148 research outputs found

    QoS Provisioning for Multi-Class Traffic in Wireless Networks

    Get PDF
    Physical constraints, bandwidth constraints and host mobility all contribute to the difficulty of providing Quality of Service (QoS) guarantees in wireless networks. There is a growing demand for wireless networks to support all the services that are available on wired networks. These diverse services, such as email, instant messaging, web browsing, video conferencing, telephony and paging all place different demands on the network, making QoS provisioning for wireless networks that carry multiple classes of traffic a complex problem. We have developed a set of admission control and resource reservation schemes for QoS provisioning in multi-class wireless networks. We present three variations of a novel resource borrowing scheme for cellular networks that exploits the ability of some multimedia applications to adapt to transient fluctuations in the supplied resources. The first of the schemes is shown to be proportionally fair: the second scheme is max-min fair. The third scheme for cellular networks uses knowledge about the relationship between streams that together comprise a multimedia session in order to further improve performance. We also present a predictive resource reservation scheme for LEO satellite networks that exploits the regularity of the movement patterns of mobile hosts in LEO satellite networks. We have developed the cellular network simulator (CNS) for evaluating call-level QoS provisioning schemes. QoS at the call-level is concerned with call blocking probability (CBP), call dropping probability (CDP), and supplied bandwidth. We introduce two novel QoS parameters that relate to supplied bandwidth—the average percent of desired bandwidth supplied (DBS), and the percent of time spent operating at the desired bandwidth level (DBT)

    Optimizing IETF multimedia signaling protocols and architectures in 3GPP networks : an evolutionary approach

    Get PDF
    Signaling in Next Generation IP-based networks heavily relies in the family of multimedia signaling protocols defined by IETF. Two of these signaling protocols are RTSP and SIP, which are text-based, client-server, request-response signaling protocols aimed at enabling multimedia sessions over IP networks. RTSP was conceived to set up streaming sessions from a Content / Streaming Server to a Streaming Client, while SIP was conceived to set up media (e.g.: voice, video, chat, file sharing, …) sessions among users. However, their scope has evolved and expanded over time to cover virtually any type of content and media session. As mobile networks progressively evolved towards an IP-only (All-IP) concept, particularly in 4G and 5G networks, 3GPP had to select IP-based signaling protocols for core mobile services, as opposed to traditional SS7-based protocols used in the circuit-switched domain in use in 2G and 3G networks. In that context, rather than reinventing the wheel, 3GPP decided to leverage Internet protocols and the work carried on by the IETF. Hence, it was not surprise that when 3GPP defined the so-called Packet-switched Streaming Service (PSS) for real-time continuous media delivery, it selected RTSP as its signaling protocol and, more importantly, SIP was eventually selected as the core signaling protocol for all multimedia core services in the mobile (All-)IP domain. This 3GPP decision to use off-the-shelf IETF-standardized signaling protocols has been a key cornerstone for the future of All-IP fixed / mobile networks convergence and Next Generation Networks (NGN) in general. In this context, the main goal of our work has been analyzing how such general purpose IP multimedia signaling protocols are deployed and behave over 3GPP mobile networks. Effectively, usage of IP protocols is key to enable cross-vendor interoperability. On the other hand, due to the specific nature of the mobile domain, there are scenarios where it might be possible to leverage some additional “context” to enhance the performance of such protocols in the particular case of mobile networks. With this idea in mind, the bulk of this thesis work has consisted on analyzing and optimizing the performance of SIP and RTSP multimedia signaling protocols and defining optimized deployment architectures, with particular focus on the 3GPP PSS and the 3GPP Mission Critical Push-to-Talk (MCPTT) service. This work was preceded by a detailed analysis work of the performance of underlying IP, UDP and TCP protocol performance over 3GPP networks, which provided the best baseline for the future work around IP multimedia signaling protocols. Our contributions include the proposal of new optimizations to enhance multimedia streaming session setup procedures, detailed analysis and optimizations of a SIP-based Presence service and, finally, the definition of new use cases and optimized deployment architectures for the 3GPP MCPTT service. All this work has been published in the form of one book, three papers published in JCR cited International Journals, 5 articles published in International Conferences, one paper published in a National Conference and one awarded patent. This thesis work provides a detailed description of all contributions plus a comprehensive overview of their context, the guiding principles beneath all contributions, their applicability to different network deployment technologies (from 2.5G to 5G), a detailed overview of the related OMA and 3GPP architectures, services and design principles. Last but not least, the potential evolution of this research work into the 5G domain is also outlined as well.Els mecanismes de Senyalització en xarxes de nova generació es fonamenten en protocols de senyalització definits per IETF. En particular, SIP i RTSP són dos protocols extensibles basats en missatges de text i paradigma petició-resposta. RTSP va ser concebut per a establir sessions de streaming de continguts, mentre SIP va ser creat inicialment per a facilitar l’establiment de sessions multimèdia (veu, vídeo, xat, compartició) entre usuaris. Tot i així, el seu àmbit d’aplicació s’ha anat expandint i evolucionant fins a cobrir virtualment qualsevol tipus de contingut i sessió multimèdia. A mesura que les xarxes mòbils han anat evolucionant cap a un paradigma “All-IP”, particularment en xarxes 4G i 5G, 3GPP va seleccionar els protocols i arquitectures destinats a gestionar la senyalització dels serveis mòbils presents i futurs. En un moment determinat 3GPP decideix que, a diferència dels sistemes 2G i 3G que fan servir protocols basats en SS7, els sistemes de nova generació farien servir protocols estandarditzats per IETF. Quan 3GPP va començar a estandarditzar el servei de Streaming sobre xarxes mòbils PSS (Packet-switched Streaming Service) va escollir el protocol RTSP com a mecanisme de senyalització. Encara més significatiu, el protocol SIP va ser escollit com a mecanisme de senyalització per a IMS (IP Multimedia Subsystem), l’arquitectura de nova generació que substituirà la xarxa telefònica tradicional i permetrà el desplegament de nous serveis multimèdia. La decisió per part de 3GPP de seleccionar protocols estàndards definits per IETF ha representat una fita cabdal per a la convergència del sistemes All-IP fixes i mòbils, i per al desenvolupament de xarxes NGN (Next Generation Networks) en general. En aquest context, el nostre objectiu inicial ha estat analitzar com aquests protocols de senyalització multimèdia, dissenyats per a xarxes IP genèriques, es comporten sobre xarxes mòbils 3GPP. Efectivament, l’ús de protocols IP és fonamental de cara a facilitar la interoperabilitat de solucions diferents. Per altra banda, hi ha escenaris a on és possible aprofitar informació de “context” addicional per a millorar el comportament d’aquests protocols en al cas particular de xarxes mòbils. El cos principal del treball de la tesi ha consistit en l’anàlisi i optimització del rendiment dels protocols de senyalització multimèdia SIP i RTSP, i la definició d’arquitectures de desplegament, amb èmfasi en els serveis 3GPP PSS i 3GPP Mission Critical Push-to-Talk (MCPTT). Aquest treball ha estat precedit per una feina d’anàlisi detallada del comportament dels protocols IP, TCP i UDP sobre xarxes 3GPP, que va proporcionar els fonaments adequats per a la posterior tasca d’anàlisi de protocols de senyalització sobre xarxes mòbils. Les contribucions inclouen la proposta de noves optimitzacions per a millorar els procediments d’establiment de sessions de streaming multimèdia, l’anàlisi detallat i optimització del servei de Presència basat en SIP i la definició de nous casos d’ús i exemples de desplegament d’arquitectures optimitzades per al servei 3GPP MCPTT. Aquestes contribucions ha quedat reflectides en un llibre, tres articles publicats en Revistes Internacionals amb índex JCR, 5 articles publicats en Conferències Internacionals, un article publicat en Congrés Nacional i l’adjudicació d’una patent. La tesi proporciona una descripció detallada de totes les contribucions, així com un exhaustiu repàs del seu context, dels principis fonamentals subjacents a totes les contribucions, la seva aplicabilitat a diferents tipus de desplegaments de xarxa (des de 2.5G a 5G), així una presentació detallada de les arquitectures associades definides per organismes com OMA o 3GPP. Finalment també es presenta l’evolució potencial de la tasca de recerca cap a sistemes 5G.Postprint (published version

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    A cross-layer mobility management framework for next-generation wireless roaming

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 62-64).This thesis proposes a mobility management framework that aims to provide a framework for advanced mobility algorithms that allows the challenges of next-generation roaming to be met. The framework features tools that gather context and content information, guarantee low-level QoS, provide security, and offer link and handoff management. The framework aims to be scalable and reliable for all-IP heterogeneous wireless networks whilst conforming to 4G service requirements

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    NEtwork MObility (NEMO) support in interworking heterogeneous mobile networks

    Get PDF

    TRIM: An architecture for transparent IMS-based mobility

    Get PDF
    In recent years, the development and deployment of new wired and wireless access net work technologies have made the ubiquitous Internet a reality. Users can access anywhere and anytime to the broad set of value added Internet services, which are delivered by means of the IP protocol. In this context, 3GPP is currently developing the IP Multimedia Subsystem (IMS), as a key element that allows to evolve from the ubiquitous access to the Internet services towards a next generation network model, by providing a set of essen tial facilities such as session control, QoS, charging and service integration. Nevertheless, several open issues still need consideration before the future Internet becomes real, such as supporting user mobility in IP networks. Although mobility support in the Internet is receiving much attention, IMS networks present inherent particularities that require fur ther analysis. The solutions proposed so far for IMS do not support mobility transparently to the end user applications, or address the problem by introducing complex changes to the IMS infrastructure. This paper presents TRIM, an architecture for transparent IMS based mobility. TRIM supports mobility in IMS networks transparently to the end user applications, which are unaware of the handover management procedures executed between the mobile node and the network. We have performed several experiments with a TRIM prototype, using a real IMS testbed with 3G and WLAN access networks, validating the proposal for UDP and TCP based applications.European Community's Seventh Framework ProgramPartially granted by the Madrid Community through the MEDIANET project (S 2009/TIC 1468)Publicad

    Multimedia session continuity in the IP multimedia subsystem : investigation and testbed implementation

    Get PDF
    Includes bibliographical references (leaves 91-94).The advent of Internet Protocol (IP) based rich multimedia services and applications has seen rapid growth and adoption in recent years, with an equally increasing user base. Voice over IP (VoIP) and IP Television (IPTV) are key examples of services that are blurring the lines between traditional stove-pipe approach network infrastructures. In these, each service required a different network technology to be provisioned, and could only be accessed through a specific end user equipment (UE) technology. The move towards an all-IP core network infrastructure and the proliferation of multi-capability multi-interface user devices has spurred a convergence trend characterized by access to services and applications through any network, any device and anywhere

    Supporting mobility in an IMS-based P2P IPTV service: A proactive context transfer mechanism

    Get PDF
    In recent years, IPTV has received an increasing amount of interest from the industry, commercial providers and the research community, alike. In this context, standardization bodies, such as ETSI and ITU-T, are specifying the architecture of IPTV systems based on IP multicast. An interesting alternative to support the IPTV service delivery relies on the Peer-to-Peer (P2P) paradigm to distribute and push the streaming effort towards the network edge. However, while P2P IPTV was studied in fixed access technologies, there has been little attention paid to the implications arising in mobile environments. One of these involves the service handover when the user moves to a different network. By analyzing previous work from the perspective of an IPTV service, we concluded that a proactive approach is necessary for the handling of inter-network handovers. In this paper, we propose a new general handover mechanism for the IP Multimedia Subsystem (IMS), while studying its applicability to a P2P IPTV service. Our solution, called proactive context transfer service, incorporates the existing IEEE 802.21 technology in order to minimize the handover delay. The proposal is validated by comparing it against solutions derived from previous work.This article has been partially granted by the Spanish MEC through the CONPARTE project (TEC2007–67966-C03–03/TCM) and by the Madrid Community through the MEDIANET project (S-2009/TIC-1468).Publicad
    • …
    corecore