaneously,
a motion tracking sensor produces information on the elbow joint’s angle of flexion α . The mi-
crocontroller uses this information to build and train a model that can take an sEMG input and
produce a positional command, an angular reference θre f , to the motor controller. The motor con-
troller ensures, to its best ability, that the DC motor performs the intended movement. To do so,
it receives data regarding the motor’s angular position θ(t), say, from an encoder, which digitizes
the quantity and produces a θencoder angle.
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Firstly, in pursuance of motion intention estimation, two variables will always be necessary -

the input variable and the response variable. In an EMG-based control system, the input variable

is, unmistakably, the EMG data. Ergo, the response variable will be information about the elbow

joint’s current configuration, specifically, its angle of flexion/extension, which typically ranges

from roughly 0 to about 145 degrees. Having this data available is imperative because it will then

be used to train an algorithm that is capable of estimating motion intention based on electromyo-

gram activity. It is the model’s dependent variable.

The EMG signal can be swiftly acquired with a dedicated EMG sensor, in the case of Fig-

ure 3.2, a pair of sensors, given that both the biceps brachii and triceps brachii muscles have a

fundamental role in elbow flexion/extension. For a brief explanation of the anatomy of the human

arm, refer to Section 2.1.2.

Conversely, motion tracking can be achieved in a multitude of ways. A brief discussion of

sensors available for motion tracking can be found in Section 2.4.

Once all necessary information is measured and recorded, a processing unit has to analyze the

data and extrapolate a prediction of where the user intends to move. This result will thenceforth

be fed to a controller for the actuation that ensures that movement is performed as intended.

The last component needed is an encoder or motion sensor for the actuator. This is the biggest

complication due to not designing the prototype for in situ assistance. Evidently, the explanation is

that by detaching the robotic hardware from the human arm, the movement is no longer physically

coupled and another set of motion tracking sensors is required. This is represented in Figure 3.2

by the Encoder block, a ubiquitous solution to the problem.

The system could run without any feedback, except open-loop control systems are frequently

unreliable and imprecise. For the problem at hands, closed-loop control is the indisputable choice.

Here, another discussion can be had on whether to decentralise computing or not. The control

system has to perform four distinct tasks:

• EMG signal acquisition;

• Motion tracking;

• Intention estimation;

• DC motor control.

On one hand, separating them into individual processing units (presumably microcontrollers)

creates a modular system, where information flow is kept neatly fragmented and whose flexibility

and versatility make future enhancements much easier to implement. Furthermore, pathways for

fault are no longer concentrated on a single component, which makes the system more robust and

maintenance easier.

On the other hand, in a system where only one degree of freedom is being actuated upon,

decentralisation is somewhat redundant. The truth is information flow is expected to be almost

entirely linear and sequential, with tasks being undertaken in a cyclic way (refer to Section 2.2.2:
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Rectification and Smoothing for a brief discussion of window-based analysis of the EMG data)

and as frequently as possible, for the purpose of achieving seamless, responsive control.

However, the intention estimation algorithm alone is expected to demand the most computa-

tional resources, so it is reasonable to assume that it is the one that will run at the lowest frequency.

Halting all other tasks with each and every new step in the control loop creates a situation

where every task has to wait for the previous one, as it produces an entirely new window increment

Tinc of data (for context, refer to Section 2.2.2 - Rectification and Smoothing). Assuming Tinc and

the processing time Td are of similar magnitude, the control system’s delay is essentially doubled,

which is outright unacceptable.

Acquisition of new sensor data should instead be scheduled to happen asynchronously and

at specific intervals, so that a new batch of information is ready just in time for a new cycle of

intention estimation. Similarly, the motor controller should be running asynchronously and at

a higher frequency, to ensure a stable, rapidly converging output. Most operations involved in

these two tasks (data acquisition and motor control) are decidedly uncostly in computation, so

splitting them across individual units of processing would increase the complexity of the system

in exchange for a virtually inconsequential benefit.

For that matter, there is no real reason why a processing unit capable of online simultaneous

and proportional intention estimation, which demands serious computational power, would be

solemnly handicapped by a few data acquisition and control tasks. In the exclusive case of a

single joint powered orthosis, a centralised control system might ultimately be the least expensive

solution.

Thus it is clear that these tasks will have to be performed in parallel or, at the very least,

concurrently (for a more extensive discussion of multiprocessing, refer to Section 5.3.2). With the

aim of centralising the control system, the microcontroller will have to be capable of parallel and

asynchronous computing.

From here, selecting the components should be a relatively straightforward task, which is

detailed in the next section.

3.3 Component Selection

The realization of the solution presented in the previous section can be achieved with numer-

ous combinations of both hardware and software options. Based on the system architecture, the

components necessary to implementing it are:

• EMG sensors and/or acquisition systems.

• Motion tracking sensors.

• A powerful microcontroller suited for learning algorithms and capable of parallel process-

ing.

• Actuator(s).
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• Encoder or another sensor that can provide position feedback.

In an attempt to narrow down the component selection, and keeping in line with the project’s

requirements, the following general criteria were adopted:

• The components should be as inexpensive as possible and, when not possible, should con-

tribute to a cost reduction of the whole system;

• The components should be compatible with each other and facilitate, to the maximum ex-

tent, implementation and improve modularity;

• The components should not be too heavy, too large or require too much power;

• Last but not least, the components should undoubtedly satisfy the aforementioned project

requirements with sufficient reliability and quality of function.

3.3.1 Microcontroller

While selecting the microcontroller was a relatively expedite process, the variety of adequate

affordable options should not be underestimated. Currently, there is a vast assortment of low cost

boards specifically designed for IoT and prototyping needs (a fragment of those being visible in

Figure 3.3) and, for the most part, they all satisfy the project’s design requirements, offering superb

computational prowess in a small credit-card-sized package. A rudimentary comparison of some

of the boards discussed hereinafter is shown in Figure 3.4.

In spite of the available array of microcontrollers, the Raspberry Pi 4 Model B (Figure 3.3a)

stood out as a chiefly competent choice, due, for the most part, to its cost, user friendliness and

robust community. The latter, especially, when considering the forcefully fleet-footed nature of

the project, took unprecedented priority in the selection.

The Raspberry Pi 4, starting at around 40C (Raspberry Pi Foundation, 2020), delivers signifi-

cant upgrades in performance from the Raspberry Pi 3 Model B+, at similar levels of energy and

power consumption. Whereas the Pi 3 is barely useful in runtime machine learning applications,

the new Raspberry is up to most machine learning requirements.

Its modern CPU, the Quad-Core Cortex-A72 (an ARM architecture CPU) is capable of achiev-

ing speeds of up to 1.5 [GHz]. The default OS is the 64-bit Raspberry Pi OS. Depending on the

model, the Pi 4 can provide with up to 8 [GB] of DDR4 RAM memory. Perhaps most impor-

tantly, the Raspberry Pi 4 is compatible with most Python libraries and packages, which paired

with its 40 pin GPIO allows for exceptional flexibility in IoT applications. The workflow when

using a Raspberry Pi is characterized by speed and accessibility, thanks to the extensively large

and beginner friendly community.

In sum, the Raspberry Pi 4 Model B is the latest in a line of affordable high performance and

low power multi-purpose microcontrollers. This is not to say that other microcontrollers might not

have been slightly more appropriate for a wearable automation project, though none come at the

cost and size or with the amount of support that the Raspberry community provides.
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Figure 3.3: Affordable microcontrollers for IoT and prototyping applications. (a) Raspberry Pi
4 Model B (Source: Raspberry Pi Foundation (2020)). (b) BeagleBone Black (Source: Bea-
gleBoard.org Foundation (2020)). (c) BeagleBone Blue (Source: BeagleBoard.Blue (2020)). (d)
NVIDIA Jetson Nano Board (Source: NVIDIA Corporation (2020)). (e) Coral Dev Board (Source:
Google, LLC (2020)). (f) BITalino (r)evolution Board Kit (Source: PLUX Wireless Biosignals
S.A. (2020a)). (g) ASUS Tinker Board S (Source: ASUSTek Computer Inc. (2020)). (h) NanoPi
M4B (Source: FriendlyElec (2020b)). (i) ROCK Pi 4 (Source: Radxa Limited. (2020)).

Taking exclusively technical prowess into account, a popular alternative could be one of the

boards from the BeagleBoard.org Foundation, a non-profit corporation dedicated to producing

open-source software and hardware. Their staple board is the Beablebone Black (BeagleBoard.org

Foundation, 2020) (Figure 3.3b), with a AM335x 1GHz ARM® Cortex-A8 processor. It’s a

native Linux board that comes with a lot of flexibility, thanks to its two separate 46 pin expansion

headers. This is an excess in GPIO capabilities for the project at hands, and the Beaglebone

Black’s firepower is not enough to justify its price of about 72C1.

This is not the only Beagle available - a popular alternative to the Black is the Beaglebone

Blue (BeagleBoard.Blue, 2020). Besides similar performance, the Beaglebone Blue (Figure 3.3c)

provides extra peripherals specialized for robotics, such as H-bridges and discrete connectors for

DC motors and encoders. It can be found at a heftier price tag of 75C2, which makes the selection

of the Pi that much easier. Furthermore, it should be noted that the Beagles are not, by any means,

beginner friendly. They are best suited for programming in C, which is not an accessible language

for those who are not software engineers.

1https://www.ptrobotics.com/beagleboard/2742-beaglebone-black-rev-c.html, 07/03/2021.
2https://pt.mouser.com/ProductDetail/BeagleBoard/BBBLUE?qs=MoCBKJu1Jj2UWBPau58zsg%3D%3D,

07/03/2021.
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Figure 3.4: Pictorial comparison between several different microcontroller boards.

If ease of use is of such precedence, then an Arduino board, like the Arduino Uno Rev 3

(Arduino, 2020), could be of relevance. Unfortunately, the Arduino boards are not nearly as pow-

erful as the others being presented here and their specifications are nowhere near enough for most

machine learning applications. Aggravating this shortcoming is the fact that the Arduino can-

not be trivially programmed for multiprocessing, though some protothreading and asynchronous

programming can be achieved. Of course, the Arduino boards do come at a significantly lesser,

though of no inconceivable difference, price tag, starting at approximately 20C.

Considering a machine learning algorithm was the intended approach for intention estimation,

then boards that are more targeted for these techniques could be relevant. When it comes to learn-

ing algorithms, the NVIDIA® Jetson Nano™ Developer Kit (NVIDIA Corporation, 2020) and

the Coral Dev Board (Google, LLC, 2020) are extremely powerful alternatives (Figure 3.3d and

e). Despite having an earlier CPU in the Quad-Core Cortex-A53, the Coral Dev Board is deci-

sively one of the best technical performers in this list, thanks to its machine learning Accelerator,

the Google Edge TPU coprocessor. It features an integrated GPU and a 1 or 4 [GB], nonetheless

is limited to the Tensorflow Lite set of machine learning packages, which, though diverse in itself,

can be seen as a frustrating constraint. That and its hefty starting price of 109.99C3 make it an

unlikely substitute for the Pi 4. The NVIDIA® Jetson Nano™, on the other hand, is compatible

with a larger breadth of ML packages and tools. Its video and graphics processing capabilities,

some of the best in this segment of the market, are of little use in a myoelectric control system.

3https://coral.ai/products/dev-board/, 07/03/2021.
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When taking into consideration its starting price of 105C4, it loses vital appeal.

There are few solutions as well-suited for biosignal-based control as the BITalino (r)evolution

Board kits (PLUX Wireless Biosignals S.A., 2020a) (Figure 3.3f). The brand offers different prod-

ucts, the cheapest coming in at 149.00C. It includes EMG, EEG, ECG (electrocardiogram) and

EDA (electrodermal activity) modules that can be connected for biosignal acquisition. It already

comes with pre-gelled electrodes, an accelerometer and a number of accessories that comple-

ment any bio-inspired system, comfortably justifying the kit’s price tag. The main flaw of these

kits is the inclusion of sensors that, for this particular work, were futile. Moreover, the BITalino

(r)evolution Core is an Atmel ATMega328p, whose computational power is insufficient for the

application.

In reality, the microcontrollers presented so far represent a minute portion of all IoT devel-

opment boards that would suit the requirements. A few honourable mentions include the ASUS

Tinker Board S (ASUSTek Computer Inc., 2020) (Figure 3.3g), the Odroid boards (Hardkernel

Co, Ltd., 2020), the Banana Pi boards (Sinovoip, 2020), the NanoPi boards (FriendlyElec, 2020a)

(Figure 3.3h), the ROCK Pi 4 (Radxa Limited., 2020) (Figure 3.3i), etc. All these pieces of im-

pressive hardware fall short, relative to the Raspberry Pi, in the same, identical way - they lack the

phenomenal and truly unparalleled community support that the Pi has, and for this simple reason,

they were not objects of further consideration.

3.3.2 Surface EMG Sensors

The vast majority of scientific literature concerning EMG analysis reports on the use of EMG

acquisition and sampling systems of tremendous refinement and appositely extravagant prices. A

few examples of such upmarket devices for which quotes were available are shown in Table 3.1.

Clearly, when attempting to design and actualize a low-cost system, befittingly affordable sensors

have to be selected.

The most widely available, low cost sEMG sensor available in the market is the MyoWare

Muscle Sensor (Advancer Technologies, LLC, 2020), the successor to Advancer Technologies’

Muscle Sensor v3. The Muscle Sensor can be found at a price around 38C. A sensible alternative

would be BITalino’s MuscleBIT BT EMG data acquisition system (PLUX Wireless Biosignals

S.A., 2020b), though at a considerably higher price of 275.00C. The two are shown in Figure 3.5.

Fuentes et al. (2019) studied the adequacy of a low-cost EMG system to conduct electromyo-

graphic analysis and intention estimation. The low-cost system was, pertinently, composed of one

Myoware Muscle Sensor and an Arduino Mega. The authors found that there was excellent agree-

ment between the low-cost and the custom, high performing system. This was not without flaws.

The low-cost system produced a signal more strongly contaminated by noise and with a slightly

larger delay.

The Myoware Muscle Sensor was thus selected for this work. It features:

4https://pt.mouser.com/Embedded-Solutions/Engineering-Tools/Embedded-Development-Tools/Embedded-
Processor-Development-Kits/Development-Boards-Kits-ARM//N− cvw9o?P = 1y8pymk,07/03/2021.
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• Differential EMG acquisition with a third reference electrode to filter out common mode

noise.

• Two output modes: The output is an analog signal, which can be raw or pre-processed

EMG. The pre-processed signal is obtained after the raw signal is put through amplification,

rectification and integration steps. The raw EMG is not entirely "raw" as the name suggests.

Due to the incredibly low voltages at play in the electromyogram, the signal is amplified

201x before sending out.

• Adjustable gain (when using the pre-processed signal) and a CMRR of 110 [db].

Figure 3.5: Two low cost sEMG sensors: (a) Advancer Technologies’ MyoWare Muscle Sensor
(Source: Advancer Technologies, LLC (2020)) and (b) BITalino’s MuscleBIT BT (Source: PLUX
Wireless Biosignals S.A. (2020b)).

The sensor requires a power supply from 3.3 to 5 [V] at a current of 9 [mA]. The sensor can

additionally be expanded via shields (accessories that can be mounted directly on the board). A

schematic of the sensor’s layout can be seen in Figure 3.6.

Figure 3.6: Schematic of the Myoware Muscle Sensor’s layout. Adapted: Advancer Technologies,
LLC (2020).

3.3.3 Analog to Digital Converter

The Myoware Muscle Sensor outputs an analog signal. Considering the Raspberry Pi solely

supports digital inputs, an analog to digital converter is required. The choice was not particularly



3.3 Component Selection 69

elaborated, seeing that there are plenty of low-cost alternatives in the market. Adafruit’s ADS1115,

illustrated in Figure 3.7, is a tried and true board that has been solidified as the go-to high-precision

ADC board for DIY IoT applications. It has significant community support and an appreciable

amount of documentation.

Figure 3.7: Adafruit’s ADS1115
16-Bit ADC board. Source:
Adafruit (2020).

The ADS 1115 is priced at around $15 (Adafruit, 2020).

It features 16-bit (enough for almost any sEMG application

(Stegeman and Hermens, 2007)) analog to digital conversion

in 4 single channels or 2 differential channels at an output rate

of up to 860 samples per second over I2C communication.

This sampling ratio is a little under the literature norm, which

is usually 1000 [Hz] (refer to Section 2.2.2). The board sup-

ports, in addition, inputs of different voltage ranges, thanks to

its integrated PGA (Programmable Gain Amplifier).

3.3.4 Motion Tracking Sensors

As discussed in Section 2.4, the choice of sensors for mo-

tion tracking can be notably flexible. At a relatively low cost,

most kinds of inertial sensors are excellent options for a wearable device that demands judiciously

high performance.

Invensense’s ICM-20948 is one of the world’s lowest power low-cost 9-axis motion tracking

devices (Invensense, 2020) that perfectly suits wearable technology and, in this case, exoskeletons.

The 9 axis correspond to a 3-axis accelerometer with four selectable ranges, a 3-axis Hall-effect

magnetic sensor with magnetic concentrator and an FSR (Full Scale Range) of ±4900 [µT] and a

3-axis gyroscope, too, with four selectable ranges, all incorporated within the sensor’s millimetric

CMOS-MEMS package. It features on-chip 16-bit ADCs, a Digital Motion Processor™ that

offloads the computation of motion sensing algorithms from the detectors, run-time calibration

firmware and accelerometer and gyroscope ranges.

Coming at a measly price of about $17, an implementation of this sensor is the SparkFun 9DoF

IMU Breakout board (SparkFun Electronics®, 2020), shown in Figure 3.8, which incorporates the

Invensense’s ICM-20948 into a Qwiic-enabled (Qwiic-enabled boards use a common 1mm pitch,

4-pin JST connector), that makes prototyping easier and less prone to human error, reducing the

amount of required PCB space) breakout board complete with broken out GPIO pins. Matching the

sensor, SparkFun’s board supports both I2C and SPI communication at up to 100 [kHz] on standard

mode and 400 [kHz] on fast mode. The ICM-20948 solely has two possible I2C addresses, which,

in the present case, should not be a problem, since only two inertial sensors will be utilized anyway.

SparkFun’s board requires a voltage supply between 1.8 and 5.5 [V] and features a built-

in regulator that allows the digital IO supply to be in the same range. The ICM-20948 has a

maximum current consumption of 200 [µA].



70 Project Goals, System Architecture and Component Selection

Figure 3.8: The SparkFun 9DoF IMU Breakout board (Source: SparkFun Electronics® (2020)).

3.3.5 DC Motor

For actuation purposes, a DC motor was chosen. This choice ties in with the review done

in Section 2.5, where the DC motor stood out as an effective, efficient, lightweight, sufficiently

powerful and, above all, inexpensive actuator for a wearable robotic device.

Nevertheless, unlike most other components, selecting a DC motor requires careful consider-

ation of the pivotal parameters that govern its activity. Determining the ideal set of parameters of

a DC motor for any given application first requires a solid understanding of the problem at hands.

Both an oversized and an undersized DC motor can be quite costly mistakes.

In practical terms, providing robotic assistance to a human limb can be streamlined to a prob-

lem where an irregular load has to be lifted and this load is dependent on gravity and the moment

arm’s orientation in space. This analogy is detailed in Figure 3.9. The E (Exoskeleton), F (Fore-

arm) and H (Hand) loads together constitute a body that has to be lifted about a point O that is

travelling in space, but is fixed in the coordinate systems (xA,zA) (of the arm) and (xF ,zF) (of the

forearm).

The torque that has to be developed in order to rotate the exoskeleton, forearm and hand

relative to the arm (this orientation given by the angle α) is denoted by T O
y,M and can be computed

by applying Newton’s Second Law of Motion for rotation about O:

T O
y,M =−(rOE sinθ) ·mE g− rOF(sinθ) ·mF g− (rOH sinθ) ·mH g+KO

y,E +KO
y,F +KO

y,H (3.1)

where rOP is the distance from point O to P, mX is the mass of body X, g is the gravitational

constant and KP
y,X is body X’s net torque about point P.

KO
y,X can be estimated from KX

y,X = JX
X · θ̈ by using the parallel axis theorem:

KO
y,X = KX

y,X +mX(rOX)
2

θ̈ =
(
JX

X +mX(rOX)
2)

θ̈ (3.2)

Though this requires knowledge of each segment’s mass and inertial properties, which vary a

lot from person to person.
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A method for obtaining these properties in a slightly more expedite way than direct mea-

surements is to use approximate values, like the ones provided by de Leva (1996) and shown in

Table 3.2, which are dependent on other, more accessible measurements, such as the subject’s total

body weight and length of the pertaining segment.

Table 3.2: A segment’s mass, center of mass and sagittal gyradius as a percentage of body weight
and segment length. Sagittal pertains to the sagittal plane of human anatomy. Adapted: de Leva
(1996).

Segment
Mass

(% of Body Weight)

Center of Mass
(% of Segment Length)

Sagittal Gyradius
(% of Segment Length)

Female Male Female Male Female Male

Upper Arm 2.55 2.71 57.54 57.72 27.8 28.5

Forearm 1.38 1.62 45.59 45.74 26.1 27.6

Hand 0.56 0.61 74.74 79.00 53.1 52.8

A segment’s inertia can then be computed from its sagittal plane gyradius with:

JX
X = mX(rG,X)

2 (3.3)

Finally, the resulting equation of motion for the system would be:

T O
y,M =−(rOE mE + rOF mF + rOH mH)g sinθ +KO

y,E +KO
y,F +KO

y,H

=−(rOE mE + rOF mF + rOH mH)g sinθ+

+
(
JE

E +mE(rOE)
2 + JF

F +mF(rOF)
2 + JH

H +mH(rOH)
2)

θ̈

=−(rOE mE + rOF mF + rOH mH)g sinθ+

+
(
JE

E +mE(rOE)
2 +mF(rG,F)

2 +mF(rOF)
2 +mH(rG,H)

2 +mH(rOH)
2)

θ̈

=−(rOE mE + rOF mF + rOH mH)g sinθ+

+
(
JE

E +mE(rOE)
2 +mF

[
(rG,F)

2 +(rOF)
2]+mH

[
(rG,H)

2 +(rOH)
2])

θ̈ (3.4)

which can be solved if the desired working speeds have been established. This can be done by first

defining what the device’s speed curve would look like starting from rest and accelerating up to

the maximum speed. A common choice is to consider a trapezoidal speed curve, as in Figure 3.10.

From here, the maximum acceleration can be stipulated as preferred, which will determine the

curve’s maximum slope. In a robotic assistive device, maximum speed and acceleration should

be carefully selected - they should be close to the user’s typical maximum speed, after consider-

ing safety factors. With these variables set, the maximum working torque follows from a direct
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application of the system’s equation of motion (Equation 3.4).

Based on the maximum working torque and maximum working speed, a point can be charted

on the motor’s torque speed characteristic. A DC motor’s torque speed characteristic is the gov-

erning equation that limits the possible combinations of torque and speed at which a motor can

operate. An example of such a curve can be seen in Figure 3.11.

Subsequently, a DC motor would be selected such that the target working point would fit inside

the motor’s characteristic. The characteristic is often not explicitly shown in a DC motor manu-

facturer’s catalogues, instead the stall torque and the no-load speed are given, also represented in

Figure 3.11. It is worth noting that most DC motor are built for high speeds and low torques. This

means that either the working point or the motor characteristic have to be modified to account for

the use of gear reduction.

In practice, a 12 [V] leftover DC motor from another application was chosen. Based on an

informal analysis of the market, it was priced at 5C. The selected DC motor, shown in Figure 3.12,

had unknown specifications and parameters, the determination of which can be found in Appendix

A.

Figure 3.10: Ideal trapezoidal speed curve of a motor. The motor accelerates at a maximum
constant value and stops accelerating once the maximum speed is hit. In reality, there can be
overshoot and the acceleration is neither attained nor stopped instantly.

Figure 3.11: The torque speed characteristic of a DC motor. Operation is expected to be carried
out in the continuous operating region. Consequently, the target working point should fit inside
this region.
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Figure 3.12: The selected DC motor, already attached to the gearbox.

3.3.6 H-Bridge

A microcontroller could be directly connected to a DC motor, although there are numerous

reasons not to, including:

• The DC motor might operate at different voltages: if the motor in question requires a 12 [V]

supply, no traditional microcontroller could ever provide that kind of voltage. The motor

would end up with an insufficient voltage supply, which limits its maximum thresholds.

• A DC motor typically requires a large current: a microcontroller, on the other hand, can

only provide very small currents at its outputs.

• Loading oscillations could damage the microcontroller: without getting into great detail, due

to the formation of back EMF (refer to Section 2.5 and Appendix A for more information

about a DC motor’s principles of operation), immeasurably large current spikes could form

in the circuit as mechanical loading of the motor oscillates and even forces its braking,

potentially damaging the board.

Figure 3.13: L298N Motor Driver Module Pinout. Source: Han.
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For these and other reasons, a DC motor is always led by a Motor Driver, a circuit that fixes

all the aforementioned issues and accommodates additional functionality. A popular choice is the

L298N Dual H-Bridge Motor Driver, brought to view on Figure 3.13.

It is a moderately high power motor driver module (capable of supplying up to 25 [W] to

the motor), consisting of a L298 motor driver IC and a 78M05 5 [V] voltage regulator (Han). It

can control up to four motors unidirectionally or two motors bidirectionally. It supports voltage

control and PWM driving (Pulse Width Modulation, Figure 3.14), and changing the voltage levels

on its logic input pins can instantly demand the motor to revert direction or brake.

PWM is a technique for digitally supplying a set of electrical pulses at a constant voltage

(Vikhe et al., 2014). This results in an effective supply voltage that is equal to the pulse voltage

times the duty cycle (the percentage of time, for a given periodic segment of the PWM signal, that

the voltage is set to high).

Figure 3.14: Representation of a PWM signal. In general, the variable that can be manipulated in
order to change the output is the duty cycle. The HIGH voltage is kept constant, instead the signal
is kept at high for a larger or smaller fraction of the period.

This is especially useful in applications where a low effective voltage is needed, but effectively

providing a low voltage signal is not feasible. In DC motors, specifically, the use of low supply

voltages would lead to reduced torque, even if the effective voltage of the PWM is the exact same

(Vikhe et al., 2014). In rehabilitative engineering, low speeds are advised for the sake of the

users. In a sense, with PWM, it becomes possible to supply a low effective voltage (and thus

keep the motor working at low speeds) at a constant high voltage level (without compromising

performance).

The main inconvenience with PWM is that the system being supplied with the signal must have

sufficiently slow dynamics, to ensure the innate on-off dynamic of the PWM pulses (regulated by

the PWM frequency) is not picked up on by the receiving device (Vikhe et al., 2014). In the case

of a DC motor, sufficiently high frequencies can easily be achieved for the PWM signal, which

explains why this technique is so widely used over basic voltage control.

The driver sports accessorial features. For instance, when the connected DC motors are being

powered by less than 12 [V] from the bridge, the 5 [V] can be used as a 5 [V] supply, which can

power other components in the system, namely sensors and even the microcontroller.

A spare part was used, though this component is not at all expensive (Han).
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3.3.7 Magnetic Encoder

The encoder selected for tracking the DC motor’s position was the RMK3B Evaluation Board,

shown in Figure 3.15, a sensor based on the AM8192B, a compact, contactless angular magnetic

sensor chip. Based on Hall sensor technology, the integrated circuit senses the angular position of a

permanent magnet strategically placed above or under the chip, whose relative angular movement

causes the magnetic field to move relatively to the sensor.

The board is capable of producing a number of different outputs, the primary a 13 bit (8192

counts per revolution, that is, a resolution of 0.77×10−3 radians per step or 44×10−3 degrees

per step) absolute encoder, and others, such as incremental A QUAD B encoder signals, sine and

cosine encoding and analogue output.

The sensor is extremely compact and reasonably precise, making it an excellent choice for

lightweight wearable robotic devices. The component was already present in the laboratory, but

from an informal analysis of the market it was estimated to be priced at around 35C.

Figure 3.15: The RMK3B Evaluation Board with the AM8192B IC. The board comes with a small,
cylindrical magnet, that can be attached to the object whose angular position is to be measured.
Source: RLS d. o. o. (2021).

3.4 Wiring Schematic

With all components selected, the system’s wiring and electrical circuitry were designed. In

practice, this process was iterative and cohesively integrated with the design of the control system

(refer to Chapter 4). An illustration of the final circuit is shown in Figure 3.16.

Numerous features of the final solution are worth being discussed. In addition, differences be-

tween the schematic and the original system architecture can be detected. These small adjustments

were necessary to accommodate certain characteristics of the components selected, in an effort to

meet project goals and requirements.

The most noticeable aspect is the use of the Muscle Sensor’s RAW output pin instead of the

more customary SIG output. This is because SIG’s signal is not the raw sEMG signal, rather

its filtered, integrated envelope. This could be useful, however it prevents custom pre-processing

from being applied. Moreover, feature extraction is very limited since only a few features can

be extracted from the integral of the sEMG signal. To learn which pre-processing stages were

adopted, refer to Section 4.2. To learn about pre-processing of EMG signals in general, refer to

Section 2.2.2.
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The biggest drawback of using the RAW signal is that it requires amplification, since it has

a very small amplitude (about 300 to 500 [mV]) when compared to the SIG signal (±3.3 [v]).

Fortunately, the 16-bit ADC comes with a PGA that can amplify the input signal and compensate,

to some extent, for the low voltage. Of course, this does not perfectly accommodate the signal’s

full-scale range, and as such some digitization errors are expected. Ideally, an amplification step

would be integrated in the circuit, for example, with precision amplifiers that are robust to noise.

Instead, the ADC was programmed for a PGA gain of 2.

In the wiring schematic, it can also be seen that the Muscle Sensor was connected to the ADC

in differential mode, i.e., by connecting both the RAW and GND pins. The ADS1115’s differential

measurement setup can eliminate a lot of common noise in the signal, which is instrumental in

achieving a high SNR.

A component found in Figure 3.16 that was not previously mentioned is a 5 to 3.3 [V] level

shifter. It is necessary since the Raspberry Pi can only take in 3.3 [V] logic inputs, whereas the

magnetic encoder, for instance, is run on 5 [V].

The DC motor’s position will be tracked by the magnetic encoder, which will be outputting

the A QUAD B encoder signals, as well as a reference signal Ri.



Chapter 4

Design of the Control System

With a solid understanding of the system architecture, specific design solutions can be ad-

dressed for each fragment of the system. As reviewed in Section 2.2, a typical myoelectric control

system is composed of three fundamental steps: sEMG data acquisition and sampling, process-

ing of the sEMG signal and feature extraction, and last, and not by any means least, intelligent

intention estimation.

The crux of this thesis, the intention estimation algorithm, has a clear, albeit complex, purpose

- to extract information from the muscles’ myoelectric activity, transform that into knowledge and

extrapolate estimates of the subject’s intentions. The work of this thesis contemplates, moreover,

the control of an electric actuator, that is, a simple DC motor, to be controlled based on the output

of the intention estimation algorithm. In this chapter, the design of the entire control system will

be comprehensively detailed.

4.1 Surface EMG Data Acquisition and Sampling

Evidently, no myoelectric control system is feasible without first sampling the surface electri-

cal activity of the muscles.

When attempting to measure the EMG signals of the biceps and triceps muscles with a pair of

sensors each, the SENIAM guidelines suggests that, for the former, electrodes need to be placed

on the line between the medial acromion and the fossa cubit at one third from the fossa cubit

(SENIAM, 2006a), and, for the later, electrodes need to be placed at 50% on the line between the

posterior crista of the acromion and the olecranon at 2 finger widths medial to the line (SENIAM,

2006b). Both reference electrodes should be on the wrist. These placements can be visualized in

Figure 4.1.

Finally, as the studies show (refer to Section 2.2.2), the data is to be acquired at a rate of at

least 400 [Hz].

79



80 Design of the Control System

Figure 4.1: EMG electrode placements recommended by the SENIAM guidelines, for (on the left)
the biceps brachii (Source: SENIAM (2006a)) and (on the right) the triceps brachii (Source: SE-
NIAM (2006b)). Blue points are location references and the yellow crosses are the recommended
sensor placement.

4.2 Processing of the sEMG Signal and Feature Extraction

Once the EMG signal has been acquired and sampled, a multi-stage process is employed to

ensure the best possible inputs are fed into the control algorithm. All pre-processing steps were

established with reference to the literature, based on the findings from Section 2.2.2. Moreover,

all steps were performed using digital tools (refer to Section 5.3.1), after the signal is split into 250

[ms] windows of five 50 [ms] increments.

4.2.1 Pre-Processing

The sampled signal is band-pass filtered using a 20 [Hz] second order Butterworth low pass

filter with a roll-off of 12 [db/oct] and a 450 [Hz] fourth order Butterworth high pass filter with a

roll-off of 24 [db/oct], to remove noise outside the EMG’s natural frequency spectrum.

To minimize power line noise, a 50 [Hz] second order IIR notch filter with a notch frequency

of 50 [Hz] and lower and upper frequencies of 49.5 and 50.5 [Hz], respectively, are applied.

For both filtering stages, the normalized frequencies fn = f/ fs ( fs being the sampling fre-

quency) were computed. However, according to Nyquist-Shannon theorem, the sampling fre-

quency has to be at least two times the frequency f, and thus each above-mentioned frequency was

divided by half the sampling rate, as shows Equation 4.1.

fn =
f

fs/2
(4.1)
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For the notch filter, in addition, the quality factor Q had to be computed. The quality factor

determines how narrow or wide the rejection band is and can, as Nguyen (2017) explains, be found

with greater precision by considering the effect of the sampling frequency (Equation 4.2):

Q =
tan(π fN/ fs)

tan(π fu/ fs)− tan(π fl/ fs)
(4.2)

where fN is the notch frequency (not the centre frequency, which is itself a geometric average of

the upper and lower frequencies), fu is the upper frequency, Fl is the lower frequency and Fs is the

sampling frequency.

Finally, the signal is full-wave rectified.

4.2.2 Feature Extraction

Once pre-processing is complete, a number of features can be extracted. Following the findings

of Phinyomark et al. (2013) (refer to Section 2.2.2), a set of four features was selected, namely,

the Sample Entropy (SampEn) the Root Mean Square (RMS) the first four Cepstrum Coefficients

(CC) and the Waveform Length (WL).

4.2.3 Motion Tracking

The motion tracking method described in Section 2.4.0.4 was used for this work, based on

attitude estimation with Madgwick filters (refer to Section 2.4.0.3).

4.3 Simultaneous and Proportional Myoelectric Control

The control system was designed with a traditional random forest algorithm at its center. As

the literature shows (refer to Section 2.3.1), RF is one of the algorithms being used for EMG-

based simultaneous and proportional control. In this section, the random forest algorithm will be

explained to a fair degree of detail. To do so, a brief introduction to decision trees is necessary,

followed by a discussion of the bias-variance problem and a brief discussion of the suitability of

random forests to myoelectric control are necessary. An explanation of Breiman’s Random Forest

algorithm follows and, to conclude, a discussion of hyperparameter tuning for random forests.

4.3.1 The Decision Tree Algorithm

Random forests, as first introduced by Breiman (2001), are decision tree based ensemble al-

gorithms. Decision trees are simple classifiers where data is successively tested for certain condi-

tions, starting at a root, until all examples are sorted into one of many leaf nodes. An example of

a decision tree classifier can be seen in Figure 4.2.

The driving force behind decision trees is the minimization of node impurity - at each node,

a rule (a split) is applied in an effort to separate a set of data points into two sets of data points

that are less alike. All purity functions describe, in one way or another, the degree to which a
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Figure 4.2: An example of a decision tree classifier and its basic components. In this decision tree,
the classification is entirely categorical, both in decisions and labels, though regression trees can
exist.

group of data points has a homogeneous probabilistic landscape, that is, how close the group is to

a perfectly impure set of data, which would have equal probabilities for all possible classification

labels. There are several techniques for assessing purity at a node, the most popular being Gini

impurity (Biau and Scornet, 2015).

For a regression problem, the criterion has to be distinct. Instead of splitting nodes with

categorical variables, cuts are performed along a variable’s axis, at a certain coordinate. There is a

handful of viable procedures, the most common being the CART split criterion (Breiman, 2001),

which stands for Classification and Regression Trees split criterion.

In CART splits, the quality of a cut is directly evaluated for its impact in group variance, the

objective being to maximize the reduction from the parent node to each of the child nodes. The

function in the CART split criterion for any given split on a tree n, along a variable j at the position

z along that coordinate is (Breiman, 2001):

Ln( j,z) =
1

Nn(A)

[
Nn(A)

∑
i=1

(Yi− ȲA)
2−

Nn(AL)

∑
i=1

(Yi− ȲAL)−
Nn(AR)

∑
i=1

(Yi− ȲAR)

]
, ( j,z) ∈ CA (4.3)

with A being the set of data points in the node in question, AL and AR being, respectively, the "left"

and "right" nodes resulting from the cut, Nn(S) the number of data points in a generic data cell S,

CA being the set of all possible cuts in A, Yi being the label of a certain data point Xi ∈ A and ȲS

being the expected label value in any given set of data points S.

In essence, the CART split criterion computes the difference between the parent node’s vari-

ance and a weighted average of the variances of the two nodes born from the cut:



4.3 Simultaneous and Proportional Myoelectric Control 83

Ln( j,z) =
1

Nn(A)

[
Nn(A)

∑
i=1

(Yi− ȲA)
2−

Nn(AL)

∑
i=1

(Yi− ȲAL)−
Nn(AR)

∑
i=1

(Yi− ȲAR)

]
=

=
1

Nn(A)

[
Nn(A) ·σ2−Nn(AL) ·σ2

L −Nn(AR) ·σ2
R
]
=

= σ
2− Nn(AL)

Nn(A)
·σ2

L −
Nn(AR)

Nn(A)
·σ2

R

(4.4)

where σ is the cell’s standard deviation for variable j and σL and σR are the standard deviations

for, respectively, the left and right child nodes.

4.3.2 The Bias-Variance Trade-Off and Ensemble Algorithms

Once a splitting criterion has been selected, the decision tree can be parametrized for optimal

performance. In machine learning, meta parameters that determine mechanisms such as the learn-

ing process are traditionally called hyperparameters (Probst et al., 2019). In spite of not being a

direct component of the classification or regression algorithms, they constrict the algorithm in spe-

cific ways, analogous to, say, the order of a polynomial regression. In the case of decision trees,

there are a number of hyperparameters that require tuning in order to achieve the best possible

performance. They can be tree depth, maximum and minimum node size, etc.

Notwithstanding, decision trees are weak learners (a weak learner is a learner that can always

do, at least, slightly better than random guessing). Their biggest problem lies in the fact that they

are mortally prone to overfitting. What this means is that when tuning a weak learner, there is

a strong tendency for that weak learner to become a high accuracy predictor, though at the cost

of becoming overtly specific. To put it simply, a decision tree can be near endlessly improved

to become a powerful predictor for one specific sample, at the cost of becoming virtually useless

for any data that slightly deviates from the former. This is what is often called the bias-variance

trade-off and can be found illustrated in Figure 4.3.

In the case of decision trees, the implications could be, for example, that increasing tree depth

until every single data point in the training data set is correctly classified causes the algorithm

to lose accuracy if it were generalized to other data sets, even if belonging to similar (or the

same) populations. That is to say, the model has a variance problem and, besides a few excellent

predictions, the algorithm’s performance will vary wildly. This is why it is called a trade-off -

at a certain point it is virtually impossible to improve on a weak classifier’s performance without

making it less generalizable. On the other hand, keeping its performance below this break point

means it will be a consistently unremarkable performer, and thus a high bias classifier - it is

permanently distant from reality.

A tried-and-true solution to this problem of weak learners with costly bias-variance trade-offs,

specifically learners with high variance, is a technique called bagging, generally found in ensemble

algorithms.
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Figure 4.3: The bias-variance trade-off. On the left, the relationship between model complexity
and the bias-variance trade-off. After an initial speedy convergence to a local solution, an increase
in model complexity can have different outcomes, improving the fit on the training set and wors-
ening the fit on the testing set and, consequently, any generic sample from the population. On the
right, the classification of data based on two input variables, according to different models. Both
an underfit model and an overfit model fail to capture the real underlying trend of the data set.

To better explain the reasoning behind ensemble algorithms, let us assume that we are in pos-

session of a decision tree that has been trained on one unique data set, D, and promptly optimized

for performance on that very same data set. As stated prior, this would likely be a blindly trained,

high variance estimator, which we will call hD(x), x being any input vector and the index D telling

of the data set on which the decision tree was trained. Let us assume we are also in possession

of the expected estimator, h̄(x), that is, an estimator that, for any given input vector, computes

the expected true label. The expected squared error (any other loss function would fit here) of the

weak learner would then be given by (Biau and Scornet, 2015):

Ex
[
(hD(x)− h̄(x))2] (4.5)

To further the previous hypothetical scenario, let us accept that in place of one unique data set,

there were numerous unique data sets, and that each data set was used to train a separate decision

tree, perhaps to the point of overfitting. Assuming these data sets were independent, by the weak

law of large numbers, aggregating the estimates of all learners and computing the mean estimate

should, in theory, converge to the expected estimator’s prediction (Biau and Scornet, 2015):

lim
m→∞

Ex,D

[
1
m

m

∑
j=1

h D j(x)

]
= h̄x,D (x) (4.6)

In other words, as the size of the ensemble of weak learners grows, the ensemble’s fitness

improves and variance is kept in check.

This set of estimators being aggregated would then be called an ensemble of weak learners. In

the case of a random forest, the ensemble would be an analogous "forest" of multiple trees, hence
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the name.

Unfortunately, a faithful implementation of any ensemble algorithm would be utterly imprac-

tical. The requisite for multiple data sets is simply far too great.

In a random forest algorithm, a single data set is obtained and split into multiple bootstrapped

(sampled, usually, with repetition) sample data sets. Then, multiple decision trees are trained with

the data, constructing a single predictor from each bootstrapped sample. To improve performance,

the bootstrapped set is not used in full at each node of every tree. Alternatively, a subset of vari-

ables are randomly selected as candidate variables and cuts are performed by taking into account

exclusively the candidate variables. Finally, test data is classified using the aggregate, average

estimation of all trees in the "forest". This averaging of decision trees is depicted in Figure 4.4.

Figure 4.4: The classification process in random forests. Ensembles of Decision Trees provide
each a prediction and the results are averaged. Source: Verikas et al. (2016).

This sampling technique of bootstrapping and aggregating is very appropriately called bag-

ging. In this case, the weak law of large numbers is technically being violated because the boot-

strapped sets are not independent, though the method still provides excellent approximations. As

a matter of fact, it is one of the most effective computationally intensive procedures to improve on

unstable estimates, especially for large, high-dimensional data sets, where finding a good model

in one step is impossible because of the complexity and scale of the problem Biau and Scornet

(2015).

4.3.3 Myoelectric Control and Decision-Tree Based Ensemble Algorithms

When it comes to simultaneous and proportional intention estimation, decision-tree based en-

semble algorithms boast characteristics that are extremely valuable when using surface EMG data.

More specifically, they are:

• Non-parametric and, as such, do not have a normality distribution assumption restricting its

use (Nikulski, 2020). EMG data is frequently biased.
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• Very robust to multicollinearity between features (Nikulski, 2020). Considering all features

are being extracted from the same EMG signal or signals from potentially adjacent muscles,

subject to identical mathematical treatment, correlations are bound to be heavily present.

• Robust to overfitting, noise and outliers (Nikulski, 2020). EMG data, as previously men-

tioned, is filled with artifacts, noise from surrounding muscle activity and other undesired

electrical interference.

• Not sensitive to data magnitude (Nikulski, 2020) and, therefore, do not require the data

points, in the case of EMG data, to be normalized, thus saving time.

Nowadays, there are several variants to the popular random forest algorithm that leverage the

aforementioned idiosyncrasies to contrastive extents.

All these alternative algorithms, however, are more vulnerable to noise and data artifacts than

the random forest algorithm. They tend to significantly outperform random forest in terms of

training speed and efficiency, but when it comes to classification or regression performance, they

have a hard time coming out ahead (Nikulski, 2020). Given that the task at hands involved a cali-

bration and training phase separate from online testing, the choice ultimately resided on Breiman’s

Random Forest algorithm.

4.3.4 Breiman’s Random Forest Algorithm

Breiman’s Random Forest algorithm, akin to most machine learning algorithms, can be split

into two different stages: training and testing.

For a random forest, training consists of the bootstrapping process and subsequent growing of

trees from each data set. Testing, on the other hand, consists of classifying an input data point with

every decision tree grown in the previous step and averaging the result.

Considering a step zero to be the separation of an original data set into two samples, one for

training and the other for testing, the pseudocode for the algorithm of the training and testing

stages of the random forest can be detailed as follows:

# Define the RF’s hyperparameters

D: Original Data Set

m: Number of Trees

n: Size of Bootstrapped Data Sets

mtry: Number of candidate variables

nodesize: Limit node size for splitting it any further

(train_set, test_set) = Split D into a training and a testing set

# Build the RF model

Random_Forest = Training_Phase(train_set, m, n, mtry, nodesize)
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# Classification / Regression of the testing data set

Predictions = Test_Phase(Random_Forest, test_set)

model Training_Phase(train_set, m, n, mtry, nodesize)

# For every tree

for i = 1, ..., m

# Bootstrapping

A = randomly selected n data points with replacement from the

training data set train_set

# Grow the tree with recursion

branch = Grow_Tree(A)

end for

recursive function Grow_Tree(parent_node)

# Check if node size is not too small

if size(parent_node) < nodesize

# Don’t grow this tree branch any further, instead return

the leaf node

leaf_node = parent_node

Return leaf_node

else

# Keep growing tree

# Start by selecting candidate split variables

candidate_variables = randomly selected mtry candidate

variables

# And finding the best split

for j = 1, ..., mtry

(j, z) = best split for candidate_variable(j) at

coordinate z

# Every new iteration, check if the new best split is

the best over all variables

Update or keep (j, z) accordingly

end for

# Perform the split
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left_node, right_node = CART_split(parent_node)

# Grow the tree recursively

left_branch = Grow_Tree(left_node)

right_branch = Grow_Tree(right_node)

end if

end recursive function

end model

estimate Testing_Phase(model, test_set)

# Classify every data point in the test set

for data_point in test_set

estimate(data_point) = 0

# Compute the estimate for every tree

for 1, ..., m

estimate(data_point) = estimate(data_point) +

+ model.predict(data_point)

end for

# Compute the aggregate estimation

estimate(data_point) = estimate(data_point) / m

end for

end estimate

It should be noted that the underlying algorithm of this pseudocode is inefficient and compu-

tationally exorbitant. It could be further optimized. The implementation involved the use of an

already optimized open-source package (refer to Section ??).

In addition to the existing functionality, evaluation metrics could be added to the program and

the algorithm’s hyperparameters, such as m and mtry, could be tuned. Random forest hyperpa-

rameter tuning will be discussed in the following sections.

4.3.5 Random Forest Tuning: Empirical Rules

Like most machine learning algorithms, the performance of RF can be improved by adjusting

some of its hyperparameters. As was aforestated, the hyperparameters of a learning algorithm

are variables that remain unchanged during the learning process, yet can be used to tweak the

learning process. Whereas model parameters are obtained from the training itself, model hyperpa-

rameters are derived from empirical knowledge, mathematical derivations or some form of model

optimization.
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Changing these meta variables in an effort to improve model performance is called tuning.

The first step when attempting to tune an algorithm is, evidently, to identify the hyperparameters

available. In random forests, the most common are (Probst et al., 2019):

• Number of candidate variables: When growing a given tree, splits have to be performed at

each node. The best split can be found by looking at all possible splits across all variables,

but this is very rarely the choice. The traditional procedure is to sub-sample the bootstrapped

data set and select among a restricted number of candidate variables.

• Sample size: The bootstrapped data sets can be sampled with any size, and the choice is not

trivial.

• Whether the sampling is done with or without replacement.

• Node size: By limiting the number of data points allowed to remain in a node before or after

a cut, the learning process of individual trees can be manipulated.

• Number of trees: The number of weak learners in the ensemble algorithm.

Breiman’s random forest’s complex and abstract foundations mean that a purely analytical

determination of the best set of hyperparameters remains to be derived, despite some existing

efforts to progress the mathematical understanding of RF (Biau and Scornet, 2015). As a modest

substitute, empirical rules have been established and amply studied in the scientific literature.

Numerous times, these heuristics have been shown to be limited and highly data dependent (Probst

et al., 2019). Nevertheless, they provide invaluable knowledge on the inner workings of this

convoluted algorithm, which is why they will be succinctly discussed over the next few pages.

4.3.5.1 Number of Candidate Variables - mtry

The idea of picking a high number of candidate variables for each split is well financed in

intellectual resources. It is prodigiously clear that, when attempting to optimize any given split

at any given node in any given decision tree, a number of candidate variables close to the total of

all available variables would result in a higher probability of selecting for the best candidate and,

thus, growing the best possible predictor (Biau and Scornet, 2015).

Diversely, there is a remarkably good case, albeit less evident, for picking only a small fraction

of all the available variables (Probst et al., 2019). For starters, selecting the strongest candidate

variable is not necessarily an advantage - it makes individual trees more predictable and more

strongly correlated with both the bootstrapped data set and the remaining trees in the forest, and

obfuscates the chance of selecting lesser variables that could be bearing pieces of pivotal informa-

tion. Not only that, picking a low number of candidate variables vastly improves on computational

cost, given that the costliest step is, traditionally, the splitting procedure.

All in all, picking a high number of candidate variables increases the likelihood of picking the

strongest variables, which in turn increases the risk of biasing the predictor too heavily, making it

less stable. It is, summarily, an inevitable trade-off between accuracy and stability.
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The default recommendation, in most software packages and empirical studies, is to use, for

classification purposes, the square root, and for regression purposes, a third of the total number of

variables in the model (Probst et al., 2019).

Nonetheless, even this value can be misleading - not all data sets have the same distribution

of importance among existing variables, which should technically be taken into account when

picking the candidates. The greater the count of highly relevant features, the lower the pool of

candidates should be to give weaker variables a better shot at making the cut.

4.3.5.2 Bootstrapped Sample Size - p and n

p is the number of variables (dimensions) included in the bootstrapped sample and n is the

number of data points in each sample.

Similarly to the number of candidate variables, smaller samples produce diverse, less corre-

lated trees, at the cost of performance and accuracy at the individual tree level. Contrary to the

last hyperparameter, however, the optimal sample size seems more problem dependent. Therefore,

there are no widespread empirical tricks (Probst et al., 2019). In any case, it is well understood

that decreasing the bootstrapped sample size improves computational efficiency.

4.3.5.3 Sampling With or Without Replacement

There seems to be little or no evidence of substantial impact of replacement in the model’s

performance, especially when the remaining hyperparameters have already been adequately tuned,

though certain authors claim that sampling with replacement in problems with several categorical

features should not be a given (Probst et al., 2019).

4.3.5.4 Node Size - nodesize

In most software packages, the default node sizes are 1 for classification and 5 for regression,

which seem to garner good results (Probst et al., 2019). As the overall sample size and the number

of noisy, low content features increases, though, node size should be incremented, otherwise a lot

of resources will be wasted on relatively worthless splits. As a matter of fact, the computational

expenditure seems to increase exponentially as the minimum node size for splitting requirement

is lessened.

4.3.5.5 Number of Trees - m

According to Biau and Scornet (2015), the random forest’s aggregate estimate can be defined,

in a simplified manner, as:

hm,D(x) =
1
m

m

∑
j=1

hD j(x) (4.7)

where m is the number of trees, x is the input vector, the original data set is D and the bootstrapped

data set for the jth tree is D j.
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Then, if we recall the reasoning presented in Section 4.3.2, by the weak law of large numbers,

as we let m tend to infinity, the average of all trees in the forest will tend to the expected value of

the classifier for the original data set (Biau and Scornet, 2015):

h∞,D(x) = h̄D(x) (4.8)

where h̄D is the predictor’s expected value.

The variance of the classifier will fall without overfitting to the bootstrapped sets, that is, it

will become independent of each bootstrapped set and will solely depend on the original sample

(Biau and Scornet, 2015):

lim
m→∞

E[hm,D(x)− h̄D(x)] = E[h∞,D(x)− h̄D(x)] (4.9)

The bootstrapped data sets are not, of course, independent from the original data set. Under

ideal conditions, i.e., assuming the original sample is a good descriptor of the real population,

the random forest should, in theory, provide an excellent approximation to the real estimation

problem. If the training set is limited, a large number of trees can lead to noticeable overfitting.

This gives valuable insight into why this algorithm can be really powerful in EMG-based inten-

tion prediction, since each trial represents, to a reasonable extent, whilst noisy, the true relationship

between the EMG signal and motion intention.

Returning to the matter of hyperparameter tuning, this realization harbors both a positive and

a negative side to it: on one hand, it becomes conspicuously apparent that the number of trees

should be as high as possible. On the other hand, it is also clear that increasing the number of trees

leads to a palpable linear increment in computational load. In a sense, the problem is not exactly

one of tuning, but one of managing a trade-off.

The elementary approach to this trade-off is to establish what the convergence rate for this

hyperparameter is and grow trees until the marginal utility gain is close to nil. Probst et al. (2019)

hypothesizes that when tuning the other hyperparameters for stability and diversity among trees, a

larger number of trees should be chosen to ensure every observation is correctly predicted.

4.3.6 Random Forest Tuning: Bayesian Optimization

Alternatively, the random forest’s hyperparameters could be tuned using an optimization algo-

rithm. Unfortunately, as previously mentioned, the random forest algorithm suffers from numer-

ous limitations that make it unsuitable for most traditional optimization algorithms (Probst et al.,

2019).

The biggest one is the nonexistence of proper mathematical formulation (Biau and Scornet,

2015). The greatest consequence of this is that an algorithm that relies on knowing completely the

objective function is no longer applicable. An example is gradient descent optimization, which

requires knowledge of the gradient.
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Secondly, for a random forest regressor, similarly to most machine learning algorithms, a

single iteration of training and evaluating the model is very expensive (Probst et al., 2019), which

quickly becomes impractical if the optimization algorithm is very greedy.

Another problem of tuning random forests with optimization algorithms is that, like certain

machine learning algorithms, they are rarely convex, that is to say they rarely converge on a single

optimum, on which the latter frequently rely. A lot of algorithms can get stuck on local optima.

Bayesian optimization has surfaced as one solution to design problems where the breadth of

explicit decisions to be taken is large. The goal of Bayesian optimization is to produce an optimal

classifier that is both faster and more accurate (Shahriari et al., 2016).

Put simply, Bayesian optimization works by constructing a posterior distribution of Gaussian

processes in an n-dimensional space, where n is the number of hyperparameters. The posterior

results from fitting a Gaussian process to the observations obtained so far. An observation consists

of a score (response variable) obtained by a model built with a certain set of hyperparameters

(input variables). In this case, an observation could be the accuracy scores of the random forest

algorithm on the available data set, given a certain set of hyperparameters.

As the number of observations grows, the posterior distribution improves, while the algorithm

keeps track of which regions of the hyperparameter domain have been explored and to how much

success. After every iteration, the algorithm optimizes an acquisition function, which takes into

consideration the uncertainty of unexplored space (exploration of the hyperparameter space) and

the scores of neighbouring observations (exploitation of the objective function). The optimized

acquisition function outputs a target point in the hyperparameter space, which is used to obtain the

next observation.

In essence, Bayesian optimization uses a proxy optimization problem - finding the maximum

of the acquisition function - and progressively maps the hyperparameter space with every model

found so far. This could be seen as redundant. In reality, provided the acquisition function and

the exploration strategy are appropriately selected, Bayesian optimization can, in very few steps,

find a combination of parameters that are close to the optimal combination (Shahriari et al., 2016).

This is illustrated in Figure 4.5.

The increase in computational effort would be too large in traditional optimization procedures.

However, when taking into account how costly a single observation can be, the algorithm ends

up paying dividends. Therefore, Bayesian optimization is most adequate for situations where

sampling the function to be optimized is a very expensive endeavor, which is the case for random

forests (Probst et al., 2019).

Summaringly, a Bayesian optimization algorithm applied to a random forest regressor consists

of the following steps (Shahriari et al., 2016):

1. Establish the domain of the hyperparameter space that is to be studied.

2. Select an initial arbitrary point in the hyperparameter space or one provided by the user. If

this is not the initial point, select the next point to probe in the hyperparameter space by

optimizing the acquisition function.
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Figure 4.5: Illustration of the Bayesian optimization procedure over three iterations. The dashed
line represents the real objective function, which is unknown. The dark line is the posterior, which
is estimated by the Gaussian process from the available observations. Based on the uncertainty
surrounding each observation (the blue shaded areas represent one standard deviation from the
mean), the maximum of the acquisition function (the dark green line) is computed. The acqui-
sition function balances exploration and exploitation, that is, it considers both unexplored areas
of the hyperparameter domain and the potential to yield high scores of the objective function,
when determining the next best candidate observation. n is the number of observations. Source:
Shahriari et al. (2016).

3. Train a random forest using that set of hyperparameters.

4. Evaluate the objective function. This can be accomplished by splitting the data set into

folds, performing cross-validation, and using the average score as the result.

5. Add the latest result to the set of observations and update the surrogate function (and its

corresponding posterior distribution) by fitting Gaussian process priors to the data.

6. Repeat from (2) until predefined criteria are met.

An implementation of Bayesian optimization was done to tune the random forest. Scores of

observations were computed through k-fold cross-validation of different trials, using the mean
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squared error as the measure. A light discussion of the measures employed for validation of the

random forest models can be found in Sections 6.4.

Expected Improvement was selected as the acquisition function. There are numerous alter-

natives to this, whose treatment is beyond the scope of this work. A simple, traditional choice

is the Probability of Improvement (Snoek et al., 2012), which, as the name suggests, takes into

account how likely a set of hyperparameters is to yield an observation that results in a new best

observation. Expected Improvement takes this one step further by also taking into consideration

how large of an improvement each of these points would provide over the current best observation.

Whereas the Probability of Improvement acquisition function uses the area of the prior to esti-

mate a probability of improving the performance of the objective function, the Expected Improve-

ment takes into account the difference between the mean of a point’s respective prior distribution

and the mean of the current best observation (Shahriari et al., 2016):

EI(x) =

(µ(x)−µ+−ξ ) Φ(Z)+σ(x)φ(Z) if σ(x)> 0

0 if σ(x) = 0
(4.10)

where x is any set of hyperparameters in the hyperparameter space, µ+ is the current best obser-

vation, µ(x) is the mean function of x, ξ is a noise or error term, σ(x) is the deviation function of

x and φ(·) and Φ(·) are the PDF and CDF of the standard normal distribution.

The associated acquisition function can given by (Snoek et al., 2012):

αEI(x;{xn,yn}) = σ(x;{xn,yn})(φ(x)Φ(φ(x))+N (φ(x);ν)) (4.11)

where {xn,yn} is the current set of observations and N (φ(x);ν) is a source of noise. Snoek et al.

(2012) recommends ν = 0.1, which was the value adopted in this work.

In addition to choosing an acquisition function, designing a Bayesian optimization procedure

requires the selection of a covariance kernel function for the Gaussian prior. Again, discussion

of kernel functions is outside the scope of this thesis. In short, a kernel function is a measure of

similarity between data points that can be used as a computationally cheaper and algorithmically

more effective alternative to the covariance matrix of the multivariate standard normal distribution.

As recommended by Snoek et al. (2012), the ARD Matérn 5/2 kernel was used:

KM52(x,x’) = θ0

(
1+
√

5r2(x,x’)+
5
3

r2(x,x’)
)

exp
{
−
√

5r2(x,x’)
}

(4.12)

4.4 DC Motor Control

Once estimation of the angle by the random forest algorithm is complete, the device should be

commanded to move to the target position. This is achieved by feeding a controller with that same

information, so that it produces the correct output for the motor.

There are many types of controllers used in DC motor control, such as lead and lag com-

pensators, LQRs (linear quadratic regulators), PID and sliding-mode controllers (Sabir and Khan,
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2014). A standard solution is to use a PI or PID controller with negative feedback, and this choice

is definitely not uncommon, for its simplicity and effectiveness make it a flexible tool (Somefun

et al., 2020). When controlling DC motors, PI is sometimes preferred over PID, due to being

simpler and still boasting acceptable performances. Regardless, the following discussion will be

done with regards to a PID controller, since it applies very appositely to PI control.

Figure 4.6: Block diagram of a PID controller. The output is compared to the reference and
their difference is used to compute proportional (P), integral (I) and derivative (D) control actions,
which are summed and their output fed to the process. Source: Biswas et al. (2009).

PID control can be interpreted as a collective action based on present errors (proportional

control), past errors (integral control) and future errors (derivative control) (Ali et al., 2019), the

last being based on current rate of change. The block diagram of a PID controller is illustrated in

Figure 4.6. The time-domain control action of the PID controller is defined as follows Ali et al.

(2019):

u(t) = Kp e(t)+KI

∫ t

0
e(t)+Kd

de(t)
dt

(4.13)

where e(t) is the error at time t and Kp, KI and Kd are the proportional, integral and derivative

gains. Applying the Laplace transform gives:

U(s) = Kp E(s)+KI
E(s)

s
+Kd E(s)s (4.14)

The controller’s open-loop s-domain transfer function would then be given by:

C(s) =
U(s)
E(s)

= Kp +KI
1
s
+Kd s (4.15)

The PID controller’s open-loop transfer function C(s) can, additionally, be represented in a

time constant formula, as the ISA standard defines (Vandoren, 2003):

C(s) = Kp (1+
1

Ti s
+Td s) (4.16)
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where all terms of the control action are defined as depending on the proportional gain. Ti is the

integral time and Td is the derivative time.

The integral time of a PID controller is the time it would take the controller’s integral action

to reach the same magnitude as the controller’s proportional action, in an hypothetical scenario

where the input error instantly increases from zero to a constant value. A PID controller with

a large integral time constant is more heavily weighted towards proportional control, since its

integral action dynamics are slower.

By contrast, the derivative time of a PID controller refers to the time it would take for the

proportional action of the controller to catch up with the derivative action, in an hypothetical sce-

nario where the error increases at a constant rate, starting at zero. Consequently, a PID controller

with a large derivative time has a more aggressive derivative control action, in comparison to its

proportional action.

It is worth bearing in mind that the controller will be implemented digitally. Consequently, the

control action uk(t) at a step k will instead be given by:

uk(t) = Kp

(
ek(t)+

1
Ti

k

∑
i=0

ei(t)∆t +Td
ek(t)− ek−1(t)

∆t

)
(4.17)

4.4.1 PID Tuning

A large portion of mechatronic systems rely, at the most basic level, on the control of a DC

motor (Somefun et al., 2020). This low level task, therefore, has to be adequately taken care

of. As soon as a controller has been selected, the next step is to tune it. Tuning the controller

consists of changing the controller’s parameters in an effort to perfect how it reacts to the difference

between the closed-loop system’s output behaviour and the desired one (Vandoren, 2006). The

biggest drawback of a PID controller is its reliance on precise, sometimes even manual, fine-tuning

(Somefun et al., 2020). If the plant is overly sensitive to input changes, then adjusting the control

action to be more conservative might be the right modus operandi. Ultimately, the controller is

parametrized in the most aggressive possible manner, without letting the system become unstable.

It should be clear that despite having explicit, intelligible goals, tuning is not a straightforward

task. When adjusting the control action, it isn’t always obvious that the problematic outputs are

indeed caused by disturbances, rather than measurement errors or defective control action.

This is why there is a wide range of tuning techniques, which can be, for instance, manual

(graphical pole placement, heuristics, manual tweaking), automatic (e.g. with dedicated software)

and performed online (while the plant is running) or offline (tuning based on a model).

Offline tuning boasts many advantages, most in the realm of safety - by testing a model a

priori, there is a higher chance that online testing has a positive and expected outcome. On the

other hand, as the common aphorism goes, all models are wrong. The only way to fine-tune a

controller is to do it online. Usually, a combination of the two methods is employed, and the

present case is no different.
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The first step is to build, as accurately as possible, a model of the system. This necessitates

previous knowledge of the system’s parameters, in this case, the DC motor’s transfer function,

which can, in turn, be approximated from the motor’s specifications. As was cautioned in Sec-

tion 3.3.5, the parameters of the DC motor were mostly unknown at the time of motor selection.

Fortunately, they can and were determined experimentally, and the DC motor’s transfer function

was promptly established. Discussion of this procedure for characterization of the motor and its

transfer function can be found in Appendix A.

The controller can then be tuned by defining certain design requirements that pertain to the

control response - these can be related to overshoot, speed, stability, robustness, etc.

Given the application, that is, a robotic assistive device, one characteristic of the control sys-

tem stands out as critical to the success of any implementation in vivo: stability. Insufficient

stability could precipitously undermine any effort to rehabilitate and reinstruct users to properly

and efficiently use their limbs. Instability would pose an even greater risk in patients with tremors

or neurodegenerative disorders (Gull et al., 2020), say Parkinson’s disease. Another cause of con-

cern is overshoot - if the system were to overshoot the reference angles, the device could put the

user’s limb in uncomfortable, even dangerous, positions, which is a prevalent risk among patients

that are in recovery and rehabilitation - the target consumer of a powered orthosis. These con-

cerns with stability and accuracy could even overshadow speed - for the average user of powered

exoskeletons, a slow and steady pace is commended.

Tuning analytically with respect to specific parameters, like overshoot, is tempting. Neverthe-

less, this would be completely frivolous - as will become clearer going forward, the motor transfer

function is, in actuality, grossly incorrect.

Alternatively, an initial optimal controller can be estimated and used as a starting point from

which to conduct tuning via a heuristic tool. The controller gains yielded by the heuristic technique

can then be manually fine-tuned.

There are numerous techniques and heuristics that make manual tuning significantly easier

and more accessible. A widely accepted one is the Ziegler-Nichols (ZN) tuning method, which

has two variants: open-loop tuning and closed-loop tuning (Vandoren, 2003).

In the ZN open-loop tuning method, the system’s response to a step input is analyzed while

keeping feedback shut off and the controller disabled. Evidently, this is not applicable to position

control of a DC motor where the end-effector has a limited range of motion, where a constant

control action would cause the robot arm to rotate until it stops at one of the ends.

The closed-loop version consists of progressively increasing the controller’s proportional gain

(while keeping the integral and derivative actions turned off) until sustained oscillations of pe-

riod Tu (the ultimate period) start occurring. This gain threshold is called the ultimate gain Ku,

and the optimal parameters for the controller can be promptly computed with the ZN parameters

(Table 4.1).

The biggest drawback with this method is that it requires the process to be put in a state of

oscillation, which could be undesirable, even if momentarily. In addition, ZN closed-loop tuning

has a number of limitations and assumptions that make it hard to be generalized. Having said that,
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Table 4.1: Ziegler-Nichol’s parameters for P, PI, PD and PID controllers.

Controller Kp Ti Td

P 0.50 Ku - -

PI 0.45 Ku 0.80 Tu -

PD 0.80 Ku - 0.125 Tu

PID 0.60 Ku 0.50 Tu 0.125 Tu

the method is applicable to tuning the controller of a DC motor (Cinar et al., 2020), and was, in

consequence, the choice for this work.



Chapter 5

Implementation

With the most important design decisions having been carefully defined, components were

manufactured, the system assembled and the program coded. This chapter provides some insight

into the steps, as well as criteria, taken in successfully implementing the system.

5.1 Design and Assembly of 3D Printed Device

To properly demonstrate the control system, a joint assistive device was designed and later 3D

printed. The structure serves as a very coarse prototype of what could be a real world concretiza-

tion of an externally powered elbow exoskeleton. For the results of this work to translate, as best

as possible, to an in vivo implementation, the following design requirements were established:

• The device had to be anatomically compatible with the human elbow joint. It should feature

appendages for attaching firmly to the human arm and forearm.

• It should have one DoF, as per the elbow joint’s flexion/extension.

• This DoF should have a range of motion of at least 0 to 125 degrees.

• Weight and volume should be kept to a minimum, to prevent unnecessary loading of the

subject or unwieldiness.

• It had to harbor a gearbox for power transmission with speed reduction, from the DC motor’s

shaft to the mechanical arm.

A more thorough explanation of design and assembly of the device can be found in Appendix

C. Designing the gearbox encompassed characterization of the gears and pinions, as well as the

gear train and computation of the necessary speed reduction steps. A description of this process

can be found in Appendix B. Furthermore, a custom support was built for displaying the device.

The assembled device and its custom support can be seen in Figure 5.1. As can be seen in the

Figure, a "mannequin" hand with some weights was attached to the device, to broadly simulate

the loading that the device would be subject to in a real life implementation.
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Figure 5.1: Assembled device with arm (left), weights (middle) and fake hand (right). The weights
consist of a long steel plate (the length of the forearm) and several short steel plates. The long plate
gives the arm more inertia, whereas the short plates give it weight, to help counterbalance the very
high starting inertia due to friction.

5.2 Wiring and Assembly

The complete system can be seen in Figure 5.2. All wiring was done in accordance to the

schematic of Section 3.4.

A difference worth highlighting is the existence of two ADC’s, despite the ADS1115 board

allowing for up to two differential channels. This is due to a limitation of the open source Python

library for the ADS1115 Adafruit board1, which, when requested by the I2C master to switch

channels, performs a few configuration steps that effectively reduce the sampling rate by up to

(according to some initial testing) ten times. For this reason, a single ADC must be employed for

each EMG channel, exclusively.

Finally, the fact that the entire data acquisition system is connected to the microcontroller via

a single cable makes this part of the system very easy to don/doff, through the exclusive use of

pre-gelled electrodes and medical adhesive tape thus satisfying one of the design requirements.

5.3 Codification

Programming was done in Python 3.7.3 and open-source packages were used whenever suit-

able. An initial version of the code was implemented in a Raspberry Pi OS (a Debian-based oper-

ating system for Raspberry Pi) virtual machine and subsequently tested on board with developer

JetBrains’ PyCharm Community 2020.3.32.

1https://github.com/adafruit/Adafruit_CircuitPython_ADS1x15, 09/03/2021.
2https://www.jetbrains.com/pycharm/, 07/03/2021.
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Figure 5.2: Complete system, with all components wired together.

5.3.1 External Resources

To save time, numerous tasks were performed using pre-existing publicly available open-

source packages and modules. The most important ones are here mentioned.

The filter design parameters and filtering itself were accomplished with the SciPy (Virta-

nen et al., 2020) signal processing (scipy.signal) and multidimensional image processing

(scipy.ndimage) packages.

Full-wave rectification was achieved with ease by merely taking the absolute of every point

in the data set, which can be done with a variety of tools, in this case, the NumPy library’s

numpy.absolute (Harris et al., 2020).

For motion tracking, the authors of the Madgwick filter provide open-source modules (Madg-

wick, 2010) for a number of programming languages, namely Python, which can be found in the

ahrs package, under ahrs.filters.Madgwick. The algorithm is simple to use, requiring

only the creation of a Madgwick class object and the Madgwick.updateMARG() (in the case

of inertial sensors that also incorporate a magnetometer) method to be called for run time iterative

estimation.

For building and training the random forest, a popular open-source Python package was used:

scikit-learn’s RandomForestRegressor model (Pedregosa et al., 2011).
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Bayesian optimization of the random forest model was performed with the bayes_opt pack-

age (Nogueira, 2014), a pure Python implementation of Bayesian global optimization with Gaus-

sian processes.

5.3.2 Program Structure

As discussed in Section 3.2, the control system is distributed across four distinct tasks running

in parallel:

1. EMG sensor data acquisition;

2. Motion tracking;

3. Intention estimation regression algorithm;

4. DC motor control.

When decentralizing the computational load, it is crucial to not forget the project at hand

and the design requirements, functional and non-functional (refer to Section 3.1). Otherwise, the

program might be inadequately tuned to the problem in question, as other less pressing matters

take precedence.

To start with, it was defined that the robotic device would have to be as responsive as possible,

to feel comfortable and intuitive to the user if it were to be implemented in vivo. In practical terms,

this means, for example, minimizing computational dead time. Instead of having certain processes

wait for the completion of others, they should function, whenever appropriate, asynchronously.

This is not always feasible, which is the case for nearly all processing steps of incoming sensor

data, which have to be chained sequentially. Here, intelligent distribution and fragmentation of

processing steps is key.

Oppositely, reducing delay should not overshadow accuracy. In accordance with the findings

of Section 2.2.2, input data has to span over a large enough interval of time to achieve sufficient

precision. This does imply some computational dead time, as the processing unit waits for new

data to be compiled. This undesirable necessity can be taken advantage of, by doing other lesser

tasks concurrently. This turned out to be the case of the first two tasks: sensor data acquisition and

motion tracking, which were split into two concurrent threads.

Ultimately, the Raspberry Pi was put in charge of three parallel processes, as illustrated in

Figures 5.3 and 5.4.

Each process runs in parallel. This does not mean there is no synchrony. As a matter of fact,

certain procedures ensure that the flow of data is sequential whenever necessary. An example of

such a procedure is the use of locks. A lock is a parallel processing class that secures the safety of

shared variables when used by more than one process. In this control system, the shared variables

susceptible to instabilities caused by asynchronous programming are the batches of muscle sensor

and motion tracking data, since they are the ones being accessed by different ongoing processes.
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Figure 5.4: The three parallel processes’ loops in the online testing phase. The first process deals
with data acquisition: EMG data is collected and the orientation quaternions are updated, in a
loop, for the duration of a sampling window increment. Then, the joint angles are computed and
data is shared as soon as the parent process can collect the data. The second process joins the
latest increment of data to previous increments, therefore creating a full window. EMG data is
processed and features are extracted. A testing example is built and a reference angle produced.
The reference angle is taken in by the third process, which feeds it to the PID controller. A control
action is produced and mapped to the correct duty cycle scale (0 to 100%), which is used to update
the Raspberry’s PWM output pin.
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The first process is responsible for running two concurrent threads: a sensor data acquisition

and compilation thread and a motion tracking thread. A lock is acquired before any thread is

started. The first consists of periodically (at a sampling frequency of fs,EMG = 400 [Hz]) asking

each 16-bit ADC for new EMG sensor data and saving it in memory. In reality, the sampling

frequencies achieved were significantly lower (refer to Section 6.6). The data is aggregated in

windows of length Ta (refer to Section 2.2.2 for a background on window averages) and discarded

whenever too old to be held. The second thread consists of acquiring the IMU sensor’s accelerom-

eter, gyroscope and magnetometer measurements, applying the Madgwick filter and taking a step

of the elbow angle’s Gradient descent algorithm (refer to Section 2.4.0.4). Once enough muscular

activity and kinematic data is recorded (that is, after a duration equal to a window increment Tinc

has passed), the lock is released for the second process to retrieve the new data.

The second process starts by setting up the entire control system. Then, it performs different

roles depending on the phase of the program. In total, it features three phases: setup, training

and online testing. Figure 5.5 illustrates the calibration steps of the setup phase, Figure 5.3 is a

flowchart of the training phase, and Figure 5.4 details the online testing phase.

In the setup phase, the first step is to import much needed libraries and modules. Next, shared

variables are created, the first process is launched and calibration is performed. Shared boolean

flags are used to coordinate the calibration steps. This calibration is mandatory for at least four

reasons. For starters, the inertial magnetic sensors have to be calibrated for magnetic field warping

and gyroscope bias drift. The first would put the magnetometer’s accuracy at risk, the second

would introduce a small, yet ever-increasing integration error, and both would severely impact the

performance of the system. Consequently, the user is asked to remain in a static, stable position

for 20 seconds, as shown in Figure 5.5, allowing the algorithm to compute the expected values of

these errors and later use them to correct incoming data.

The second reason to calibrate is to allow the Madgwick filters to converge. This is because, as

mentioned in Section 2.4.0.3, the Madgwick filter uses a Gradient Descent optimization algorithm

to converge on the correct sensor orientation. To this end, the user remains in the same position

as the previous calibration step and simply waits until convergence of the algorithm, which takes

only a few seconds. Convergence is quantified by computing the dot product between the last

two consecutive quaternions. If they are sufficiently similar, the Madgwick filter is said to have

converged.

Next, to determine the sensor-to-segment orientations, the user has to perform, over the course

of 45 seconds, periodic repetitive drills that consist of very simple elbow flexion/extension and

forearm supination/pronation movements, again illustrated in Figure 5.5. After this period, during

which the Madgwick filter’s quaternion orientations and the IMU’s gyroscope measurements are

stored, the algorithm converges on a pair of sensor-to-segment orientation via gradient descent

optimization. The joint angle estimation algorithm is explained in-depth in Section 2.4.0.4. An

implementation based on quaternions was used. For more details refer to Laidig et al. (2017).

At last, the relative quaternion orientation can be decomposed in Euler angles. However, the

joint angles cannot be computed at once, because of an arbitrary initial offset due to the arbitrary
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Figure 5.5: The three steps of calibration. Step 1: The subject keeps the arm in a straight, relaxed,
vertical position for 20 seconds. Step 2: The subject repetitively performs flexion of the elbow,
extension of the elbow, supination of the wrist and pronation of the wrist. These movements can
be sequenced in any order. Each movement should take about 3 seconds. Step 3: The subject
keeps the arm in a straight, extended, vertical position for 15 seconds. Adapted: CrossFit, LLC.
(2019).

sensor positioning and orientation. The user is instead asked to remain in a known position for a

brief instant (Figure 5.5), the Euler angle offsets are computed and compared to a reference. This

concludes the setup phase, which is followed by the training phase.

In the training phase, as the name implies, the goal is to train the random forest intention

estimation algorithm. Two alternatives are presented to the user - either new data can be collected,

or pre-existing data sets can be used to train the algorithm. When asked to collect new data, the

second process merely collects all window increments of EMG and elbow angle data received

from the first process and aggregates it into multiple windows of length Ta. Every time data is

fetched, the lock is acquired and later released. Once data acquisition from a user-defined number

of trials is complete or a recorded set of data is loaded, the data is treated and relevant features are

extracted.

The data is split into training, testing and validation sets. The user is then provided with two

options: to train the random forest regressor using a pre-existing set of hyperparameters or to

perform Bayesian optimization on the training and testing sets.

In the online testing phase, the third process is launched and the third process enters an endless

loop, acquiring the lock every time a new window increment of data is available, collecting it and

releasing the lock. Then, it pre-processes the EMG data, extracts relevant features and computes

a random forest regression estimate. The last step in the loop is updating a shared variable, the

target joint angle.

The target joint angle is used by the third process. This process is responsible for controlling

the DC motor. Once launched (at the beginning of the online testing phase), it starts by setting up
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control variables and the Raspberry’s GPIO peripherals, then entering a loop, the motor control

loop. There, a step is taken in the controller’s algorithm (compares the encoder’s measured angular

position to the target joint angle, computes errors and produces a control action) and updates the

output variables - the PWM duty cycle and the motor driver’s directional logic pins. This control

loop runs at a significantly higher frequency than the intention estimation loop, which ensures that

the controller acts upon the latest, most up-to-date data. This is illustrated in Figure 5.4.

By now, it should be clear that the "second" process, as defined in Figure 5.4, is, in actuality,

the first one to be launched. It is, in fact, the main process and the parent process of both the first

and third processes. There are numerous reasons for this.

Firstly, the intention estimation algorithm both requires inputs (the EMG and motion data) that

are provided by the "first" process and produces an output that is needed to control the motor (the

reference angle) and used by the "third" process. Consequently, from a programming perspective,

it is much easier to have this as the main process, launching two other auxiliary processes that it

shares key variables with.

Indeed, logically speaking, the random forest algorithm is the crux of this control system and

even, perhaps, this thesis. It is undeniably the most important component in the control system

and should thus take a central role, even in the code’s architecture. As it happens, it is good coding

practice to keep the code aesthetically tidy and well-organized.

Thirdly, the complete feature extraction and regression algorithm is not a repetitive task.

This is because implementation of the regression algorithm demands separate training and test-

ing phases. There are too many unique tasks that go into each of these two very distinct phases

that would make the algorithm lengthier than necessary, and not at all iterable. This is not even

considering Bayesian optimization, which only emphasizes the sequential nature of a machine

learning algorithm. The "first" and "third" processes, by contrast, deal with tasks that can, after an

initial setup, be run in endless loops: the data acquisition loop and the motor control loop.

In addition, the time it takes to extract features from incoming data and compute a random

forest regression prediction is the common measure that coordinates the entire control system.

Everything happens, as previously mentioned, with respect to the windows of EMG data. Given

that the feature extraction and random forest regression is the longest, most computationally ex-

pensive step in the entire program, it serves as the least common denominator for all synchronous

activities.

Finally, certain resources, functions, variables and methods are easier to access in the main

process.

5.3.3 Modularity

Great effort was put in making the program as modular as possible. This was a very important

goal because experimentation with the system has a large number of small decisions that can be

taken. For instance:
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• The desired processing steps of the sEMG data could be changed, to reflect advances in the

field, changes in the components used, etc.

• The intention estimation algorithm could be changed. This is to be expected, given how

many machine learning algorithms can be used (refer to Section 2.3.1 of the literature re-

view).

• The dependent variable could change - instead of an arm angle, for example, force estima-

tion could be desired.

These are just a few of the numerous minute variants that could be desired. The program was

coded with this flexibility in mind, and these changes and many more are possible with relative

ease.

5.4 Tuning the Motor Controller

As discussed in Section 4.4.1, before operation begins, the motor controller needs to be tuned.

The characterization of the DC motor in Appendix A culminated in the obtainment of the

following transfer function for the DC motor (from Equation A.11):

G(s) =
0.036

2.788×10−4 s2 +0.8143s+0.0708
(5.1)

Combining this with the controller’s transfer function and taking into account the speed re-

duction stage from the gearbox to which the motor is attached (as mentioned above, the system

features a gearbox for speed reduction - design of the gearbox can be found in Appendices B and

C), the actuation control loop can be established in a more concrete manner. The resulting control

loop is represented in the MATLAB®Simulink block diagrams of Figure 5.6.

Figure 5.6: The DC motor actuation control loop. Here, the PID controller is represented by a
discrete controller. Discrete since, technically speaking, it will be implemented digitally. In prac-
tice, nevertheless, the motor controller is so fast (nearly 10 [kHz]) when compared to the device’s
dynamics and the rest of the algorithm, that it essentially behaves as a continuous controller.

An initial estimate for the Proportional Gain Kp was computed using MATLAB®’s PID auto-

matic tuning tool, applied to the block diagram of Figure 5.6, with the PID controller block being

replaced by a simple P controller.

For a Proportional Gain of a little over 100, the system started to overshoot. This already rep-

resented a significant departure from reality, given that the real system was found to occasionally
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overshoot for as little as Kp = 10. This, of course, only served to demonstrate how imprecise the

model was. To simply tune the controller based on this simulation would be risky, irresponsible,

even, on the grounds that it is a definite departure from reality.

Instead, the Ziegler-Nichols test was performed with an initial conservative Kp of 10. This

should give the reader a grasp of how little confidence there was in this initial estimate. This was,

of course, justified, based on earlier informal testing.

Recorded data of the closed-loop ZN-tuning experiment is plotted in Figure 5.7. After the sys-

tem achieved a somewhat steady state, the proportional gain was progressively incremented until

sustained oscillations could be detected. As the gain increased, the device would sometimes get

stuck, which paired with the innately high starting torque would cause it to immediately overshoot

and then correct itself - this phenomenon explains the spurious spikes of Figure 5.7 top.

Eventually, at a Kp of 86, the system showed the first manifestation of a sustained oscilla-

tion (shown amplified in Figure 5.7 bottom), which lasted near one and a half full seconds. The

proportional gain was increased, to ensure the phenomenon hadn’t been anomalous. The system

continued to show brief periods of sustained oscillations, which increased both in frequency and

intensity as the gain grew larger. The largest showed an amplitude of nearly 3 degrees, justifying

the interruption of the experiment.

From Figure 5.7, the ultimate gain and period, Ku and Tu, were computed, with values of 86

and 0.05 seconds, respectively.

Using Table 4.1, three alternatives were selected for further consideration: PI, PD and PID.

After some experimentation, the PID controller was selected. The integral term helped correct

small steady state errors, whereas the derivative term proved successful in avoiding most instances

of overshoot. The gains were further fine-tuned manually and the resulting controller is also shown

in Table 5.1. The resulting Kp is the lowest of all to ensure a smooth trajectory and the resulting

Td is the highest because a more aggressive derivative action was necessary due to high starting

friction. Its response to a step reference joint angle of 50 [deg] is shown in Figure 5.8.

Table 5.1: Ziegler-Nichol’s parameters for P, PI, PD and PID controllers, given the values obtained
experimentally for Ku and Tu.

Controller Kp Ti Td

P 43 - -

PI 39 0.04 -

PD 69 - 0.006

PID 52 0.025 0.006

Final Controller 30 0.02 0.5

This serves as an excellent example of deficiencies with modelling and offline testing. Firstly,

the model revolved around a plant (the DC motor) transfer function that was obtained with an un-

reasonably high degree of uncertainty. Not only was the equivalent circuit used to approximate the
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Figure 5.7: Recorded data of the closed-loop ZN-tuning experiment. At a Kp of 86, the system
showed the first sustained oscillation, which is shown amplified in the bottom figure.
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motor, by itself, limited, but the parameters were selected through grossly imperfect experiments

and based on fallible criteria.

Furthermore, a multitude of differences exist between the control loop of Figure 5.6 and the

real thing. For example, energy losses were not factored in, which can become a very gross

oversight when dealing with a 3D printed device with 3D printed gears and other 3D printed

moving parts.

This could be an explanation for the exceptionally high starting torques found. What would

otherwise be slight tracking corrections, could become unreasonably large overshoots of several

degrees. In fact, the motor was found to completely stall at any duty cycle under about 33%, that

is, for an equivalent mean voltage of 4 V. Evidently, this introduced severe non-linearities in the

plant which further invalidated the model.

On second thought, in spite of all its limitations, the model was an invaluable tool in revealing

the inefficiencies of the real system. Once again, as the common aphorism goes, all models are

wrong, but some are useful.
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Figure 5.8: Response of the DC motor to a step input of 50 [deg]. The fine-tuned PID controller
allowed for a fast, yet smooth, response and consistent minimal or no overshoot.
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Chapter 6

Validation

This chapter pertains to the experiment designed to evaluate the implemented system. First,

objectives for the experiment were set. From these, research questions and their associated hy-

potheses were drawn. Based on the measures being used, statistical tests were selected to test their

respective statistical hypotheses. Results of the experiment are presented and discussed.

6.1 Objectives

The main objective of the experiment was to validate the quality of the solution, that is, the

system that was designed and implemented.

To this end, both the intention estimation algorithm and the complete system should be ana-

lyzed, not just the latter. On one hand, the random forest regressor was designed so as to accurately

describe the relationship between the sEMG signal acquired and the measured elbow joint flex-

ion/extension angle. This presumes testing the algorithm offline after training it on acquired data.

On the other hand, if the remainder of the system is incapable of accurately replicating the

reference angle computed by the random forest regressor, then the system does not perform to an

acceptable level.

From here, three research questions were established:

RQ1: What is the level of performance of the system? This pertains to both the intention estima-

tion algorithm by itself and the complete system in online testing.

RQ2: Do the intention estimation algorithm in offline validation and the complete system in online

testing perform significantly better when the random forest model is tuned with Bayesian

optimization, relative to using predefined hyperparameters?

RQ3: Are there differences between the performances of the intention estimation algorithm in

offline validation and the complete system in online testing?

RQ3 follows the findings of Chapter 2. When trying to transition from an offline environment

to online testing in vivo, studies have shown that offline testing results are not necessarily a good
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indication of online performance (Jiang et al., 2014). Thus, it is relevant to assess the difference

between online and offline performance.

6.2 Hypotheses

Each of the aforementioned research questions were expressed in more concrete terms, by

means of a set of null hypotheses and their respective alternative hypotheses.

RQ1: Having been considered a mostly descriptive research question, no hypotheses were

established for this question.

RQ2: A simple but effective way of comparing the performance of the algorithm and the

system overall when using default hyperparameters relative to optimized hyperparameters is to

compare their accuracies when tested offline and online.

Consequently, the following hypotheses were established for RQ2:

H10 Null Hypothesis: The intention estimation algorithm and the robotic device show no signif-

icant differences in accuracy when the random forest regressor is trained using optimized

hyperparameters relative to default hyperparameters.

H1a Alternative Hypothesis: The intention estimation algorithm and the robotic device have

significantly better predictive accuracy when the random forest regressor is trained using

optimized hyperparameters relative to using default hyperparameters.

RQ3: This question can be considered descriptive and as such no hypotheses were drawn for

it.

6.3 Subjects

The experiment was performed on a single subject, a 23 year old male with 70 kg and self-

reported sub 12% body fat. The subject had previous knowledge of sEMG, despite no practical

experience. The subject’s carrying angle was measured to be approximately 15º.

6.4 Measures

The system’s accuracy can be measured using the errors between its output and the measured

output, the outputs here being angles of flexion/extension of the subjects’ elbow joint.

The joint angles were measured in real time using the motion tracking solution discussed in

Section 2.4, which combines inertial magnetic sensors, attitude estimation and the joint angle

algorithm detailed in Section 2.4.0.4. The precision of these measurements are dependent on the

IMUs’ resolution, quantization errors, spurious errors, etc.

When analyzing the intention estimation algorithm, the output is directly an estimated angle

that the random forest regressor computes based on an input feature vector. These inputs, of
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course, are obtained from the EMG sensors, whose signal is fed to a 16-bit ADC and only then

received by the microcontroller. The sEMG signals, as discussed in Section 2.2, have numerous

flaws, such as being very noisy.

The complete system’s output is the motion of the robotic device. In this case, the relevant

output variable is the angular position of the arm, which is measured with a 13-bit magnetic

encoder. This sensor, of course, is subject to magnetic interference from the environment and

other sources of errors.

On these accounts, the accuracy can be quantified in numerous ways. When using a machine

learning algorithm, it is common to use the coefficient of determination, R2, which measures the

amount of variance in the dependent variable that is explained by the independent variable(s). A

general definition of the coefficient of determination is:

R2 = 1− ∑i(yi− fi)
2

∑i(yi− ȳ)2 (6.1)

where yi is the value of the dependent variable of observation i, ȳ is the mean of the data set and fi

is the model’s estimate.

Evidently, this is a very simple way of comparing models, since the R2 of each variant can be

compared and thus provide some insight into the goodness of fit of a model or system.

The two biggest disadvantages of the coefficient of determination are its dependence on the

number of independent variables relative the sample size and its dependence on the number of in-

dependent variables included in the model (Alshibly, 2018). Fortunately, the number of variables

in the random forest model does not change throughout the experiment. The manipulation of hy-

perparameters in Bayesian optimization could be seen as an increase in the number of independent

variables, but this effect was not considered.

Therefore, the values to compare in the context of RQ2 and RQ3 will be the R2 for the follow-

ing four different scenarios:

1. R2 computed from the intention estimation algorithm’s joint angle estimates, when tested

offline with default hyperparameters.

2. R2 computed from the intention estimation algorithm’s joint angle estimates, when tested

offline with optimized hyperparameters.

3. R2 computed from the intention estimation algorithm’s joint angle estimates, when tested

online with default hyperparameters.

4. R2 computed from the intention estimation algorithm’s joint angle estimates, when tested

online with optimized hyperparameters.

6.5 Preparation and Execution

The experiment followed the steps described in the Experiment Protocol of Appendix D. In this

appendix, some pictures of the experiment can be found, such as electrode and sensor attachment
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to the subject, the muscle sensors’ output on an oscilloscope, side-by-side comparison of the

subject and the device during online testing, etc.

6.6 Results and Discussion

Data acquired during the trials can be found in Appendix D. Overall, sEMG data acquisition

and motion tracking seem to have performed up to expectations. Perhaps most noticeable is the

higher amplitude of the biceps’ signal relative to that of the triceps. This could be related to

faulty electrode placement or the nature of the movement not requiring as much effort from the

triceps (which are working in favour of gravity). There is a difference between the biceps’ signal

during the first three trials and the last three. This makes sense from an anatomical perspective,

considering that the brachialis muscle shares more load during this part of the movement when the

wrist is neutral, as was the case in the last three trials.

Sampling frequency during the trials was worse than expected, ranging from 200 to 300 [Hz]

instead of the expected 400 [Hz]. The explanation for such a low sampling frequency is the lengthy

I2C routine for requesting data from the ADS1115, which does not seem to be optimized, as was

already mentioned in Section 5.2. As reviewed in Section 2.2.2, lower sampling frequencies,

especially those below 450 [Hz], are expected to incur in greater losses of signal information.

Data was collected and split across 6850 windows of 250 [ms] in 50 [ms] increments. Train-

ing the random forest with the default hyperparameters took less than 10 seconds. This is very

impressive considering pre-processing the entire 6850 samples took approx. 75 seconds and fea-

ture extraction took approx. 440 seconds. Taking into consideration the length of the calibration

procedure (recorded at approx. 3 minutes) and the entire trial duration (over 6 minutes), it could

be expected for the entire system to be ready in less than 20 minutes.

Figure 6.1 displays the offline estimation of the RF algorithm, for both the default and op-

timized cases. Coefficients of determination for the two tests with the test trial (trial number 4,

selected at random) were R2 = 0.6499 for the RF with default hyperparameters and R2 = 0.7134

for the RF after 20 iterations of Bayesian optimization. It can be affirmed that the optimized model

performed better. This is also clear in the figure - with the same amount of data, the Bayesian op-

timized random forest managed to much better describe the measured angles, especially the peaks

of the movement, though the two models show some spurious spikes that were not otherwise

present in the reference. Contrastingly, it should be noted that building the model with Bayesian

optimization took over 40x longer, clocking in at around 440 seconds.

Concerning the Bayesian optimization process itself, the feature optimizations most worth

noting were the number of trees and the maximum number of data points per bootstrapped sample.

The estimated objective function after 20 iterations is shown for the two features in Figure 6.2.

With regards to the first, the number of trees in the forest, there seems to be a very anomalous

low at the exact value of the default number of estimators, 200. This could of course be related

to some unforeseen interaction between the default values of the features. At around 400 the
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Figure 6.1: Offline intention estimation of the test data.

objective function scored the highest, which could imply there is some saturation to the added

benefit of increasing trees, after a few hundreds of trees have been grown.

With respect to the max bootstrapped sample size, the performance of the algorithm also seems

to saturate, in this case, when each bootstrapped sample reaches about 20% of the complete data

set. Both of these findings seem to suggest that there is little performance improvement for the

large computational cost of progressively increasing the complexity of the random forest.

Variable importance for the default RF and the optimized RF was computed using MDI (mean

decrease impurity). Results are shown in Appendix D, Table D.1. MDI computes the weighted

decrease of impurity corresponding to splits along a feature and averages this quantity across all

trees (Biau and Scornet, 2015). It is worth noting that MDI has been shown to behave poorly when

correlation between features increases (Biau and Scornet, 2015), which definitely is the case for

EMG since all the features are extracted from the same raw signals.

In both models, WL and RMS scored very high (only RMStri is under a 10% contribution),

which is not at all unexpected when considering the literature. They are both known to be very

simple and effective features (Phinyomark et al., 2012). Noticeable is also the first cepstral coef-

ficient for both muscles. This is impressive, but not that surprising, considering they come with

large computational costs compared to other features (Phinyomark et al., 2012). Naturally, how-

ever, as the number of coefficients increase they become less and less important, therefore as

expected. Perhaps most surprising is the fact that sample entropy scored so low, which does not

seem to agree with the findings of Phinyomark et al. (2013), reviewed in Chapter 2.

When considering the online performance of the algorithms, shown in Figures 6.3 and 6.4,

their degraded performance relative to that of the offline tests is visible. For starters, the algorithms

do not seem to be able to reproduce any peaks whatsoever, and even their performance at the lowest

points of the movement seem to be inferior. For the random forest with default parameters, the
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Figure 6.2: Bayesian optimization’s estimated objective function after 20 iterations, for the number
of trees and the maximum size of bootstrapped samples.

device’s arm barely even moved below 45º.

For the online tests, two different values of R2 could be considered. The first, in the same

manner as the offline tests, can be computed using the measured joint angle and the algorithm’s

estimated angle. Oppositely, the performance of the system as a whole could be considered. Thus,

R2 would be computed using the measured joint angle and the device’s measured angle. Both

provide valuable information. Their values were R2
estimate = 0.5393 and R2

device = 0.5546 for the

system with default hyperparameters and R2
estimate = 0.0736 and R2

device =−0.1345.

For the RF with default hyperparameters, both values are clearly worse than those obtained

offline, with the device R2 being slightly higher, though this difference is very small.

Surprisingly, for the optimized RF, both values were much worse than all R2’s computed thus

far. The main reason for the regressor’s poor performance was the fact that the subject moved faster

than for two periods of the movement, as can be seen in the Figure. Nevertheless, the relevance

of the rest of the test should not be discarded. Regarding the device, the poor estimates were
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Figure 6.3: Online test of the system with the RF model trained using default hyperparameters.

exacerbated by what seems to have been significant gear wear (the online tests were performed

after weeks of testing of the device), until the moment where the gearbox seems to have broken

and collapsed, causing the arm to get completely stuck. This happened at around 25 seconds of

testing, at which point the test was stopped and the remainder of the data scrapped.

The latency of the estimate also seems to be much larger, which is to be expected, considering

the added computational delay of online intention estimation. Despite noticeable, however, the

computational latency was within the established objectives, that is, in the same order of magnitude

of the sampling windows (of approx. 250 [ms] of length), at a mean 202 [ms] for the default model

and 325 [ms] for the optimized one. This stark increase is to be expected, since the Bayesian

optimization did not take into account model complexity when selecting for the best performer.

Most of the mean time was spent computing the random forest estimates, at 129 [ms] for the

default RF and 253 [ms] for the optimized RF. For both, the mean time spent pre-processing was

approx. 9 [ms] and the mean time spent extracting features was approx. 61 [ms].

The standard deviation of the time spent by the regressor was 33 for the default RF and 50 [ms]

for the optimized RF. Neither seem to be very consistent. Considering the human tactile reaction

time1 to be around 150 [ms], this might be too inconsistent for a user.

To conclude, with respect to RQ1, the system performance has been characterized using mea-

sures of accuracy and time. When compared to the literature, such as Xiao et al. (2018a), who

used MTDF-RF to obtain a mean joint angle estimation error of 0.0543± 0.0071, the system’s

offline performance, with a highest R2 = 0.7134, does not particularly stand out. When being

tested online with default hyperparameters, the lowest value obtained for the coefficient of deter-

mination under regular conditions was R2 = 0.5393. In online testing, the longest mean time it

1https://backyardbrains.com/experiments/reactiontime, 09/03/2021.
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Figure 6.4: Online test of the system with model trained using optimized hyperparameters.

took to react to a sample was less than 400 [ms] (after considering the window increment time, the

computational dead time and one period of the motor control loop), for the online testing system.

It is hard to say whether the alternative hypothesis has been confirmed for RQ2. Indeed, the

offline performance after Bayesian optimization seems to have been consistently better than the

offline performance using default hyperparameters, as expected. However, the irregularities of the

online test for the optimized system led to very contrasting results in the online tests. The online

test with default hyperparameters also showed no such difference. Consequently, it is hard to say

that the null hypothesis has been rejected.

Regarding RQ3, the results of the experiment corroborate very strongly with the assertion that

offline training and testing bears limited similarity to online testing. Not only were the accuracies

of the models considerably lower during online testing, the behaviour of the regressor itself seemed

very different in the two scenarios. To add to this, a slight deviation from the expected movement

led to complete inability of the intention estimation algorithm to properly estimate.
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Conclusion

In this chapter, the most important conclusions and limitations of this work are presented. In

addition, some insights into future works are provided.

7.1 Objectives Achieved

The main objective of this work, to design and implement a low-cost control system for an

early prototype of a powered 1 DoF elbow exoskeleton, was achieved. This was done based

on the findings of a review of the literature, which provided crucial insights into the theory and

technologies behind most modern powered upper limb exoskeletons, without which the project

would not have been possible.

Designing the entire solution involved the design and implementation of a system for EMG

data acquisition, the design of an intricate and layered control system, based on a random forest re-

gressor, for estimating the user’s motion intentions and simultaneously and proportionally control

a 3D printed 1 DoF robotic device. This system was implemented using affordable, off-the-shelf

components, which were studied, wired and programmed to their intended functionality. The 3D

printed device was designed and assembled successfully. Incremental testing was employed to

increase the likelihood of operability of the system as a whole. This was only possible thanks to

the modular structure of the system that conveyed it some amount of testability.

Once complete, the solution was evaluated in a carefully designed experiment, with clear goals

and challenges, and conducted in an orderly fashion, in an effort to ensure consistent, reproducible

results. Flexibility of the design also made the system permeable to future improvements.

Most design requirements were met. The 3D printed device was built with a 0 to 145º range

of motion, surpassing the requirement for 0 to 125º of flexion. The online testing delay was of the

same order of magnitude as that of the length of a sampling window of EMG data. The EMG data

acquisition system, together with the motion tracking sensors, was designed in an easy-to-don/doff

way, involving only the attachment of medical adhesive tape and pre-gelled electrodes, making it

time efficient, thus building a foundation for a user friendly device.
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7.2 Limitations and Future Works

In spite of having fulfilled its objectives, a number of limitations to the design, implementation

and validation steps were present in this work.

To start with, the number of participants was extremely low, with just one. In addition, the

subject already had knowledge of sEMG, despite no practical experience with devices based on

myoelectric control. It is evident that this limitation greatly restricts the generalizability of the

experiment and its results. Any future works should envision the recruitment of more participants.

Secondly, despite performing largely up to expectations, the system is too slow to react and too

inconsistent in its performance for an in-vivo implementation. In order to make the system faster,

all three steps of intention estimation should be improved. They are pre-processing, feature extrac-

tion and the regression model. Pre-processing can easily be hastened by doing all pre-processing

steps electronically. Ideally, the components would be created specifically for the effect. When

doing so, amplification, analog-to-digital conversion and sampling could be performed directly on

the sEMG sensors, minimizing computational dead time and preventing issues like unnecessarily

long setup between the microcontroller and the sensors.

Making feature extraction faster could be achieved by eliminating features that represent too

large a computational cost relative to the performance improvement they grant. Feature dimension-

ality reduction techniques can be useful for this purpose. Compared to the literature, the intention

estimation algorithm performed worse. Xiao et al. (2018a) obtained a mean root mean squared

angle estimation error of 0.0543± 0.0071 when using MTDF random forests. The modularity

of the system could be taken advantage of to try and implement different algorithms. Instead of

random forests, algorithms such as temporal convolutional networks with adaptive reinforcements

(Betthauser et al., 2020) could be explored for improvements in both accuracy and speed.

Faster predictions could be achieved by reducing the length of the window required, provided

sEMG signals are being sampled from more muscles. These could also account for movements

where the main agonist and antagonist muscles participate less, such as compound movements.

To do so, more movements should be integrated in the training trials, to improve robustness of the

algorithm. This, of course, comes with the cost of more setup time.

According to the literature reviewed, the sampling frequency should also have been higher,

up to two times as fast. This could be implemented by using components that are specialized for

speed. Of course, this would have to be done without incurring in large cost increases. Motion

tracking speed could, too, be improved if attitude estimation was decentralized and allocated to

the sensors themselves.

Another limitation of the solution devised is its mechanical characteristics. After all, the 3D

printed gears did succumb to wear during the experiment. For this reason, other materials and

manufacturing processes could be explored in future works.

Ultimately, once all the foregoing considerations, as well as many others, are addressed, solved

and settled, designing the device for a higher number of joints would be the next logical step.
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Anexo A

DC Motor Model and Experimental
Characterization of its Parameters

Finding the DC motor’s transfer function is an instrumental step in achieving fine control of
the DC motor, when the control action is model-based. Over the next few pages, the process of
modelling the DC motor and empirically determining its parameters is comprehensively detailed.

A.1 DC Motor Model

Producing the correct output is dependent on the quality of the design of the controller, and
properly designing a DC motor controller first requires a ground level understanding of this actu-
ator.

A DC motor can be represented by its equivalent circuit, that is, an electrical circuit that
mimics the electrical behaviour of a DC motor when it is connected to an electrical power supply.
An illustration of its equivalent circuit can be seen in Figure A.1, where Ea is the voltage at the
motor’s terminals, Ra and La are the motor’s equivalent series resistance and inductance, and ia
is the current being ran through the motor. The index a refers to the motor’s armature, which
composes the overwhelming brunt of the motor’s electrical circuitry. Eb is the motor’s back EMF
voltage (back EMF is the the counter electromotive force that opposes the change in current that
induced it). As illustrated, the rotor and the load are rotating at an angular velocity and acceleration
of θ̇ and θ̈ , respectively, with an associated total inertia of J.

Figure A.1: Equivalent circuit of the DC motor. A voltage Ea applied at the motor’s terminals
induces a current through the machine’s armature, causing the inertial mass J to move.

Applying Kirchoff’s voltage law, the following equality arises:
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ea(t) = ia(t)Ra +La
dia(t)

dt
+ eb(t) (A.1)

where the difference of potential across the armature inductance depends on the first-order deriva-
tive of the current and the back EMF voltage depends on the loading that the motor is being
subjected to and can be given by (Somefun et al., 2020):

eb(t) = Kb θ̇m(t) (A.2)

where Kb is the motor’s back EMF constant and θ̇m(t) is the motor’s angular velocity at time t.

The motor’s rotor has the governing differential equation of motion (Somefun et al., 2020):

J θ̈m(t)+ c θ̇m(t) = τm(t) (A.3)

where J is the system’s moment of inertia, c is the motor’s friction constant and τm(t) is the load
being applied to the motor at time t.

The two aforestated equations govern the DC motor’s dynamics. Controlling the DC motor is
equivalent to manipulating these dynamics in real time for speed or position control. This can be
achieved in a multitude of ways, such as basic supply voltage regulation, armature current control
and field current control, to name a few (Ali et al., 2019).

For armature current control, the torque developed by the motor is considered linearly depen-
dent on the armature current, in such a way that:

τm(t) = Km ia(t) (A.4)

where Km is the motor torque constant.

This DC motor model ignores certain nonlinearities like backlash and dead zones. This is
appropriate given the relatively minute contribution some of these dynamics have in the motor’s
transfer function (Sabir and Khan, 2014). With this new relationship, the motor’s open-loop trans-
fer function can be found. Applying the Laplace transform to Equation A.5 results in:

Ea(s) = Ia(s)Ra +Las · Ia(s)+Kb s ·Θm(s) =

= Ia(s)(Ra +La s)+Kb s ·Θm(s) (A.5)

The motor’s open-loop tranfer function G(s), as determined by the output angular velocity
divided by the terminal voltage, is given by:

G(s) =
Ωm(s)
Ea(s)

=
Ωm(s)

Ia(s)(Ra +La s)+Kb s ·Θm(s)
=

=
s ·Θm(s)

Ia(s)(Ra +La s)+Kb s ·Θm(s)
(A.6)

where s ·Θm(s) can be substituted in from Equation A.3:



A.2 Experimental Motor Parameter Characterization 139

G(s) =

Km Ia(s)
J s+ c

Ia(s)(Ra +La s)+Kb
Km Ia(s)
J s+ c

=

=
Km

(Ra +La s)(J s+ c)+Kb Km
=

=
Km

La J s2 +(Ra J+La c)s+(Ra c+K2
m)

(A.7)

where the back EMF and torque constants, Kb and Km are equal provided there is conservation of
energy (Ali et al., 2019). In reality, there are many losses in a motor, which cause the two constants
to be different, though this nuance will be deemed negligible here.

A.2 Experimental Motor Parameter Characterization

To compute the transfer function, now all that is required is the motor’s parameters. Lamentably,
as mentioned in Section 3.3.5, the parameters for the selected DC motor are completely unknown.
Thankfully, they can be estimated with experimental procedures.

The armature resistance Ra can be found in two ways. The first and simplest is to directly mea-
sure, using a multimeter, the motor’s resistance at its terminals, when it is completely disconnected
from power. The multimeter should also be checked for any resistance offset, by connecting both
ends of the multimeter together (Soong, 2008).

The second method, regarded as more accurate (Soong, 2008), is to supply the motor with a
known current and measure the voltage drop, at its terminals, when the rotor is forced into a stall.
A representation of the method is shown in Figure A.2. The current should be as close as possible
to the motor’s nominal working current (which implies that knowledge of this information already
exists, nonexistent here) and the test should be performed as quickly as possible, to avoid heating
(which invariably influences the measurement). The armature resistance can then be determined
using Ohm’s law. It is suggested that, when measuring the armature resistance, the test should be
performed multiple times for different combinations of voltage and current (Seaton, 2010).

Figure A.2: Empirical method for determination of a motor’s armature resistance. The motor is
fed a known pair of voltage and current, while its shaft is brought to a stall. Source: Soong (2008).

Both methods were performed and the results can be found in Tables A.1 and A.2.
Finding the motor’s series inductance La can be extremely simple, too, if an LCR meter is

available (Seaton, 2010). Then, measuring the series inductance at the motor’s terminals will
promptly give the intended value. Results are shown in Table A.3.

To determine the motor torque constant Km, the current and voltage have to be tracked under
no-load conditions, as well as the rotor’s speed (sensor feedback is required). Then, knowing the
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Table A.1: Experimental results of the first method for determining the DC motor’s armature
resistance Ra.

Trial
Multimeter Offset

∆ [Ω]

Measurement

R [Ω]

1 0.2 18.0

2 0.2 17.9

3 0.3 17.8

Mean 0.233 17.9

Armature Resistance

Ra = R̄− ∆̄ [Ω]
17.7

armature resistance Ra, the motor’s speed-voltage relationship allows computation of Km (Seaton,
2010):

w =
Ea−Eb

Km
=

Ea− ia Ra

Km
Km =

Ea− ia Ra

w
(A.8)

where, once again, Ea and ia are the motor’s terminal voltage and current, respectively, Eb is the
back EMF voltage and w is the rotor’s angular velocity.

This test was performed for a range of values of voltage and current, with results visible in
Table A.4.

Three parameters remain: Kb, J and c. We already established that Kb = Km = 0.036 [V·s/rad].
The values of the inertia and friction coefficient are difficult to determine - they depend on

working and loading conditions. Not only that, but their magnitudes, when compared to the pre-
viously determined parameters of the motor’s transfer function, are rather small. In addition, in
an in vivo implementation of the system, they could vary greatly, depending on the application the
user would be doing.

The system’s inertia was estimated based on the considerations of Section 3.3.5, such that:

J = JE
E +mE(rOE)

2 +mF
[
(rG,F)

2 +(rOF)
2]+mH

[
(rG,H)

2 +(rOH)
2] (A.9)

where rOP is the distance from point O (the center of the elbow) to any point P, mX is the mass

Table A.2: Experimental results of the second method for determining the DC motor’s armature
resistance Ra.

Armature Resistance

Ra =
Vdrop

IS
[Ω]

Supply Voltage

VS [V]

4 5 6

Supply Current

IS [A]

0.100 1.03
0.097 = 10.62 0.91

0.100 = 9.10 0.97
0.098 = 9.90

0.150 1.35
0.149 = 9.06 1.43

0.148 = 9.66 1.43
0.149 = 10.27

0.200 1.93
0.199 = 9.70 1.86

0.200 = 9.30 2.23
0.202 = 11.04

0.250 2.45
0.249 = 9.84 2.54

0.250 = 10.16 2.61
0.249 = 10.48

Mean Armature Resistance R̄a = 9.93 [Ω]
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Table A.3: Experimental LCR measurements of the DC motor’s series inductance La.

Trial
Series Inductance Measurement

La [mH]

1 3.440

2 3.436

3 3.423

Mean 3.433

of body X and JP
X is body X’s net torque about point P. In this case, E denotes the Exoskeleton, F

denotes the Forearm and H the Hand.
The Forearm Piece of the 3D printed device (refer to Appendix C) can be approximated to

a thin rectangular plate (illustrated in Figure A.3) with a weight of approximately 27 [g] and
dimensions of . Its inertia can thus be given by:

JE
E =

mE

12
(a2 +b2) =

0.027
12

(0.2352 +0.0302) = 1.26×10−4 [kg ·m2]

For a 65 [kg] man with a forearm length of 25 [cm] and a hand length of 19 [cm], the system
has a total inertia of:

J = 1.26×10−4 +0.027
(

0.235
2

)2

+1.053
[
(0.069)2 +(0.114)2]+

+0.397
[
(0.100)2 +(0.235+0.150)2]= 0.0820 [kg ·m2] (A.10)

When it comes to the friction coefficient, with knowledge of the other parameters, considering
the amount of uncertainty already surrounding the DC motor being used, it is recommended to
simply resort to the parameters of a similarly-sized motor. For a similarly sized 12 [V] motor,
Seaton (2010) recommends c = 0.00724 [N·m·s / rad], and as such a value of c = 0.007 [N·m·s /
rad] will be considered.

At last, the resulting DC motor transfer function is:

Table A.4: Experimental results of motor constant characterization.

Supply Voltage Current Drawn Rotor Angular Velocity Motor Constant

[V] [A] [rad/s] [rpm] Km [V·s/rad]

5.00 0.150 82.1 784 0.043

5.00 0.153 83.5 797 0.042

7.49 0.182 179.0 1709 0.032

7.49 0.193 176.8 1688 0.032

9.99 0.244 223.6 2135 0.034

9.98 0.242 217.1 2073 0.035

Mean 0.036
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Figure A.3: Dimensions of the Forearm Piece of the 3D printed device.

G(s) =
Km

La J s2 +(Ra J+La c)s+(Ra c+K2
m)

=
0.036

0.003433 ·0.0820s2 +(9.93 ·0.0820+0.003433 ·0.007)s+(9.93 ·0.007+0.0362)

which can be simplified, by approximation, to:

G(s) =
0.036

2.788×10−4 s2 +0.8143s+0.0708
(A.11)



Anexo B

Gear Transmission with Speed
Reduction: Gear Train and Gear
Geometry Specification

The robotic device’s gear transmission constitutes a power transmission system with speed
reduction, the latter being required due to the high nominal speeds and low nominal torques that
the DC motor is able to produce.

B.1 Gear Train

The first step in designing the gear transmission is defining exactly what the total speed re-
duction ratios are, and in what way they the speed reduction function is distributed throughout the
gear train.

The objective was to build a gear train with a speed reduction of at least 30:1. Next, each gear
reduction step had to be established.

A problem arose in this very step - the selected DC motor already had a helical pinion attached
to its shaft. Besides forcibly removing the motor’s pinion, two options remained: fitting a new
helical gear to the pinion or preserving the existing gear pair. On one hand, helical gears, in light
of their greater geometric complexity, are harder to characterize empirically than spur gears. On
the other hand, preserving the existing gear pair would mean being forced to incorporate their
respective gear reduction step into the gear train. In addition, the gear in question has a second
pinion directly attached to it, so fitting a gear to it would still be necessary.

The motor’s pinion has 16 teeth and the associated gear has 52 teeth. This constitutes a speed
reduction step of 3.25:1. Being rather large, and considering the added complexity to fitting a new
helical gear to this pinion, the decision was to incorporate the pair into the gear train.

To achieve a speed reduction of roughly 30, given the initial step’s reduction ratio, the resulting
reduction is 30/3.25 ' 9.23. This is very close to 9, a perfect square number, with squared root
3. Thus, it is only logical to distribute the remaining speed reduction across two steps of about the
same magnitude of speed reduction. The pinion that is physically connected to the aforementioned
52 teeth gear has 39 teeth. A gear reduction of exactly 3:1 would imply a matching gear of 117
teeth.

The remaining speed reduction would then be 9.23/3' 3.08. To make the gearbox as compact
as possible, the next pinion was given 15 teeth and the gear 45 teeth, making for a 3:1 reduction.
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In sum, the complete gear train reduction is 3.25:1, then 3:1, then 3:1, for a total speed reduc-
tion of 29.25:1. The gear train is illustrated in Figure B.1.

Figure B.1: Complete gear train for the gearbox. The three speed reduction steps amount to a total
speed reduction of 29.25:1.

B.2 Gear Geometry

Once the gear train is delineated, the ensuing step is to compute and define each gear’s geo-
metric parameters. The most important proportions of a spur gear are visible in Figure B.2.

No gears (with the exception of the first pair, already present) were designed with helical
geometry. This significantly eases the machine design of the gearbox, and the absence of tangential
transmission in the gears is to a large extent insignificant, considering the exiguous demands of
the mechanical loading.

Accordingly, the gear parameters that had to be defined were the number of teeth z (already
known), the module m, the pressure angle α , the profile shift coefficient x, the tooth tip clearance
coefficient c, the contact backlash jbn and the gear thickness b. Most of these parameters are
designed into the gear through a reference rack profile Figure B.3.

Selecting these parameters can be rather trivial, though in this case, as was laid out in the
foregoing section, the pinion for the second gear pair was kept from the DC motor’s original
application. Therefore, before further ado, the existing pinion had to be experimentally character-
ized.

There are numerous ways for finding a gear’s geometric parameters, each with its own advan-
tages. The author opted for a procedure based on span (base tangent length Wk) and addendum
diameter, da, measurements.

Mean measurements of the foregoing geometric quantities, for both the pinion and its matching
gear (from the pinion’s original application) are displayed in Table B.1.
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Figure B.2: The most important proportions of a standard spur gear. Nomenclature can vary based
on standard. The Figure specifies the addendum and dedendum heights relative to the module
m, but it should be warned that these values are rarely true. Not only can gear tooth geometry
standards vary, their geometric parameters are often adjusted to improve on certain features of the
gear, with the addendum and dedendum circles being frequent targets of such changes. Source:
Stadtfeld (2015).

If the pinion was constructed in a standard way and without profile shift, then its addendum
diameter should be that of a standard gear, and thus related to the pitch circle’s diameter d by:

da = d +2m (B.1)

where d can be computed from the number of teeth and the module:

d = zm (B.2)

From the addendum diameter the module can then be estimated with a high degree of confi-
dence by combining the last two equations:

Table B.1: Mean measurements of the pinion and its mating gear. k was 5 for the pinion and 12
for the gear, based on the recommendations of Dr. Gonzalo Gonzalez Rey (2016).

Nº of Teeth

z

Addendum Diameter

d̄ [mm]

Base Tangent Length for k Teeth [mm]

W̄k−1 W̄k W̄k+1

Pinion 39 16.50 6.70 5.50 4.29

Mating Gear 108 43.50 15.33 14.12 12.89
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Figure B.3: Basic rack tooth profile for involute gear teeth, where p is the pitch on the reference
cylinder, m is the module, sP is the tooth thickness, eP is the space width, αP is the pressure angle,
ρfP is the root radius, hP is the tooth depth, haP is the addendum height, hfP is the dedendum height
and hFfP is the depth of dedendum form. The subscript P specifies quantities of the standard basic
rack tooth profile. 1 is the basic rack profile, 2 is the datum line, 3 is the root line and 4 is the tip
line. Source: ISO 21771:2007 (E).

da = zm+2m = (z+2)m⇒ m =
da

z+2
(B.3)

The results were in accordance with each other: m = 0.402 [mm] for the pinion and m = 0.395
[mm] for the gear, from which it can be confidently asserted that the module must be 0.4 [mm].

The next step is to estimate the pressure angle α . This can be reliably estimated with knowl-
edge of the base tangent length Wk for consecutive values of k. Dr. Gonzalo Gonzalez Rey (2016)
recommends k = 5 for spur gears of 36 to 44 teeth and k = 12 for spur gears of 100 to 110 teeth.
Then, α can be estimated using (ISO 21771:2007, E):

Wk+1−Wk = π m cosα (B.4)

Results are shown in Table B.2. A pressure angle of 16.5 degrees was selected going forward.

Table B.2: Estimated pressure angles for the existing pinion and gear. The mean difference is
the consecutive average of two span measurement differences. Once estimated, the pressure angle
was established to be 16.5 degrees.

Mean Difference [mm] Computed Pressure Angle [deg]

¯∆W k,k+1 =
∆Wk+1 +∆Wk

2
=

Wk+1−Wk−1

2
α = arccos

(
¯∆Wk

π m

)
Pinion 1.205 16.48

Mating Gear 1.217 14.49
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Finally, for a gear that has a non-zero profile shift, the base tangent length is known to be given
by (ISO 21771:2007, E):

Wk, with profile shift =Wk, without profile shift +2x mn sinαn (B.5)

= mn cosαn [π(k−0.5)+ z invαt ]+2x mn sinαn (B.6)

where mn = m and αn = α , given that the gear’s helix angle β is zero (it is a spur gear).
With this relationship, the selected values of m and α can be compared to the span measure-

ments and a profile shift coefficient x can be estimated. Results are shown in Table B.3.

Table B.3: Estimated profile shift for the existing pinion and gear.

Module

m [mm]

Pressure Angle

α [deg]

Base Tangent Length, Wk [mm] Profile Shift

xTheory Measured

Pinion 0.4 16.5 5.55 5.5 -0.127

Matching Gear 0.4 16.5 14.20 14.1 -0.207

Both pinion and gear were estimated to have negative profile shift coefficients, at xpinion =
−0.127 and xgear = −0.207, which comes as a moderate surprise. For instance, if the goal were
to balance the gear’s specific sliding, the two values should be symmetric. Excluding the obvious
existence of systematic and random measurement errors, there is also a good chance that the span
measurements were affected by other design changes to the gears’ geometries, that caused them
to depart from the absolute standard. Backlash compensation and imposition of working center
distance are just two of many possible design concerns that could have affected their tooth profiles.

At last, the two remaining gears could be specified. A little prudence is advised. Parameters
that regulate the gear’s size should be kept to a minimum. This goes in line with the effort to make
the gearbox as compact as possible. The main parameters that impact the gear’s volume are the
gear thickness, its module and the number of teeth.

On the other hand, it is advisable to increase the module, relative to that of the previous gears.
An increase in transmission torque that comes as a reflection of the speed reduction (for a some-
what constant power transmission throughout the gear train) places greater mechanical demands
on the gears - if their module is too small, their teeth may not be able to endure the increasing
loads.

Moreover, the gears, much like the gearbox (refer to Appendix C), were designed for 3D print-
ing. The printer has physical limitations insofar as the size of the geometries it can manufacture.
Early prototypes of the gears helped establish that the aforestated module of 0.4 [mm] is danger-
ously close to the absolute limit of what the printer could reliably produce. Consequently, for the
last gear pair, a module of 0.7 [mm] was set. Given the minute scale of the components involved,
what might seem like a modest increase in module is, in fact, a 75% increase in gear geometry
size, which should be more than enough for handling the paltry torques at play.

Unlike the other gears, a more standard pressure angle of 20 degrees was chosen.
Lastly, the gears’ profiles were shifted in an effort to impost a center distance of 21.3 [mm].

The resulting profile shift coefficients were xpinion = 0.488 and xgear =−0.037.
To put it concisely, all relevant geometric parameters of all elements of the gear train are

presented in Table B.4.



148 Gear Transmission with Speed Reduction: Gear Train and Gear Geometry Specification

Table B.4: Relevant geometric parameters of all elements of the gear train. For the first pinion and
gear (both helical), only the module was estimated.

Gear Nº 1 2 3 4 5 6
Nº of Teeth

z
16 52 39 117 15 45

Module

m [mm]

0.45

(estimated)

0.5

(estimated)

0.4

(estimated)
0.4 0.7 0.7

Pressure Angle

α [deg]
- - 16.5 16.5 20 20

Profile Shift

Coefficient

x

- - -0.127 -0.290 0.489 -0.037

Backlash

Coefficient

jbn

- - 0.04 0.05 0.04 0.04

Clearance

Coefficient

c/m

- - 0.25 0.5 0.5 0.5



Anexo C

Design and Construction of the
Assistive Device

This device is composed of four basic structural elements and additional transmission compo-
nents (gears, shafts and a key). A complete overview of all the 3D printed components can be seen
in Figure C.1 and an exploded view is shown in Figure C.2.

The joint’s range of motion consists of 145º of rotation, all the way from a fully extended arm
(0º of flexion) to 145º of flexion.

Gears and shafts were printed as one solid piece whenever possible, to ensure maximum me-
chanical properties, which could be an issue given the printing material (polymer).

All components were 3D printed in generic PLA. Most structural components were printed
with relatively low densities of internal infill (around 15%), whereas functional pieces, such as
gears, shafts and key, were printed with higher densities of internal infill (around 25%).

Most edges were filleted to prevent sharp edges from coming into contact with users. In
addition, certain cares were necessary due to the manufacturing process. Volume contractions and
expansions due to the stark temperature gradients - the printer’s nozzle operated at temperatures
of up to 215 [ºC], contrasting greatly with the environmental temperatures of as low as 10 [ºC].
Such low temperatures, caused by a harsh ongoing winter and the necessity to maintain windows
open in the context of a COVID-19 lockdown, were occasionally felt despite efforts to externally
heat the printing area.

To counteract this, the models were adjusted, in an effort to reduce sharp angles and acute geo-
metric features, which greatly improved the prints’ quality. This was not put in practice whenever
it undermined adhesion to the printing surface. In defiance of all these efforts, certain compo-
nents were still printed with slight warping. Fortunately, these deformations did not impair the
functionality of the system.

Other 3D printing specific changes were the separation of certain large, uneven components
into smaller parts (shown in Figure C.3), which helped reduce unnecessary consumption of print-
ing material and save time.

In addition, a small structure was included on the outer side of the joint, to mount the encoder
board, which is illustrated in Figure C.4.

Finally, extruded cuts were placed for the holes for the screws that hold the entire structure
together.

After 3D printing, some components had to be slightly amended, to make up for printing
inaccuracies (most of them caused by the thermal expansion/contraction of the PLA material) and
occasional oversights. This was particularly important in adjacent components that move relative
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Figure C.3: The separation of certain components into distinct, smaller, complementary pieces was
necessary to improve the manufacturing conditions. In the Figure’s case, prior to the separation,
choosing a printing ground surface was notoriously difficult, with most choices requiring a surplus
of support material. After separation, the surface highlighted in blue is an excellent candidate for
the printing ground surface, only entailing a few changes to the original design.

Figure C.4: Small structure for mounting the encoder board. A section view shows the gear to
which the encoder’s magnet will be attached. The DC motor can be seen on the left.
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to each other, since this movement had to be as smooth and linear as possible, to prevent from
adding unnecessary complexity and loading to the motor.

Once all pieces were ready, the device was assembled, which encompassed a number of steps
steps. Some consisted of lubricating the moving pieces. When dealing with polymeric materials,
solvents and other reactive lubricants are, in general, to be avoided, since they can easily react with
the polymeric chains and debilitate the 3D printed scaffolds. To this end, a silicone oil was used.
The exact composition is unknown (the recipient does not specify it), though the author presumes
it to be PDMS (polydimethylsiloxane), the most widely used silicone-based organic polymer. It
boasts high thermal stability and rheological properties that make it an excellent choice for a
lubricant. The recipient does specify, however, its viscosity: V100, that is, a kinematic viscosity
of 100 cSt (centi-Stoke), that is, 100 [mm2/s].

At last, following the nomenclature of Figure C.1 and the configuration of Figure C.2, the
assembling procedure was:

1. Apply the PDMS lubricant to the Forearm Piece’s joint structure and mount it in the Gear-
box, from below.

2. Fit the Key and mount Gear 6.

3. Mount the Foot Piece, securing it with the M3 screw, which should be inserted from the
Gearbox’s upper side. Tighten the screw with an M3 nut in the Foot Piece.

4. Mount the Gear 2 - Pinion 3 piece in the Gearbox, while previously applying lubricant to
the shaft.

5. Lubricate the Gear 2 - Pinion 3 piece, the Gear 4 - Pinion 5 piece and Gear 6.

6. Mount the Gear 4 - Pinion 5 piece in the Gearbox, carefully so as to mate the gears’ teeth
with those of Gear 6 and Pinion 3.

7. Mount the DC motor in the Top Piece, using the M2 screws.

8. Lubricate the DC motor’s pinion (Pinion 1) and mount the Top Piece over the Gearbox.

9. Mount the Bottom Piece under the Gearbox, holding it still with help from the Foot Piece
and securing the Forearm Piece with lubricant in-between.

10. Check if the transmission mechanism moves as expected and place the M5 and M6 screws,
from under the Gearbox. The M5 screws should go in the shortest holes, whereas the M6
screws should go in the longest.

11. Tighten the screws in place with their respective (M5 and M6) nuts.

Once completely assembled, buckles could, in theory, be inserted in the device’s arms, in order
to attach the whole device to a user. The complete assembly of the device together with the buckles
is shown in Figure C.2.
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Anexo D

Experiment Protocol

Execution of the experiment was comprised of the following steps:

1. Mark the positioning for the electrodes. One pair for the biceps brachii, the other for the
triceps brachii. The electrodes on the biceps muscles will be placed on the line between
the medial acromion and the fossa cubit at one third from the fossa cubit. The electrodes
on the triceps muscles will be placed at 50% on the line between the posterior crista of the
acromion and the olecranon at 2 finger widths medial to the line. The reference electrode
will be placed on the bursa of the olecranon, in the boniest neighbouring spot.

2. Prepare the subject’s skin for electrode attachment. The first step is to remove any excess
hairs. The second step is to clean, disinfect and lightly abrade the skin with rubbing alcohol,
until it displays a light red color.

3. Attach the pre-gelled electrodes.

4. Attach the inertial sensors. The upper arm IMU should be approximately between the two
sEMG sensors. The forearm IMU should be close to the wrist, on the dorsal side. Precise
positioning is not necessary.

5. Check the sEMG signals being acquired by the sensors with an oscilloscope.

6. The subject must be standing besides the system, carefully to not obstruct the robotic device.

7. Start the Python script. It will ask the researcher, in succession, for the desired sampling
window length, increment length and the joint angle estimation algorithm’s gradient descent
step size.

8. Perform calibration. The program will wait for permission between each calibration step.
The first step requires the subject to stay still, with the arm in a vertical, relaxed and fully
extended position, with the wrist in a neutral position, for a total duration of 30 seconds. The
second step requires the subject to repetitively perform elbow flexion into wrist supination
into wrist pronation into elbow extension, for a total duration of 45 seconds. The third step
requires the subject to return to the first position and rest there for a few seconds.

9. Perform 6 trials of repetitive elbow flexion/extension movements, while keeping the wrist
in a neutral position. Each trial has a duration of 60 seconds. Rest period is 60 seconds.
Frequency of the complete movement is 20 [Hz]. A metronome is used to help the subject
maintain a consistent pace. For trials 1, 2 and 3 (sorted at random), the participant is asked
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to hold his wrist in a supinated position, whereas for trials 4, 5 and 6 the participant is asked
to hold his wrist in a neutral position.

10. Allow the program to save all trial data.

11. Split the data into 5 train/validation samples and 1 test sample. The test sample is held off
until the models are trained, for offline testing.

12. Train the random forest with default settings.

13. Perform an online test. The test consists of a single 60 second trial, during which the subject
performs repetitive elbow flexion/extension movements, while keeping the wrist in a neutral
position. Frequency of the movements is 20 [Hz]. A metronome is used to help the subject
maintain a consistent pace.

14. Restart the program, skip trial data acquisition and instead load the previous data. Perform
Bayesian optimization with 20 iterations. The subject can rest during this period, without
removing any sensors.

15. Perform an online test. The test consists of a single 60 second trial, during which the subject
performs repetitive elbow flexion/extension movements, while keeping the wrist in a neutral
position. Frequency of the movements is 20 [Hz]. A metronome is used to help the subject
maintain a consistent pace.

Figures D.1 to D.6 showcase the execution of the experiment. Figure D.7 shows the data
acquired during the six trials. Figure D.8 compares the biceps’ EMG data raw, pre-processed and
three features (SampEn, WL, RMS).

Figure D.1: The pre-gelled electrodes used in the experiment.
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Figure D.2: Placement of the electrodes (and sEMG sensors) on a subject during the experiment.

Figure D.3: Oscilloscope readings of the sEMG signals for the subject’s biceps (left) and triceps
(right) muscles.
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Figure D.4: Mobile subset of the system attached to the user.

Figure D.5: Complete system mounted and wired to the subject.
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Table D.1: Variable importance computed using MDI, for both the model trained using default
hyperparameters and the model trained after Bayesian optimization.

Feature
Random Forest

Default Hyperparameters
Random Forest

Optimized Hyperparameters
Improvement

Total (R2) 0.6499 0.7134 0.0635

WLbi 0.2105 0.1992 -0.0113

CC1bi 0.1925 0.1864 -0.0061

RMSbi 0.1776 0.1571 -0.0205

WLtri 0.0952 0.1022 0.0070

RMStri 0.0940 0.1196 0.0256

CC1tri 0.0601 0.0652 0.0051

SampEntri 0.0332 0.0326 -0.0006

SampEnbi 0.0293 0.0394 0.0101

CC2tri 0.0211 0.0187 -0.0024

CC3tri 0.0191 0.0144 -0.0048

CC3bi 0.0186 0.0163 -0.0023

CC4bi 0.0177 0.0163 -0.0015

CC4tri 0.0169 0.0159 -0.0009

CC2bi 0.0142 0.0166 0.0024
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Figure D.6: Side-by-side comparison of the subject and the robotic device during online testing.
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