280,683 research outputs found

    Resource management for cost-effective cloud and edge systems

    Get PDF
    With the booming of Internet-based and cloud/edge computing applications and services,datacenters hosting these services have become ubiquitous in every sector of our economy which leads to tremendous research opportunities. Specifically, in cloud computing, all data are gathered and processed in centralized cloud datacenters whereas in edge computing, the frontier of data and services is pushed away from the centralized cloud to the edge of the network. By fusing edge computing with cloud computing, the Internet companies and end users can benefit from their respective merits, abundant computation and storage resources from cloud computing, and the data-gathering potential of edge computing. However, resource management in cloud and edge systems is complicated and challenging due to the large scale of cloud datacenters, diverse interconnected resource types, unpredictable generated workloads, and a range of performance objectives. It necessitates the systematic modeling of cloud and edge systems to achieve desired performance objectives.This dissertation presents a holistic system modeling and novel solution methodology to effectivelysolve the optimization problems formulated in three cloud and edge architectures: 1) cloud computing in colocation datacenters; 2) cloud computing in geographically distributed datacenters; 3) UAV-enabled mobile edge computing. First, we study resource management with the goal of overall cost minimization in the context of cloud computing systems. A cooperative game is formulated to model the scenario where a multi-tenant colocation datacenter collectively procures electricity in the wholesale electricity market. Then, a two-stage stochastic programming is formulated to model the scenario where geographically distributed datacenters dispatch workload and procure electricity in the multi-timescale electricity markets. Last, we extend our focus on joint task offloading and resource management with the goal of overall cost minimization in the context of edge computing systems, where edge nodes with computing capabilities are deployed in proximity to end users. A nonconvex optimization problem is formulated in the UAV-enabled mobile edge computing system with the goal of minimizing both energy consumption for computation and task offloading and system response delay. Furthermore, a novel hybrid algorithm that unifies differential evolution and successive convex approximation is proposed to efficiently solve the problem with improved performance.This dissertation addresses several fundamental issues related to resource management incloud and edge computing systems that will further in-depth investigations to improve costeffective performance. The advanced modeling and efficient algorithms developed in this research enable the system operator to make optimal and strategic decisions in resource allocation and task offloading for cost savings

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • …
    corecore