6 research outputs found

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Sistema endoscópico de orientación espacial

    Get PDF
    Sistema endoscópico que comprende una lente tubular rígida con un canal para el paso de luz a través de fibra óptica, configurada para introducirse en una cavidad a través de un orificio o incisión cutánea y cuya función es captar y transmitir la imagen de la cavidad iluminada; una cámara conectada a un extremo de la lente tubular configurada para digitalizar la imagen obtenida a través de dicha lente tubular; una fuente de luz conectada también a la lente tubular por el extremo que se conecta a la cámara; un receptor de video conectado a la cámara a través del cual se recoge la señal proveniente de la misma; y una pantalla que permite visualizar la imagen saliente del receptor de video, estando el sistema caracterizado por que comprende además: - un sensor inercial que comprende al menos un acelerómetro de 3 ejes y un giroscopio de 2 ejes, estando el sensor inercial configurado para, a partir de los datos de aceleración angular obtenidos por el acelerómetro y de velocidad angular obtenidos por el giroscopio, proporcionar la orientación del sensor inercial a través de los ángulos de alabeo (rotación en el eje X) y cabeceo (rotación en el eje Y) que se corresponden con los ángulos de giro del endoscopio (cámara 10 + lente tubular 11) debido a los giros de muñeca del cirujano que está manejando el endoscopio, tal que dicho sensor inercial debe estar situado en la cámara (en su interior o en su superficie, a su entrada o salida) o en sus proximidades (a su entrada o salida), de forma que no interfiera al cirujano durante su utilización, y tal que el eje X del sensor inercial debe situarse de manera paralela al eje longitudinal de la lente tubular, el eje Y del sensor inercial de manera paralela al eje transversal de la lente tubular y el eje Z del sensor inercial de manera paralela a la vertical del endoscopio(cámara 10 +lente tubular 11); - un sistema informático que comprende un puerto de recepción de datos del sensor inercial conectado a dicho sensor inercial; una capturadora de video configurada para captarla señal de video de salida del receptor de video que recoge la señal proveniente de la cámara; una salida de video del mismo formato que el video de entrada recogido en la capturadora de video conectada a la pantalla y un puerto de conexión conectado a un dispositivo de interacción humana y que recoge los datos de dicho dispositivo; - un dispositivo de interacción humana configurado para interactuar con el software del sistema informático y comandar las funcionalidades pertinentes de dicho sistema informático.Solicitud: U201931231 (18.07.2019)Nº Pub. de Solicitud: ES1235420U (30.09.2019)Nº de Modelo de Utilidad: ES123542Y (23.12.2019

    Perception and Orientation in Minimally Invasive Surgery

    No full text
    During the last two decades, we have seen a revolution in the way that we perform abdominal surgery with increased reliance on minimally invasive techniques. This paradigm shift has come at a rapid pace, with laparoscopic surgery now representing the gold standard for many surgical procedures and further minimisation of invasiveness being seen with the recent clinical introduction of novel techniques such as single-incision laparoscopic surgery and natural orifice translumenal endoscopic surgery. Despite the obvious benefits conferred on the patient in terms of morbidity, length of hospital stay and post-operative pain, this paradigm shift comes at a significantly higher demand on the surgeon, in terms of both perception and manual dexterity. The issues involved include degradation of sensory input to the operator compared to conventional open surgery owing to a loss of three-dimensional vision through the use of the two-dimensional operative interface, and decreased haptic feedback from the instruments. These changes have led to a much higher cognitive load on the surgeon and a greater risk of operator disorientation leading to potential surgical errors. This thesis represents a detailed investigation of disorientation in minimally invasive surgery. In this thesis, eye tracking methodology is identified as the method of choice for evaluating behavioural patterns during orientation. An analysis framework is proposed to profile orientation behaviour using eye tracking data validated in a laboratory model. This framework is used to characterise and quantify successful orientation strategies at critical stages of laparoscopic cholecystectomy and furthermore use these strategies to prove that focused teaching of this behaviour in novices can significantly increase performance in this task. Orientation strategies are then characterised for common clinical scenarios in natural orifice translumenal endoscopic surgery and the concept of image saliency is introduced to further investigate the importance of specific visual cues associated with effective orientation. Profiling of behavioural patterns is related to performance in orientation and implications on education and construction of smart surgical robots are drawn. Finally, a method for potentially decreasing operator disorientation is investigated in the form of endoscopic horizon stabilization in a simulated operative model for transgastric surgery. The major original contributions of this thesis include: Validation of a profiling methodology/framework to characterise orientation behaviour Identification of high performance orientation strategies in specific clinical scenarios including laparoscopic cholecystectomy and natural orifice translumenal endoscopic surgery Evaluation of the efficacy of teaching orientation strategies Evaluation of automatic endoscopic horizon stabilization in natural orifice translumenal endoscopic surgery The impact of the results presented in this thesis, as well as the potential for further high impact research is discussed in the context of both eye tracking as an evaluation tool in minimally invasive surgery as well as implementation of means to combat operator disorientation in a surgical platform. The work also provides further insight into the practical implementation of computer-assistance and technological innovation in future flexible access surgical platforms

    Desarrollo de un nuevo sistema de navegación en Implantología basado en unidades de medición inercial

    Get PDF
    La colocación de implantes dentales mediante cirugía guiada por ordenador tiene numerosas ventajas frente a la realizada a mano alzada, especialmente mayor precisión, mayor seguridad y menor invasividad. Pero también, tanto los sistemas estáticos o férulas, como los dinámicos o navegación, presentan dificultades de uso y un mayor coste, por lo que su utilización actual es limitada. Se elabora una revisión de los distintos sistemas de guiado de la cirugía de colocación de implantes, de su uso, precisión y fuentes de error. Describimos la unidad de medición inercial o IMU y sus primeras aplicaciones en cirugía general, como una alternativa versátil, simple y económica a las tecnologías existentes. Por medio de un prototipo que integra los sensores IMU en una interfaz computerizada, se colocan implantes guiados por estos sensores, y también por férulas CAD-CAM. Los resultados medios comparados que obtenemos entre ambos sistemas de guiado, son similares estadísticamente. Las desviaciones medias han sido en coronal 1.48 ± 0.2 (SD 0.58; 95% CI 1.27 - 1.69) y 1.42 ± 0.2 (SD 0.61; 95% CI 1.2 - 1.64) mm, en apical 2.00 ± 0.33 (SD 0.93; 95% CI 1.67 - 2.33) y 2.07 ± 0.35 (SD 0.97; 95% CI 1.72 - 2.42) mm, y las angulares 7.13º ± 1.47º (SD 4.1; 95% CI 5.66 - 8.6) y 5.63º ± 1.41º (SD 3.94; 95% CI 4.22 - 7.04), para IMU y Férulas Estereolitográficas (FE) respectivamente. Estos resultados son consistentes con la precisión reportada en la literatura para la cirugía guiada, tanto estática como dinámica. Se valora igualmente la percepción del operador y su comodidad de uso, encontrando que el manejo del sistema requiere un entrenamiento previo y que se facilitaría al mejorar la interfaz gráfica. Se abre así una vía de investigación para adaptar este nuevo sistema de navegación al uso clínico rutinario. Para ello, es necesaria la mejora in vitro de sus condiciones de manejo, así como ulteriores estudios sobre pacientes.Computer-guided dental implant placement is considered to be safer, more accurate and less invasive compared to freehand implant surgery. Currently two types of surgical guiding systems are available, static templates and dynamic navigation. Both make intervention more complex and costly and this could be the reason why their current use remains limited. A "state of the art" of the different implant placement guiding systems, their use, precision and sources of error has been conducted. The Inertial Measurement Unit (IMU) and its early applications in general surgery are described. The IMU was shown to be a versatile, simple and economical alternative to existing surgical guidance technologies. A prototype surgical handpiece was assembled with IMU sensors integrated with a computerized interface to guide implant placement. Implants were placed in models using this prototype and the standard CAD-CAM splints. Similar statistical average results were obtained using either of the two systems. The mean deviations were 1.48 ± 0.2 (SD 0.58; 95% CI 1.27 - 1.69) and 1.42 ± 0.2 (SD 0.61; 95% CI 1.2 - 1.64) mm coronal, 2.00 ± 0.33 (SD 0.93; 95% CI 1.67 - 2.33) and 2.07 ± 0.35 (SD 0.97; 95% CI 1.72 - 2.42) mm apical, and 7.13º ± 1.47º (SD 4.1; 95% CI 5.66 - 8.6) y 5.63º ± 1.41º (SD 3.94; 95% CI 4.22 - 7.04) angular, for IMU’s and splints respectively. These results are consistent with the precision reported in the literature for guided surgery, both current static and dynamic modalities. When operator’s perceptions and comfort of use were addressed, it was found that the system’s handling requires going through a learning curve and that it would be facilitated by improving the graphic interface. The present study opens a path of investigation to adapt this new surgical navigation system to routine clinical use. To this end, the system has to be improved to make the operator’s control easier before further studies on patients can be carried out

    A minimally invasive surgical system for 3D ultrasound guided robotic retrieval of foreign bodies from a beating heart

    Get PDF
    The result of various medical conditions and trauma, foreign bodies in the heart pose a serious health risk as they may interfere with cardiovascular function. Particles such as thrombi, bullet fragments, and shrapnel can become trapped in a person's heart after migrating through the venous system, or by direct penetration. The severity of disruption can range from benign to fatal, with associated symptoms including anxiety, fever, cardiac tamponade, hemorrhage, infection, embolism, arrhythmia, and valve dysfunction. Injuries of this nature are common in both civilian and military populations. For symptomatic cases, conventional treatment is removal of the foreign body through open surgery via a median sternotomy, the use of cardiopulmonary bypass, and a wide incision in the heart muscle; these methods incur pronounced perioperative risks and long recovery periods. In order to improve upon the standard of care, we propose an image guided robotic system and a corresponding minimally invasive surgical approach. The system employs a dexterous robotic capture device that can maneuver inside the heart through a small incision. Visualization and guidance within the otherwise occluded internal regions are provided by 3D transesophageal echocardiography (TEE), an emerging form of intraoperative medical imaging used in interventions such as mitral valve repair and device implantation. A robotic approach, as opposed to a manual procedure using rigid instruments, is motivated by the various challenges inherent in minimally invasive surgery, which arise from attempts to perform skilled surgical tasks through small incisions without direct vision. Challenges include reduced dexterity, constrained workspace, limited visualization, and difficult hand-eye coordination, which ultimately lead to poor manipulability. A dexterous robotic end effector with real-time image guidance can help overcome these challenges and potentially improve surgical performance. However promising, such a system and approach require that several technical hurdles be resolved. The foreign body must be automatically tracked as it travels about the dynamic environment of the heart. The erratically moving particle must then be captured using a dexterous robot that moves much more slowly in comparison. Furthermore, retrieval must be performed under 3D ultrasound guidance, amidst the uncertainties presented by both the turbulent flow and by the imaging modality itself. In addressing such barriers, this thesis explores the development of a prototype system capable of retrieving a foreign body from a beating heart, culminating in a set of demonstrative in vitro experiments
    corecore