
RESOURCE MANAGEMENT FOR COST-EFFECTIVE CLOUD

AND EDGE SYSTEMS

By

ZHE YU

Bachelor of Engineering in Communications Engineering
University of Science and Technology Beijing

Beijing, China
2014

Master of Science in Electrical Engineering
Vanderbilt University
Nashville, Tennessee

2016

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 2022

RESOURCE MANAGEMENT FOR COST-EFFECTIVE CLOUD

AND EDGE SYSTEMS

Dissertation Approved:

Dr. Guoliang Fan

Dissertation Advisor

Dr. Martin Hagan

Dr. Sabit Ekin

Dr. Chenang Liu

ii

ACKNOWLEDGMENTS

First and foremost I am extremely grateful to my advisor, Prof. Guoliang Fan for his

invaluable advice, continuous support, and patience during my PhD study. His immense

knowledge and plentiful experience have encouraged me in all the time of my academic

research and daily life. I would like to thank my doctoral committee members, Prof. Martin

Hagan, Prof. Sabit Ekin and Prof. Chenang Liu for their academic support and helpful

guidance during my PhD study.

I would also like to thank Dr. Cheng Hao, Prof. Chris Hutchens, Prof. Gary Yen, Prof.

James West, Prof. Jerzy Krasinski, Le Zhou, Nate Lannan, Prof. Qi Cheng, Prof. Teague

Keith, Prof. Tyler Ley, Xiaowei Chen, Prof. Yuanxiong Guo, Prof. Gong Yanming and

Zonghao Huang. It is their kind help and support that have made my PhD study and life

in the Oklahoma State University a wonderful time. Finally, I would like to express my

gratitude to my parents and my girlfriend. Without their tremendous understanding and

encouragement in the past few years, it would be impossible for me to complete my PhD

study.

Acknowledgments reflect the views of the author and are not endorsed by committee members or Okla-
homa State University.

iii

Name: ZHE YU

Date of Degree: DECEMBER, 2022

Title of Study: RESOURCE MANAGEMENT FOR COST-EFFECTIVE CLOUD AND
EDGE SYSTEMS

Major Field: ELECTRICAL ENGINEERING

Abstract: With the booming of Internet-based and cloud/edge computing applications and
services, datacenters hosting these services have become ubiquitous in every sector of our
economy which leads to tremendous research opportunities. Specifically, in cloud computing,
all data are gathered and processed in centralized cloud datacenters whereas in edge comput-
ing, the frontier of data and services is pushed away from the centralized cloud to the edge
of the network. By fusing edge computing with cloud computing, the Internet companies
and end users can benefit from their respective merits, abundant computation and storage
resources from cloud computing, and the data-gathering potential of edge computing. How-
ever, resource management in cloud and edge systems is complicated and challenging due
to the large scale of cloud datacenters, diverse interconnected resource types, unpredictable
generated workloads, and a range of performance objectives. It necessitates the systematic
modeling of cloud and edge systems to achieve desired performance objectives.

This dissertation presents a holistic system modeling and novel solution methodology to ef-
fectively solve the optimization problems formulated in three cloud and edge architectures:
1) cloud computing in colocation datacenters ; 2) cloud computing in geographically distributed
datacenters ; 3) UAV-enabled mobile edge computing. First, we study resource management
with the goal of overall cost minimization in the context of cloud computing systems. A
cooperative game is formulated to model the scenario where a multi-tenant colocation data-
center collectively procures electricity in the wholesale electricity market. Then, a two-stage
stochastic programming is formulated to model the scenario where geographically distributed
datacenters dispatch workload and procure electricity in the multi-timescale electricity mar-
kets. Last, we extend our focus on joint task offloading and resource management with the
goal of overall cost minimization in the context of edge computing systems, where edge nodes
with computing capabilities are deployed in proximity to end users. A nonconvex optimiza-
tion problem is formulated in the UAV-enabled mobile edge computing system with the goal
of minimizing both energy consumption for computation and task offloading and system
response delay. Furthermore, a novel hybrid algorithm that unifies differential evolution and
successive convex approximation is proposed to efficiently solve the problem with improved
performance.

This dissertation addresses several fundamental issues related to resource management in
cloud and edge computing systems that will further in-depth investigations to improve cost-
effective performance. The advanced modeling and efficient algorithms developed in this
research enable the system operator to make optimal and strategic decisions in resource
allocation and task offloading for cost savings.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1 Motivation and Background . 1

1.1.1 Cloud Computing and Edge Computing 1

1.1.2 Datacenter Energy Management . 2

1.1.3 Mobile Cloud Computing and Mobile Edge Computing 4

1.1.4 UAV-Enabled Mobile Edge Computing 7

1.2 Summary of Contribution . 8

1.2.1 Energy Management in Colocation Datacenters 8

1.2.2 Resource Management in Geographically Distributed Datacenters . 9

1.2.3 Joint Task Offloading and Resource Allocation in UAV-Enabled Mo-

bile Edge Computing . 10

1.2.4 Joint Differential Evolution and Successive Convex Approximation

in UAV-enabled Mobile Edge Computing 11

1.3 Dissertation Organization . 11

II. RELATED WORKS . 12

2.1 Energy Management in Cloud and Edge Systems 13

2.1.1 Demand Side Energy Management 13

2.1.2 Supply Side Energy Management 13

2.1.3 Joint Demand and Supply Energy Management 14

2.2 Task Offloading and Resource Allocation in Cloud and Edge Systems . . . 15

2.2.1 Mobile Cloud Computing Systems 15

v

Chapter Page

2.2.2 Mobile Edge Computing Systems 16

2.2.3 DE methods in UAV-Enabled MEC 19

2.2.4 SCA-based methods in UAV-Enabled MEC 20

2.2.5 Alternative methods in UAV-Enabled MEC 21

2.3 A Brief Review on Cooperative Game Theory 22

2.3.1 Cooperative Game with Transferable Utility 23

2.3.2 Imputations and the Core . 23

2.3.3 Convex and Balanced Games . 24

2.3.4 Shapley Value . 25

2.3.5 Nucleolus . 25

III. ENERGY MANAGEMENT IN COLOCATION DATACENTERS . 27

3.1 System Model . 28

3.1.1 Datacenter Power Consumption Model 28

3.1.2 Two-Settlement Electricity Market 31

3.2 Coalitional Tenant Bidding . 32

3.2.1 Tenant Aggregation as a Cooperative Game 33

3.2.2 The Benefits of Aggregation . 34

3.3 Cost Allocation Mechanism . 35

3.3.1 Existence of the Nonempty Core . 36

3.3.2 Marginal Cost Allocation . 37

3.4 Numerical Experiments . 39

3.4.1 Simulation Setup . 39

3.4.2 Experimental Results . 40

3.5 Summary . 47

vi

Chapter Page

IV. RESOURCEMANAGEMENT IN GEOGRAPHICALLY DISTRIBUTED

DATACENTERS . 48

4.1 System Modeling . 49

4.1.1 Workload Model . 49

4.1.2 Datacenter Power Consumption Model 51

4.1.3 Electricity Market Model . 53

4.1.4 Renewable Energy Model . 54

4.1.5 Thermal Energy Storage Model . 54

4.1.6 Cost Model . 55

4.2 Two-Stage Stochastic Formulation . 56

4.3 Solution Methodology . 58

4.4 Case Study . 59

4.4.1 Numerical Settings . 59

4.4.2 Results and Discussions . 60

4.5 Summary . 62

V. JOINT TASK OFFLOADING AND RESOURCE ALLOCATION

IN UAV-ENABLED MOBILE EDGE COMPUTING 64

5.1 System Model and Problem Formulation 65

5.1.1 System Model . 65

5.1.2 Problem Formulation . 70

5.2 Solution Methodology . 72

5.2.1 Problem Reformulation . 72

5.2.2 Successive Convex Approximation 73

5.3 Numerical Experiments . 82

5.3.1 Simulation Setup . 82

vii

Chapter Page

5.3.2 Experimental Results . 84

5.4 Summary . 88

VI. JOINT DIFFERENTIAL EVOLUTION AND SUCCESSIVE CON-

VEX APPROXIMATION IN UAV-ENABLEDMOBILE EDGE COM-

PUTING . 90

6.1 Preliminaries . 91

6.1.1 Constrained Optimization Problems 91

6.1.2 Differential Evolution . 92

6.1.3 Successive Convex Approximation 94

6.2 Screened DE-SCA . 97

6.2.1 DE Stages . 98

6.2.2 Screened DE Solutions . 99

6.2.3 SCA Stages . 100

6.3 UAV-enabled Mobile Edge Computing . 101

6.3.1 System Model . 101

6.3.2 Problem Formulation . 106

6.4 Numerical Experiments . 107

6.4.1 Simulation Setup . 107

6.4.2 Experimental Results . 109

6.5 Summary . 116

VII. CONCLUDING REMARKS . 117

7.1 Conclusions . 117

7.2 Future Works . 118

7.2.1 Practical Issues of Our Research Work 118

7.2.2 Selfish Task Offloading in Mobile Edge Computing Systems 119

viii

Chapter Page

7.2.3 Deep Reinforcement Learning for Joint Task Offloading and Resource

Allocation in UAV-Enabled Mobile Edge Computing 121

REFERENCES . 122

APPENDICES . 140

ix

LIST OF TABLES

Table Page

1. Simulation parameters . 39
2. Cost comparison for all coalitions of four tenants at hour 22 44
3. The percentage of the average cost saving of each tenant under different

price penalty ratios . 46

4. Datacenters and workload parameters 60
5. Comparison of datacenter operating cost with the stochastic approach and

the deterministic approach under three different probability distributions 62

6. Simulation Parameters . 83
7. System cost comparison for optimized UAV location and random UAV

location schemes . 85

8. Simulation Parameters . 109
9. System cost vs. ε for DE Algorithm . 110
10. System cost comparison for different DE algorithms when ε = 1 where

DE-PF and DE-IN stand for DE with Penalty Function and DE with
Initialization Normalization, respectively 112

11. System cost comparison for Screened DE-SCA algorithms where DE, DE-
IN and DE-PF are used to initialize the SCA-based method, respectively 113

12. Initialization feasibility comparison for SCA-based and Screened DE-SCA
algorithms initialized by DE-PF method 114

13. System cost comparison for Screened DE-SCA using feasible parts of DE-
PF solution for initialization with other benchmark methods 114

x

LIST OF FIGURES

Figure Page

1. Cloud computing vs edge computing [6]. 2
2. Examples of mobile cloud computing and mobile edge computing. 6
3. UAV-enabled mobile edge computing example [60]. 8

4. Individual bidding and cooperative bidding in the wholesale electricity
market. 29

5. CDFs of the normalized tenant workload arrival rates and power demand
at hour 22. 41

6. Day-ahead bidding level comparison over 24 hours. 42
7. Total expected cost comparison over 24 hours. 42
8. Cost allocation of each tenant at hour 22 under the current setting. . . . 43
9. Individual cost saving percentage of each tenant after coalitional day-

ahead bidding over 24 hours. 44
10. Cost saving percentage of each tenant at hour 22 when the price penalty

ratio ω is 0.25, 0.50 and 0.75, respectively. 45
11. Day-ahead bidding level comparison under price penalty ratios from 0 to 1. 46

12. Geographically distributed datacenters participate in two-timescale elec-
tricity markets. 50

13. Average operating cost of deterministic and stochastic approach under
normal, Laplacian and uniform probability distributions. 63

14. Illustration of an exemplary UAV-enabled MEC system with N MUs, J
ECs, and a UAV. 66

15. Locations of 10 MUs and 4 ECs in the MEC system. 82
16. Optimal task splitting ratios of the UAV βi0 (i = 1, 2, . . . , 10) and ECs βij

(j = 1, 2, 3, 4) for MUs. 84
17. Optimal task splitting ratios at each EC for MU1 as a function of per-

device bandwidth BDL
1 assigned to EC1. 86

18. System cost as a function of per-device bandwidth BDL
j assigned to jth

EC (j = 1, 2, 3, 4) while fixing the others at 0.5 MHz. 86
19. System cost as a function of the UAV computation capacity FUAV under

four different offloading schemes. 87
20. System cost as a function of the UAV transmission power PUAV

TX under
four different offloading schemes. 88

xi

Figure Page

21. Framework of Screened DE-SCA method. Optimal solutions of the orig-
inal nonconvex problem can be found by initializing the SCA-based al-
gorithm with partial feasible solutions of DE algorithm applied to the
original nonconvex problem. 98

22. 3D plane of the UAV-enabled MEC system with N IoT devices, J ECs
and a UAV. 102

23. 2D plane of the simulated MEC system with 10 IoT devices and 4 ECs. . 108
24. System cost of problem (6.3.14) as a function of ε for DE algorithm. . . . 111

25. An example of a mobile edge computing system including 5 mobile users,
3 access points and a remote cloud, where both MU1 and MU2 offload
tasks via AP1, MU3 offloads tasks via AP2, and MU4 offloads tasks via
AP3 while MU5 performs local computing without offloading. 120

xii

CHAPTER I

INTRODUCTION

1.1 Motivation and Background

1.1.1 Cloud Computing and Edge Computing

The last decade has witnessed the emergence of cloud computing as a paradigm of computing,

which provides computation, communication, and storage resources installed in remote large

datacenters. Datacenters are buildings where multiple servers and communication gear are

colocated because of their common environmental requirements and physical security needs,

and for ease of maintenance [15]. Cloud computing utilizes wireless Internet to access and

store data instead of storing data in users’ own computer hard drives, which it is referred as

local computing. Cloud computing has been the driving force for the rapid growth of many

Internet companies such as Amazon Web Services (AWS), Microsoft Azure, Google Cloud

Platform and IBM Cloud, who continue to invest heavily in offering new tools to customers,

such as security and privacy, big data & analytics, networking, artificial intelligence (AI) &

machine learning and IoT [2].

In recent years, as IoT devices become more pervasive and incorporate more processing

power, an enormous amount of data is being generated on the outer edge of computing

networks. Traditionally, data generated by IoT devices are uploaded to the central cloud

servers for processing, and processed results are sent back to end devices located on the edge

of network. However, it takes relatively long time for data to travel back and forth between

IoT devices and core cloud datacenters, which imposes tremendous pressure on bandwidth.

1

Figure 1: Cloud computing vs edge computing [6].

The combination of long distance and high volume traffic can slow the network down to a

crawl. Therefore, edge computing has emerged as a solution to resolve the network latency

issue by pushing the frontier of data and services away from centralized cloud to the edge

of the network, thereby enabling data analytics and functional operation in the proximity

to the data sources. Fortunately, cloud computing and edge computing are not exclusive

to each other. The combination of edge computing and cloud computing enables Internet

companies to take respective advantage of storage capacity and processing capability of the

cloud datacenters and the data-gathering potential of edge computing [3].

1.1.2 Datacenter Energy Management

Datacenters, as a vital carrier for hosting Internet-based cloud computing applications and

services, are especially notorious for their intensive energy consumption. A single datacenter

can take as much electricity as a medium-size town [39]. According to a recent report [96]

issued by the Lawrence Berkeley National Laboratory, datacenters in the U.S. consumed

2

an estimate 70 billion kWh of electricity in 2014, representing 1.8% of total U.S. electricity

consumption and costing U.S. businesses more than 10 billion in annual electricity bills, and

their total electricity consumption is estimated to be 73 billion kWh in 2020. Consequen-

tially, cutting down electricity cost has become an urgent concern for datacenter operators.

Moreover, it is imperative to advocate renewable energy uses from the perspective of sustain-

able environment since utilization of fossil fuels causes the surge of greenhouse gas emissions

globally and further climate changes.

In view of massive energy consumption and global greenhouse gas footprint brought by

datacenters for supporting cloud/edge computing services, our goal with this dissertation is

to find efficient and effective ways to manage resource uses for cloud and edge systems such

that optimal energy utilization can be achieved. In the context of cloud and edge systems,

resource management [53] refers to the process of allocating computation, networking, storage

and power resources efficiently and effectively to a set of applications while jointly satisfy

the performance objectives of the applications, cloud providers and end users.

In terms of energy management for cloud and edge systems, substantial efforts have been

made both from demand side and supply side when datacenter operators aim at reducing

the growing energy consumption and electricity bills. On one hand, energy-efficient hard-

ware facilities such as IT servers, energy storage devices and network switches and software

mechanisms such as virtualization and dynamic CPU speed scaling (computation resources),

dynamic capacity provisioning (server management) and geographical load balancing (work-

load management) have been developed to optimize the electricity cost from the demand

side. On the other hand, from the supply side, datacenters can utilize the temporal diversity

of electricity prices by shifting their delay-tolerant workload to off-peak time periods and us-

ing energy storage devices and on-site renewable generators to save electricity expenditures.

In addition, datacenters can purchase electricity in retail markets beforehand or participate

in multi-timescale electricity markets.

Given the significant power consumption and deregulation of electricity market, another

3

promising opportunity to reduce datacenter energy cost is emerging: datacenters can directly

participate in electricity market to meet their power demand. While it is typical for con-

sumers to buy electricity from local utility companies, some independent system operators

(ISOs), such as Electric Reliability Council of Texas (ERCOT) [4] and California ISO [1],

have recently developed a market that allows consumers to purchase electricity directly from

power suppliers by actively participating in the electricity market. Indeed, datacenter opera-

tors like Google have been granted the authority to trade in the wholesale electricity market

for the purpose of managing their own energy cost [9]. The key advantage for datacenters

to procure electricity from the wholesale electricity market instead of a local utility company

is that they can avoid the insurance premiums, service charges, and mark-up included by

utilities in retail rates [37].

1.1.3 Mobile Cloud Computing and Mobile Edge Computing

In the meanwhile, explosive growth of mobile devices (e.g., smartphones, tablets) have been

seen in the past few years. Mobile computing functions include accessing the Internet through

browsers, supporting multiple software applications with a core operating system, and send-

ing and receiving different types of data. The ubiquity of mobile devices is accompanied by

the increasing demand for computation and storage of intensive mobile applications such as

image processing, computer vision, face recognition and natural language processing (NLP).

In general, mobile computing is consumer-facing while cloud computing is business-facing.

However, many of these mobile applications involve heavy computation and storage de-

mands, whose performances are essentially limited by the deficiency of CPU speed, memory

size and battery life. Therefore, It is intuitive for mobile users to resort to resourceful cloud

for rapid execution and abundant storage, which leads to a new research area called mobile

cloud computing (MCC) [32] as a combination of cloud computing and mobile computing. In

mobile cloud computing, mobile users can run their computing services in remote resourceful

datacenters by offloading their computation tasks via wireless and wired connections. Gen-

4

erally, it is a two-tier network infrastructure, which consists of a local layer of mobile devices

and a cloud layer of remote datacenters. Two types of offloading schemes including binary

offloading and partial offloading are considered in line with the MCC framework. On the

one hand, mobile users can choose to offload all their computation tasks to remote cloud

without any local computing while on the other hand, mobile users can pre-execute part of

their computation jobs and then choose to offload the rest to the remote cloud for further

processing.

Indeed, an inherent limitation resides in MCC, i.e., long propagation distance from end

users to the remote cloud servers. Therefore, the round trip transmission time for task up-

loading and downloading actually becomes the bottleneck for enhancing the user experience

by reducing system response delay although task computation delay can be largely shortened

due to task offloading. Excessively long latency experienced by end users necessitate new net-

work paradigm known as mobile edge computing (MEC) [123], micro datacenters (cloudlets)

for mobile computing, where a capillary distribution of cloud computing are deployed in the

vicinity of the mobile users, which largely reduces the transmission delay between mobile

users and edge clouds. Applications with low latency tolerance, such as augmented reality

(AR) & virtual reality (VR), video streaming and online gaming, can deploy their services

on the edge hosts at a cost, to achieve lower latency and better user experience. Generally,

it is a three-tier network infrastructure: 1) Cloud layer consists of cloud datacenters with

large-scale servers located far from some mobile users. The cloud computational capacity is

much higher than that of base stations or access points but the communication delay is high

as well due to the long distance between base stations or access points and the cloud; 2) Edge

layer consists of base stations or access points equipped with computational capacity and

power resources higher than mobile devices, which can be widely deployed in the proximity

to mobile users. Mobile users can choose to offload (part of) their computational tasks for

processing at base stations or access points with short computation delay; 3) User layer

consists of mobile users who possess mobile devices with computational tasks to perform.

5

(a) Mobile cloud computing [5]

(b) Mobile edge computing [46]

Figure 2: Examples of mobile cloud computing and mobile edge computing.

Communication delay can be avoided if those computational tasks are processed locally in

their mobile devices. However, the computational capabilities of mobile devices are largely

limited compared to the edge node servers and cloud servers. Mobile users can decide to

offload (part of) their computational tasks to base stations or access points or further to

the remote cloud to reduce the computation delay. Follow the same offloading schemes

6

mentioned in MCC framework, an extra middle layer of MEC framework can be utilized to

pre-process offloaded computation tasks from mobile users with less transmission delay. If

needed, resulting tasks can be further offloaded to the remote powerful cloud datacenters for

execution.

1.1.4 UAV-Enabled Mobile Edge Computing

By moving resources to the network edge, close to where the data is being generated and acted

upon, MEC can bring many benefits to users, such as lower service latency, reduced network

congestion, and better service quality. Meanwhile, resource management becomes a key

problem in MEC due to the much limited resources compared to remote clouds and the tight

coupling of communication and computing. There have been substantial research on MEC

resource management with the goal of optimizing system latency [115, 118, 25, 87], energy

consumption [90, 136, 124] and overall cost of system latency and/or energy consumption

[27, 24, 23, 134]. However, all of these studies assume wired or dedicated wireless connections

with sufficient bandwidth among distributed edge resources deployed in a fixed fashion.

Particularly, the existing MEC techniques are not applicable to the situation where the

number of mobile users increases explosively or the network facilities are sparely distributed

[47]. In view of this insufficiency, wireless networks enabled by unmanned aerial vehicles

(UAVs) have recently been proposed as a promising solution to improve the connectivity of

ground IoT devices.

UAVs, especially low-cost quadcopters, are undergoing an explosive growth and major

regulation relaxation nowadays and have been widely used in civilian domains, such as traffic

monitoring [77], public safety [126], search and rescue [95], and reconnaissance over disaster

rescue and recovery [72]. UAVs not only provide extended coverage over wide geographical

areas, but also possess unique characteristics like fast deployment, easy programmablity,

and high scalability. Various payloads such as IoT sensors (including cameras), miniatur-

ized base stations and embedded computing modules can be mounted on UAVs to enable

7

Figure 3: UAV-enabled mobile edge computing example [60].

different sensing, communication, and computing tasks [18, 75]. In particular, reliable and

cost-effective wireless communication solutions for multitudes of real-world scenarios can be

offered by UAVs if properly deployed and operated [75]. UAVs can act as wireless relays

or aerial base stations for improving connectivity and extending coverage of ground wire-

less devices since the high altitude of UAV enables wireless devices to effectively establish

line-of-sight (LoS) communication links thus mitigating the potential signal blockage and

shadowing.

1.2 Summary of Contribution

Through this dissertation, we study the resource management for cost-effective cloud and

edge systems. The results and future works are presented in Chapters III, IV, V, VI and

VII. In particular, this dissertation makes the following contributions.

1.2.1 Energy Management in Colocation Datacenters

In Chapter III, we investigate how colocation datacenter can effectively reduce its energy cost

when it participates in the wholesale electricity market via cooperative power procurement.

8

In summary, this chapter makes the following contributions:

• We study the problem of energy cost minimization for multi-tenant at a colocation

datacenter when they participate in the wholesale electricity market via cooperative

power procurement.

• We apply cooperative game theory to model the cooperative electricity procurement

process of tenants as a cooperative game, and show the cost saving benefits of aggre-

gation.

• We propose a cost allocation scheme based on the marginal contribution of each tenant

to the total expected cost is proposed to fairly distribute the aggregation benefits among

the participating tenants.

• We conduct numerical experiments based on real-world traces to illustrate the benefits

of aggregation compared to noncooperative power procurement.

1.2.2 Resource Management in Geographically Distributed Datacenters

In Chapter IV, we investigate how geographically distributed datacenters can effectively

reduce its overall cost when they participate in the multi-timescale electricity market. In

summary, this chapter makes the following contributions:

• We study the optimal energy procurement for datacenter operator who manages ge-

ographically distributed datacenters when it participates in the multi-timescale elec-

tricity markets.

• We jointly optimize electricity procurement in the multi-timescale electricity mar-

kets, workload routing decisions, IT server allocation decisions, thermal energy storage

charge and discharge decisions such that the total cost of datacenters when serving

both interactive and batch workload can be minimized.

9

• We formulate it as a two-stage stochastic optimization problem by considering random

scenarios and then reformulate as its deterministic equivalent problem.

• We conduct a case study based on real-world traces to validate the effectiveness of our

proposed stochastic approach.

1.2.3 Joint Task Offloading and Resource Allocation in UAV-Enabled Mobile

Edge Computing

In Chapter V, we investigate how a UAV can be properly deployed to facilitate the MEC

service provisioning to a set of IoT devices in regions where existing ECs cannot be accessible

to IoT devices due to terrestrial signal blockage or shadowing. In summary, this chapter

makes the following contributions:

• We propose a novel UAV-enabled MEC system where a UAV is deployed to facilitate

the provisioning of MEC services to IoT devices that cannot directly access ECs on

the ground due to terrestrial signal blockage and shadowing.

• Considering the stringent quality-of-service requirement of MEC services and limited

battery size of UAV, we formulate the joint IoT task offloading and UAV placement

under the proposed system as an optimization problem with the goal of minimizing

the service delay of IoT devices and maximizing the energy efficiency of UAV.

• Given the non-convexity of the formulated optimization problem, we reformulate it

into tractable one using successive convex approximation, and then develop an efficient

algorithm to find the sub-optimal approximate solutions to the problem.

• We conduct extensive simulations to evaluate the performance of our proposed col-

laborative UAV-EC scheme. Numerical experiments demonstrate that our proposed

collaborative UAV-EC offloading scheme largely outperforms baseline schemes that

solely rely on UAV or ECs for MEC in IoT.

10

1.2.4 Joint Differential Evolution and Successive Convex Approximation in

UAV-enabled Mobile Edge Computing

In Chapter VI, we propose an innovative algorithm by jointly applying DE and SCA to solve

for the nonconvex optimization problems raised in UAV-enabled Mobile Edge Computing.

In summary, this chapter makes the following contributions:

• We propose an innovative method to jointly consider DE and SCA in view of their own

advantages and disadvantages when solely applied to solve for nonconvex optimization

problems.

• To better combine with the SCA-based algorithm, we further propose to only select

the feasible parts of the best DE solution of the original problem. After this screening

procedure, the feasible parts will be used to initialize the SCA-based algorithm.

• We conduct extensive simulations to evaluate the performance of our proposed Screened

DE-SCA method in a UAV-enabled MEC system. Numerical experiments demonstrate

that our proposed Screened DE-SCA method largely outperforms baseline methods

that solely rely on DE or SCA and the DE-SCA method.

1.3 Dissertation Organization

This dissertation is organized as follows. Related works are reviewed in Chapter II. Energy

cost optimization for multi-tenant colocation cloud systems is investigated in Chapter III.

In Chapter IV, we study resource management for geographically distributed cloud systems.

In Chapter V, we study the joint task offloading and resource allocation in a UAV-enabled

mobile edge computing system. In Chapter VI, we propose a novel algorithm that combines

the DE and SCA to solve for the optimization problem incurred in UAV-enabled mobile edge

computing system. Finally, conclusions and future works are given in Chapter VII.

11

CHAPTER II

RELATED WORKS

In this chapter, we provide an overview of recent research works on resource management

in cloud and edge systems aiming to achieve a cost-effective system. On one hand, datacen-

ters can manage energy individually by taking advantage of on-site renewable generations

and energy storage systems and optimizing the energy trade in multi-timescale electricity

markets. On the other hand, datacenter operator can split incoming workloads among ge-

ographically distributed datacenters by utilizing cheap local electricity prices. However, It

is challenging to optimize datacenter energy management since workload arrivals, on-site

renewable generations and real-time electricity prices are highly uncertain, and thus we re-

sort to either stochastic programming by assuming known probability distributions or robust

programming by assuming known bounds of parameters to solve analytically. Besides, it is

also challenging to jointly optimize task offloading and resource allocation in cloud and edge

systems since they are often inter-dependent, and binary task offloading schemes will result

in a mixed integer linear programming (MILP), which is generally NP-hard to solve.

The rest of this chapter is organized as follows. In Section 2.1, we review energy man-

agement in cloud and edge systems. Next, task offloading and resource allocation in cloud

and edge systems and UAV-enabled MEC using DE methods, SCA methods and alternative

methods are reviewed in Section 2.2. Last, a brief review on cooperative game theory is

given in Section 2.3.

12

2.1 Energy Management in Cloud and Edge Systems

Over the past decade, datacenter energy management has received lots of attention and

therefore multiple research works have been proposed to reduce the electricity bill of data-

centers in cloud and edge systems. Energy management approaches can be categorized into

three aspects: demand side energy management, supply side energy management and joint

demand and supply side energy management

2.1.1 Demand Side Energy Management

From the demand side, in terms of engineering approaches, energy-efficient servers, storage

devices and network switches and advanced cooling have been designed to improve the en-

ergy efficiency. On the other hand, in terms of algorithmic approaches, dynamic capacity

provisioning [41, 65, 137, 66] is proposed to reduce energy cost by dynamically turning off

unused servers. Dynamic speed scaling [110, 99, 22] is developed to reducing energy con-

sumption by adapting the processing speed to the current load. Geographical load balancing

[68, 64, 52] is put forward to exploit the spatial diversity of electricity prices to minimize

the energy cost of geographically distributed datacenters by dynamically routing the user

requests to regional markets with lower electricity prices.

2.1.2 Supply Side Energy Management

From the supply side of datacenters, exploiting the temporal diversity of electricity prices

by shifting the delay-tolerant workload to off-peak time periods and using battery to charge

from the gird when electricity price is lower and discharge when electricity price is higher

is investigated in [106, 43, 122, 44, 45]. On-site renewable energy generated from solar

panels and wind turbines can also be utilized to reduce the electricity expenditures [69, 21,

35]. Besides, datacenters can purchase electricity from the retail electricity market with a

fixed electricity price by signing bilateral contracts beforehand [104, 70]. Participate in the

multi-timescale electricity market to exploit the uncertainty of electricity prices has been

13

investigated in [127, 83, 84, 36].

2.1.3 Joint Demand and Supply Energy Management

Joint considering Energy management of datacenters both in demand side and supply side

has not been explored in-depth in prior research works. To name a few, [38] investigated the

unified energy portfolio optimization of geographically distributed datacenters by considering

various energy procurement options such as retailer, day-ahead market and real-time market,

ancillary service, local renewable power generators, on-site energy storage systems and geo-

graphical load balancing and formulated a mixed-integer linear optimization problem. [139]

studied the problem of minimizing the energy cost and bandwidth cost of geographically

distributed datacenters when participating in the wholesale electricity markets by jointly

considering bidding in day-ahead markets and geographical load balancing scheme and for-

mulated a non-convex infinite-dimensional optimization problem. [63] studied the problem of

minimizing the energy cost and delay cost of geographically distributed datacenters when par-

ticipating in the multi-timescale electricity markets by jointly considering on-site renewable

generators and geographical load balancing scheme and formulated a two-stage stochastic

optimization problem.

Above papers consider datacenters with the same owner participating in different whole-

sale electricity markets. In Chapter III, we consider the colocation datacenter where inde-

pendent tenants colocated together at the same place jointly participate in the wholesale

electricity market. Therefore, we need to apply game-theoretic methods to model this multi-

agent problem instead of optimization approaches in geographically distributed datacenters.

Besides, Different from above works, in Chapter IV, we aim at minimizing the total energy

cost plus bandwidth cost of geographically distributed datacenters when participating in

the multi-timescale electricity markets while meeting the quality-of-service requirements. In

the meanwhile, we consider both delay-sensitive and delay-tolerant workload with thermal

energy storage, on-site renewable generation and geographical load balancing scheme and

14

then formulate a two-stage stochastic optimization problem.

2.2 Task Offloading and Resource Allocation in Cloud and Edge Systems

In cloud and edge Systems, task offloading and resource allocation is a promising approach for

resource-hungry mobile users, where intensive computation tasks are migrated from mobile

users to nearby edge nodes or remote powerful clouds. In what follows, recent research works

on mobile cloud computing, typically two-layer network infrastructure, including one mobile

user and multiple mobile users scenarios, and mobile edge computing, typically three-layer

network infrastructure, are briefly reviewed.

2.2.1 Mobile Cloud Computing Systems

Most previous work studied the task offloading problems in the mobile cloud computing

system, which is a two-tier structure with user layer and cloud layer. Mobile users can

offload their computation-intensive tasks to the remote cloud by taking advantage of the

resourceful cloud servers to enhance user experiences. Most existing research works can be

categorized according to whether they consider single user or multiple users scenarios.

On one hand, [109, 28, 30, 49, 61, 14, 58] considered the task offloading problems for a

single mobile user. [109] investigated whether computation task should be processed locally

or at a remote cloud by considering two constrained optimization problems in terms of

optimizing energy consumption of a mobile user. Closed-form solutions are derived to give

the optimal condition for both cases. [30] designed a system called MANI to efficiently

partition tasks to optimize energy savings by taking advantage of cloud offloading. [58]

proposed Hermes to efficiently solve a NP-hard formulated problem where application with

dependent tasks needs to minimize its latency while satisfying given resource utilization

requirements. Therefore, these papers do not take into account the case where multiple

mobile users can compete for limited communication and computation resources when offload

their computation-intensive tasks to the core cloud via base stations or access points.

15

On the other hand, [82, 13, 56, 98, 42] considered the task offloading problems for multiple

mobile users. In this case, we need to decide how to optimally allocate communication (e.g.,

uplink and downlink bandwidth) and computation (e.g., the clock frequency of the CPU

chip) resources to each offloaded task while jointly improving the user-perceived delay and

energy consumption for mobile users. [82] proposed MAPCloud, a two-tier cloud structure

with local computing aiming to improve both the performance and scalability of mobile

applications by considering multiple QoS factors such as energy consumption, delay and

cost. [98] designed an online task scheduling algorithms based on a pricing mechanism and

Lyaponov optimization to address the energy consumption and computation delay trade-off

when mobile users offload in the mobile cloud computing system. [42] addressed the task

offloading problem to minimize both energy consumption and application completing time

under the scenario of multiple mobile users while taking into account the dependency among

computational tasks.

2.2.2 Mobile Edge Computing Systems

Recently, mobile edge computing as a promising computing paradigm, which is a three-

tier structure including an additional edge layer with low-resourceful servers deployed in the

proximity of mobile users in the traditional mobile cloud computing system, has gained more

and more interests from researchers. A few research works concerning task offloading has

been investigated in the mobile edge computing. [114] devised a online algorithm to address

the task offloading problem under the proposed a two-tiered cloud structure including local

cloudlet and remote cloud aiming to reduce the energy consumption for mobile devices while

satisfying the user SLA requirements. [24] proposed a SDR-AO-ST algorithm to jointly

optimize the offloading decisions of all mobile users and the allocation of communication

and computation resources aming to minimize the overall cost of all mobile users under a

mobile edge computing system with multiple users, one computing AP and one remote cloud.

[115] studied how fog nodes can collaborate with each other to help offload tasks from cloud

16

datacenters to achieve a better quality-of-experience (QoE) of mobile users in a three-layer

fog computing architecture.

A few recent papers adopted a game-theoretic approach to analyze the task offloading

problems. [26] formulated a decentralized task offloading game under the mobile cloud com-

puting system with one shared AP, and designed an efficient decentralized algorithm to locate

Nash equilibrium. [55] formulated a multi access point task offloading game under the mo-

bile cloud computing system with multiple APs and a non-elastic cloud, and designed JPBR

algorithm to find Nash equilibrium in this player-specific congestion game. [19] formulated

a generalized Nash equilibrium problem under the mobile edge computing system with one

shared AP. It utilized queue theory to model the task arrivals and queue response time and

considered partial offloading in all three layers including local layer, edge layer and cloud

layer.

Resource Management in MEC

Besides, There is a rich literature on resource management in MEC that aims at optimizing

system latency [115, 118, 25, 87], energy consumption [90, 136, 124] and overall cost of sys-

tem latency and/or energy consumption [27, 24, 23, 134]. The trade-off problem is studied in

[115] for computing networks with fog node cooperation aiming at minimizing the response

time of fog nodes under a given power efficiency constraint. [118] studied the joint service

caching and task offloading problem in dense network aiming at minimizing computation

latency while keeping the total computation energy consumption low. [25] investigated the

MEC task offloading problem in software defined ultra-dense network aiming at minimizing

the total task duration under energy budget constraints. [87] investigated a joint com-

munication and computation resource allocation problem under the collaboration of cloud

and edge computing for minimizing the system delay of all mobile devices. [90] formulated

multi-cell MEC task offloading problem as a joint optimization of radio and computation

resources aiming at minimizing the overall users’ energy consumption, while meeting latency

17

constraints. [136] proposed an energy-efficient offloading scheme for MEC in 5G heteroge-

neous networks by formulating the optimization problem with the objective of minimizing

the total system energy consumption. [124] studied the resource allocation problem for a

multi-user mobile-edge computing offloading system based on TDMA and OFDMA with the

objective to minimize the weighted sum of mobile energy consumption. [27] formulated a

multi-user computation offloading game to study the energy-delay trade-off problem in a

mobile-edge cloud computing architecture. [24, 23] jointly optimized the offloading decisions

of all users and computing access point and resource allocation aiming at minimizing the

overall energy cost and the maximum delay among all users. [134] proposed a distributed

joint computation offloading and resource allocation optimization scheme in heterogeneous

networks with MEC to minimize the overhead of local energy consumption and execution

time cost.

UAV-Enabled MEC Networks

Extensive research efforts have been made from the academia to employ UAVs as different

kinds of wireless communication platforms [112]. For instance, UAVs equipped with base

stations can be flexibly deployed at specific areas to provide reliable uplink and downlink

communication for ground users. They can also serve as the mobile relaying nodes to connect

two or more distant users [131, 113]. Moreover, UAVs can assist with information dissemi-

nation or data collection by flying over the specific areas [74, 133]. However, prior works in

the area of the UAV-enabled wireless networks ignore the computing capability provided by

UAVs and mainly focus on their communication aspect, and only a very few recent studies

[47, 54, 141, 10, 48] start to consider computing with UAVs’ on-board resources. [47] in-

vestigated joint offloading and trajectory design for a MEC system where a UAV endowed

with computing capability is deployed to serve the task offloading of mobile users, aiming

at minimizing the sum of the maximum delay among all the users in each time slot. [54]

studied the joint optimization of path planning and bit allocation for a MEC system where

18

a UAV-mounted cloudlet is deployed to provide offloading opportunities to mobile users,

aiming at minimizing the mobile energy consumption while satisfying the quality-of-service

requirements of offloaded applications. [141] formulated the computation rate maximiza-

tion problem under both partial and binary task offloading schemes in a UAV-enabled MEC

wireless-powered system where the UAV can simultaneously transmit energy and perform

computation. However, these works only consider communication and computation interac-

tions between two types of entities where ground mobile users offload the tasks to UAV for

computation. Besides, [10] presented a game-theoretic and reinforcement learning framework

to study the computation offloading problem in UAV-enabled MEC networks with multiple

service providers where UAV-based privately-owned base stations are interacting with ter-

restrial privately-owned and operator-controlled base stations. [48] considered a UAV-aided

MEC system where the cellular-connected UAV is served as a mobile computing server as

well as a relay to help the user equipments complete their computing tasks or further offload

their tasks to the AP for computing.

2.2.3 DE methods in UAV-Enabled MEC

Benefiting from its ability to search large space of candidate solutions imposed on the original

problems, the DE methods have been utilized to explore the best solutions of the optimization

problems formulated in UAV-enabled MEC systems.

On one hand, DE method can be used to generate intermediate results in joint algorithms

in [73, 11, 34, 50]. In [73], a discrete differential evolution (DDE) algorithm along with ant

colony optimization (ACO) algorithm are put forward to jointly optimize the clustering of

IoT devices and UAV trajectory in a UAV-enabled MEC system. In [11], an evolutionary

trajectory planning algorithm (ETPA) which adopts a DE clustering method is proposed to

jointly optimize the overall system energy consumption as well as the path planning of UAVs

in a multi-UAV-assisted MEC system. In [34], a multi-objective evolutionary algorithm

which adopts DE to update solutions along with the deep deterministic gradient algorithm

19

is designed to maximize the sum computation rate at all IoT devices while satisfying the

energy harvesting constraints and coverage in UAV-aided wireless powered MEC networks.

In [50], a trajectory planning algorithm (TPA) that adopts a DE algorithm with variable

population sizes is put forward to optimize the system energy consumption via planning the

UAV trajectories in a multi-UAV-associated MEC system.

On the other hand, DE method can be directly applied to generate the best solutions

in [117, 121, 51, 107]. In [117], a novel DE algorithm with variable population size based

on a mutation strategy pool initialized by K-Means is developed to minimize the energy

consumption in a UAV-assisted edge data collection system. In [121], a DE-based mechanism

is designed to jointly optimize the load-balancing and latency-aware task scheduling incurred

in a multi-UAV-enabled MEC system. [51], a differential evolution algorithm with a variable

population size (DEVIPS) is developed to minimize the system energy consumption by

optimizing the UAV deployment in a UAV-assisted IoT data collection system. In [107], a

DE algorithm with an elimination operator is proposed to jointly optimize the deployment

of UAVs and task scheduling for all mobile users in a multi-UAV-enabled MEC system.

2.2.4 SCA-based methods in UAV-Enabled MEC

Due to the ability to approximately transform the nonconvex optimization problem formu-

lated in UAV-enabled MEC systems into a solvable convex form, the SCA-based methods

have been widely exploited in the literature.

On one hand, SCA technique can be combined with other algorithms to find solutions

in [81, 119, 71, 97, 138]. In [81], the Branch and Bound (BnB) method and SCA technique

are exploited to jointly optimize the service placement, task scheduling and UAV trajectory

subproblems in a UAV-enabled MEC system. In [119], the Dinkelbach’s method, Lagrange

duality and SCA technique are combined to jointly maximize the weighted computation

efficiency subject to the constraints on resource allocation, minimum computation and UAV’s

mobility in the UAV-assisted MEC networks. In [71], the SCA and block coordinate descent

20

(BCD) algorithms are utilized to maximize the minimum secure calculation capacity in order

to improve the security of communications in dual UAV MEC systems. In [97], a Dinkelbach

method adopting simulated annealing and SCA is proposed to jointly optimize the gateway

selection and resource allocation involved with space-air-ground IoT networks. In [138], SCA

technique and Lagrangian duality method are jointly applied to minimize the total energy

consumption by optimizing the computation bits allocation, time slot scheduling, transmit

power allocation, and UAV trajectory in a UAV-assisted MEC system.

On the other hand, SCA technique can be directly used to develop SCA-based algorithms

in [132, 108, 54]. In [132], SCA-based algorithms are designed to jointly optimize the comple-

tion time and energy consumption of UAV as well as its trajectory in the UAV-enabled MEC

system. In [108], a SCA-based algorithm is developed to jointly optimize the UAV trajectory

subject to the energy harvesting causality and user scheduling constraints in UAV-enabled

wireless powered communication networks. In [54], a SCA-based algorithm is presented to

jointly optimize the bit allocation for communication and computation as well as the UAV

trajectory in the MEC system via a UAV-mounted cloudlet.

2.2.5 Alternative methods in UAV-Enabled MEC

Apart from DE methods and SCA-based methods, there are ample studies using alternative

methods to solve related problems formulated in UAV-enabled MEC.

Optimization Methods

Main problems that are studied in UAV-enabled MEC include task scheduling, computation

offloading, user association, resource allocation and trajectory planning. There are many

optimization methods to tackle these problems. To name a few, in [80], the UMEC method

combing the proposed RTSA and submodularity is designed to effectively solve a mixed-

integer nonlinear programming problem that is formulated to model the task selection and

scheduling for reconnaissance with time-varying priorities conditions in UAV-enabled MEC.

21

In [116], an algorithm combining the alternative optimization and successive convex pro-

gramming is developed to solve a nonconvex problem aiming to maximize the uplink com-

mon throughput among all ground users over a finite UAV’s flight period in UAV-enabled

wireless powered communication network. In [100], a learning-based cooperative particle

swarm optimization algorithm with a Markov random field-based decomposition strategy is

put forward to search for the optimal UAV resource allocation strategy for industrial IoT in

UAV-enabled MEC.

Game-theoretic Methods

There are many papers aiming to investigate games that are formulated in UAV-enabled

MEC by viewing the mobile users, base stations and edge/cloud infrastructures as au-

tonomous agents that each can have their own utility functions. To name a few, in [135],

a selfish game is formulated to model the task offloading and resource competition problem

in UAV-assisted multiaccess edge computing system. The Nash equilibrium is proved to

be existent and a game-theoretic scheme is proposed to find the optimal solution. In [10],

a two-level game model including cooperative game in the upper level and noncooperative

subgames in the lower level is formulated to model the payoff maximization problem raised

in UAV-enabled MEC with multiple service providers. The mixed-strategy Nash equilibrium

is found by combining coalition formation with reinforcement learning. In [120], a dynamic

evolutionary game is formulated to study the access competition among groups of UAVs

and it is solved by an evolutionary equilibrium. Also, a noncooperative game is formulated

to study the bandwidth that is allocated by base stations to the UAVs and it is solved by

finding the uniqueness of Nash equilibrium.

2.3 A Brief Review on Cooperative Game Theory

Cooperative game theory [76, 88, 79, 33] is widely applied in many communication and

computation optimization problems to analyze the joint actions of multi-agent systems (i.e.,

22

network nodes) in terms of obtaining collective payoffs by predicting which coalitions will

formulate. In this section, we will briefly introduce the fundamental concepts of cooperative

game theory including the definition for a cooperative game with transferable utility, the

solution concept (i.e., the core) of a cooperative game, two types of cooperative games with

nonempty core (i.e., the convex games and balanced games), and widely-used cost allocation

methods (i.e., the Shapley value and nucleolus), as they will be utilized in Chapter IV.

2.3.1 Cooperative Game with Transferable Utility

In general, a cooperative game is defined by a pair (N , c). The first element is the set of

players N := {1, 2, . . . , N}, indexed by i ∈ N . Players may form different coalitions S ⊆ N

to obtain a collective utility. The grand coalition N is the set of all players. Secondly,

c : 2N → R is the cost function that assigns a real cost (i.e., the negative of the utility) to

each coalition S ⊆ N . Transferable cost implies that the total cost represented by a real

number can be divided in any manner among the coalitional members [88].

2.3.2 Imputations and the Core

The cost function of a cooperative game is said to be subadditive if it satisfies the following

condition:

c(S) + c(T) ≥ c(S ∪ T), ∀S, T ⊆ N , S ∩ T = ∅. (2.3.1)

For such cooperative game, it is to the mutual benefit of the players to form the grand

coalition N , since by subadditivity the amount received, c(N), is at least as small as the

total amount received by any disjoint set of coalitions they could form. Next, we focus on

how to fairly split this amount among participating players.

A cost allocation for the coalition S ⊆ N is a vector π ∈ RN whose entry πi is the cost

dispatched to each player i in the coalition S (πi = 0, i /∈ S). Further, a cost allocation π is

said to be efficient if
∑

i∈N πi = c(N), i.e., the total amount received by the players should

be equal to c(N). A cost allocation π is said to be individually rational if πi ≤ c({i}), i.e.,

23

no player will be expected to receive more cost than acting individually. A cost allocation

π for the grand coalition is said to be an imputation if it is both efficient and individually

rational. In cooperative game theory [125, 102], the set of imputations for the game (N , c)

is defined as

I =

{
π ∈ RN :

∑
i∈N

πi = c(N), πi ≤ c({i}), ∀i ∈ N

}
. (2.3.2)

Next, we introduce the solution concept of a cooperative game. The core for the game (N , c)

is defined as

C =

{
π ∈ RN :

∑
i∈N

πi = c(N),
∑
i∈S

πi ≤ c(S), ∀S ⊆ N

}
. (2.3.3)

The core is a set of imputations such that no coalitions can obtain a cost which is less than

the sum of cost assigned by forming the grand coalition. Obviously, if one can locate a cost

allocation vector that lies in the core, then the grand coalition is optimal for the cooperative

game.

2.3.3 Convex and Balanced Games

The core is always well-defined, but can be empty. However, the convex games and balanced

games are two types of cooperative games which guarantee the existence of nonempty core

[94, 93]. A cooperative game is said to be convex if the cost function satisfies the following

condition:

c(S) + c(T) ≥ c(S ∪ T) + c(S ∩ T), ∀S, T ⊆ N . (2.3.4)

This implies the cooperative game has a submodular cost function.

A map ρ : 2N → [0, 1] is said to be balanced if for all i ∈ N ,

∑
S∈2N

ρ(S)1{i ∈ S} = 1, (2.3.5)

where 1{·} denotes the indicator function. Thus, the balanced map indicates that the sum

of weights ρ(S) assigned for each coalition including player i will be equal to 1. Then a

24

cooperative game is said to be balanced if and only if for any balanced map ρ,

∑
S∈2N

ρ(S)c(S) ≥ c(N). (2.3.6)

2.3.4 Shapley Value

The Shapley value [76] as the cost allocation method is a unique mapping ψ that satisfies

a series of characteristic axioms such as efficiency, symmetry, dummy and additivity. For a

cooperative game (N , c) with transferable cost, the Shapley value ψi(c) that distributes the

cost for each player i ∈ N is defined as

ψi(c) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[c(S ∪ {i})− c(S)] . (2.3.7)

We observe that in (2.3.7), the marginal contribution of each player is represented as c(S ∪

{i}) − c(S) and the coefficient ahead of the marginal distribution is the probability that

the player i randomly joins the coalition S. Thus, the Shapley value can be interpreted as

the expected marginal contribution of player i in the grand coalition N when it joins the

coalition S in a random order. It is guaranteed that the Shapley value lies in the core if the

game is convex [94].

2.3.5 Nucleolus

The nucleolus [79] is another common cost allocation method. It uniquely exists in a coopera-

tive game and satisfies the efficiency, individually rational, symmetry and dummy properties

[88]. Different from axiomatically designing the cost allocation scheme to ensure fairness

as in the Shapley value, the nucleolus aims at minimizing the dissatisfaction of the players.

The dissatisfaction of a coalition S given an imputation π is measured by the excess. The

25

definition of excess is given by

e(π, S) =
∑
i∈S

πi − c(S). (2.3.8)

Since the core is defined as the set of imputations such that
∑

i∈S πi ≤ c(S) for all coalitions

S ⊆ N , it follows that an imputation π is in the core if and only if all its excesses are

negative or zero [33]. In order to find the nucleolus, we first need to locate an imputation

that minimizes the maximum of the excesses e(π, S) over all coalitions S by solving a linear

program. After this is done, one may have to solve a second linear programming problem

to minimize the next largest excess, and so on. Therefore, in the worst-case, O(2N) linear

programs need to be solved, which is computationally expensive [89].

26

CHAPTER III

ENERGY MANAGEMENT IN COLOCATION DATACENTERS

In this chapter, we study how colocation datacenter can effectively reduce its energy cost

when participating in the wholesale electricity market via cooperative power procurement.

Intuitively, by aggregating workloads across a group of tenants, the overall power demand

uncertainty of tenants can be reduced, resulting in less chance of being penalized when

participating in the wholesale electricity market. We use cooperative game theory to model

the cooperative electricity procurement process of tenants as a cooperative game, and show

the cost saving benefits of aggregation. Then, a cost allocation scheme based on the marginal

contribution of each tenant to the total expected cost is proposed to fairly distribute the

aggregation benefits among the participating tenants. Finally, numerical experiments based

on real-world traces are conducted to illustrate the benefits of aggregation compared to

noncooperative power procurement.

The rest of this chapter is organized as follows. In Section 3.1, we describe the models

for datacenter power consumption and two-settlement electricity market. In Section 3.2,

we model the tenant aggregation process as a cooperative game and quantify the benefits of

aggregation. Then, the core of the formulated game is shown to be nonempty, and an efficient

scheme is proposed to find a cost allocation belonging to the core in Section 3.3. Simulation

results based on real-world traces are presented in Section 3.4. Finally, the summary is given

in Section 3.5.

27

3.1 System Model

In this section, we start by introducing the datacenter power consumption model and char-

acterize the uncertainty of power demand for each datacenter. Then, the two-settlement

electricity market is described and the expected electricity cost for each tenant when partic-

ipating in the market individually is derived.

Consider a set N := {1, 2, . . . , N} of independent tenants in a wholesale colocation data-

center where each tenant pays for their own energy consumption. As shown in Fig. III.4(a),

each tenant can bid its power demand in the wholesale electricity market, and then pay

its electricity bill individually. As shown in Fig. III.4(b), we explore the scenario in which

tenants form a coalition under the colocation datacenter operator to collectively bid their

aggregated power demand in the wholesale electricity market as a single entity for cost sav-

ing. Without loss of generality, in the following of the chapter we restrict our analysis to a

specific operating hour.

3.1.1 Datacenter Power Consumption Model

Assume each tenant in the colocation datacenter i ∈ N has Mi homogeneous servers whose

idle and peak power consumption are P idle
i and P peak

i , respectively. Note that a tenant

with heterogeneous servers can be also viewed as several tenants, each having homoge-

neous servers. Therefore, we focus on the homogeneous case in this work. Users submit

their requests (e.g., search queries) to tenants, and tenants process these requests to satisfy

the quality-of-service (QoS) requirement as indicated by the service-level agreement (SLA).

When tenant i keeps mi active servers to process the arriving user requests, its IT power

consumption can be estimated as [67]

Pi = mi

[
P idle
i + ui(P

peak
i − P idle

i)
]
, (3.1.1)

where ui is the average CPU utilization level across all servers at tenant i.

28

(a) Individual Bidding

(b) Cooperative Bidding

Figure 4: Individual bidding and cooperative bidding in the wholesale electricity market.

We adopt a M/GI/1 Processor Sharing (PS) queue to model the service process at each

server [69]. The workload arrival rate at each tenant i, measured in terms of the average

29

number of arriving user requests per unit time, is assumed to be λi. Let µi denote the

service rate at which user requests are processed by a server at tenant i. Then the average

CPU utilization level in tenant i is calculated as ui = λi/(miµi). Therefore, the power

consumption model (3.1.1) can be rewritten as

Pi = miP
idle
i +

λi
µi

(
P peak
i − P idle

i

)
. (3.1.2)

Since each user request has a QoS requirement, tenants need to turn on enough servers to

meet that requirement. Here we use the average response time as the QoS metric. Based on

the M/GI/1/PS queuing model, the average response time of user requests given mi active

servers in tenant i is represented as

Ti =
1

µi − λi/mi

. (3.1.3)

Let Tmax
i denote the maximum average response time of user requests that can be tolerated

at tenant i. Then to ensure that Ti ≤ Tmax
i , we obtain the following feasible range for the

number of active servers at tenant i:

λi
µi − 1/Tmax

i

≤ mi ≤Mi. (3.1.4)

Here, we relax the constraint that requires mi to be integer given the fact that tenants

usually contain thousands of servers. It is assumed that each tenants turn on the minimal

number of active servers without violating their QoS requirement using the dynamic capacity

provisioning technique [66, 111]. Therefore the IT power consumption of each tenant i is

Pi =
λi

µi − 1/Tmax
i

P idle
i +

λi
µi

(
P peak
i − P idle

i

)
. (3.1.5)

In order to incorporate the non-IT (e.g. cooling, lighting) power consumption of tenants,

we denote the average power usage effectiveness (PUE) as γi, which is defined as the ratio

30

of the total power consumption to the IT power consumption at tenant i. It follows that the

total power demand Ei of tenant i is given by

Ei = θiλi, (3.1.6)

where θi is a constant defined as

θi := γi

(
P idle
i

µi − 1/Tmax
i

+
P peak
i − P idle

i

µi

)
. (3.1.7)

When tenant i bids in the day-ahead market one day ahead, the user request arrivals for

the next day are uncertain, and thus the average workload arrival rate λi can be modeled as a

random variable whose probability distribution can be empirically estimated from historical

data. It follows that the actual tenant power demand Ei(λi) as a linear function of the

average workload arrival rate λi is also a random variable

3.1.2 Two-Settlement Electricity Market

Consider a wholesale electricity market managed by an ISO with a two-settlement structure

in the region through which the tenants procure power. It consists of a day-ahead forward

market and a real-time balancing market. In the day-ahead forward market, participants bid

and schedule power transactions for each hour of the following day before the gate closure.

After that, the ISO clears the market and calculates the day-ahead market clearing price

for each hour as the intersection between the aggregate supply and demand curves. For

instance, for California ISO, the day-ahead forward market closes for bids and schedules by

10 AM and clears by 1 PM on the day prior to the operating day. The schedules cleared in the

day-ahead market are financially binding. Any deviations between the day-ahead committed

schedule and actual power consumption/generation will be settled in the real-time balancing

market during the operating day. If the actual consumption is more than or production is

less than the committed schedule, the energy shortfall will be purchased in the balancing

31

market at the negative imbalance price, which is usually higher than the day-ahead price. If

the actual consumption is less than or production is more than the committed schedule, the

energy surplus will be sold at the positive imbalance price, which is usually lower than the

day-ahead price. Therefore, power deviations from day-ahead commitments normally result

in penalties for participants.

Specifically, for the considered wholesale market, let pd ∈ R+ be the market clearing

price in the day-ahead forward market, p− ∈ R+ be the negative imbalance price for energy

shortfall, and p+ ∈ R+ be the positive imbalance price for energy surplus. The tenants

are assumed to be price-taking because their energy consumption are often too small to

influence the market. The market prices (pd, p−, p+) are not known to the tenants at the

time of bidding in the day-ahead market and therefore modeled as random variables with

known expected values denoted by µd
p, µ

−
p , and µ+

p , respectively, which can be estimated

empirically from historical market data. As explained before, without loss of generality,

we assume µ+
p ≤ µd

p ≤ µ−
p . Moreover, the market prices (pd, p−, p+) are assumed to be

statistically independent of the workload arrival rates (λi,∀i).

Suppose that each tenant i ∈ N bids a power procurement amount Qi in the day-ahead

market. With the above models and assumptions, it follows that the expected cost of tenant

i from participating in the market individually can be calculated as

Φi = µd
pQi + µ−

p E[(Ei −Qi)
+]− µ+

p E[(Qi − Ei)
+], (3.1.8)

where (x)+ := max(x, 0), µd
pQi denotes the day-ahead trading cost, µ−

p E[(Ei−Qi)
+] denotes

the shortfall penalty, and µ+
p E[(Qi − Ei)

+] denotes the surplus profit.

3.2 Coalitional Tenant Bidding

In this section, we start by introducing the tenant aggregation model where multiple tenants

can form a coalition to bid in the day-ahead market collectively. Then, it can be verified that

32

by bidding power demand aggregately in the day-ahead market, the total electricity bill can

be effectively reduced based on the fact that tenant aggregation can reduce the uncertainty

of the total workload arrivals.

3.2.1 Tenant Aggregation as a Cooperative Game

Tenants can form a coalition and bid collectively in the day-ahead market. Any coalition

S ⊆ N represents an agreement among the tenants in S to act as a single entity in the

market. The aggregated tenant power demand of a coalition S ⊆ N is specified by

ES =
∑
i∈S

Ei. (3.2.1)

Further, we denote the cumulative distribution function (CDF) of ES as

FS(e) = Pr(ES ≤ e). (3.2.2)

The corresponding quantile function is given by

F−1
S (ε) = inf {e ∈ [Emin

S , Emax
S] : ε ≤ FS(e)}, (3.2.3)

where Emin
S and Emax

S are the lower and upper bounds of the aggregated power demand,

which depends on the minimum and maximum workload arrival rates.

Next, we use cooperative game theory [78] to model this cooperation process as a co-

operative game (N , c) with transferable cost since it is under a multi-agent scenario where

each tenant tends to minimize its own net cost. In our model, the set of tenants N is the set

of players in the cooperative game. Moreover, we assume each tenant always seeks to mini-

mize its own electricity cost, and then the cost function c(S) associated with every coalition

33

S ⊆ N is represented as its minimum expected energy cost calculated as

ΦS = µd
pQS + µ−

p E[(ES −QS)
+]− µ+

p E[(QS − ES)
+], (3.2.4)

c(S) = min
QS≥0

ΦS, (3.2.5)

where QS is the bid amount of any coalition S in the day-ahead market, and it is a continuous

variable. We assume the market prices for the coalitional bid is the same as that of individual

bids. This assumption is acceptable since the tenants are assumed to be relatively small

[59] compared to all other consumers participating in the electricity market so that their

operations have little impact on the cleared prices of the day-head market or real-time

market. Solving (3.2.5) as a news-vendor problem [16, 12], the optimal day-ahead bid and

expected cost are given in the following theorem:

Theorem 3.2.1 The optimal day-ahead bid of any coalition S is given by

Q∗
S = F−1

S (ε∗), where ε∗ =
µ−
p − µd

p

µ−
p − µ+

p

. (3.2.6)

The optimal expected cost is given by

c(S) = µ+
p

∫ ε∗

0

F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ. (3.2.7)

Proof. The proof is referred to Appendix.

3.2.2 The Benefits of Aggregation

Intuitively, no group of tenants can do worse by joining a coalition than by acting nonco-

operatively since aggregation can reduce uncertainty. We will prove this by the following

theorem:

Theorem 3.2.2 Given an arbitrary coalition S ⊆ N , let {Q1, Q2, . . . , Q|S|} be a set of |S|

34

individual day-ahead bids. For QS =
∑

i∈S Qi we have:

ΦS(QS) ≤
∑
i∈S

Φi(Qi). (3.2.8)

Proof. The proof is referred to Appendix.

It is straightforward to see that the expected cost by participating in the market collectively

is less than the sum of that by participating in the market individually. That is, the tenants

save the expected cost of
∑

i∈S Φi(Qi) − ΦS(QS) collectively via aggregation. Further, we

establish some properties of the cost function associated with every coalition.

Lemma 3.2.1 The optimal expected cost c(S) of any coalition S has following properties:

1. Positive homogeneity: For any scalar β ≥ 0, c(βS) = βc(S).

2. Subadditivity: For any two disjoint coalitions S1 and S2, if coalition S1 ∪ S2 forms,

then c(S1 ∪ S2) ≤ c(S1) + c(S2).

Proof. The proof is referred to Appendix.

From positive homogeneity, we observe that when the aggregated power demand is scaled,

the corresponding value of the optimal expected cost will also be scaled in the same propor-

tion. From subadditivity, we observe that for rational tenants who always try to minimize

their cost, they will form a large-size coalition to benefit more from the aggregation. It is

straightforward to see in our game that all the tenants will form the grand coalition N in

order to minimize their total expected cost.

3.3 Cost Allocation Mechanism

In the section, we focus on how to find a cost allocation vector π as defined in Section 2.3.2

to split the total expected cost to each tenant in the grand coalition. First, we show that

the core of our cooperative game exists and is nonempty by proving it is a balanced game.

35

Next, we verify that our game is nonconvex, and hence the Shapley value is not applicable

to locate the core of our game. Last, we propose a cost allocation scheme based on the

marginal contribution of each tenant to the total cost in the grand coalition.

3.3.1 Existence of the Nonempty Core

As shown in Section 2.3, both the convexity and balancedness can guarantee the core of a

cooperative game to be nonempty. Since the convexity of a cooperative game is a stronger

condition compared to the balancedness, we prove the existence of the core in terms of

balancedness by the following theorem:

Theorem 3.3.1 The cooperative game (N , c) for tenant aggregation is balanced and has a

nonempty core.

Proof. Given an arbitrary balanced map ρ : 2N → [0, 1], by following the concept of the

balanced game, we have

∑
S∈2N

ρ(S)c(S) =
∑
S∈2N

c(ρ(S)S) (3.3.1)

≥ c

(∑
S∈2N

ρ(S)S

)
(3.3.2)

= c

(∑
S∈2N

ρ(S)

(⋃
i∈N

1{i ∈ S}i

))

= c

(⋃
i∈N

(∑
S∈2N

ρ(S)1{i ∈ S}

)
i

)
(3.3.3)

= c

(⋃
i∈N

i

)
= c(N),

where (3.3.1) is because of the positive homogeneity of c(S), (3.3.2) is because of the sub-

additivity of c(S), and (3.3.3) is derived by the definition of balanced map ρ. Therefore, the

cooperative game (N , c) is balanced and has a nonempty core.

36

3.3.2 Marginal Cost Allocation

Two prominent cost allocation schemes are described in Section 2.3. However, both of them

are not applicable to solve our cooperative game. The Shapley value can be guaranteed to lie

in the core if the cooperative game is convex. However, as shown through a counterexample

in Appendix, our game is not convex. Therefore, the Shapley value does not necessarily

belong to the core and hence is not applicable to allocate cost in our game. The nucleolus

uniquely exists and can be used as a cost allocation scheme in our game. However, as

mentioned before, in the worst-case scenario, O(2N) linear programs need to be solved in

order to get the cost allocation vector, which is computationally expensive.

Here, we propose a cost allocation scheme based on the marginal contribution of each

tenant to the total expected cost when participating in the grand coalition and prove the

resulting cost allocation vector is in the core. We define an aggregation level vector α =

[α1, . . . , αN]
T , where each element 0 ≤ αi ≤ 1 represents the fraction of tenant power

demand Ei that participates in the aggregative power procurement. Thus, the weighted

power demand of the aggregation with the aggregation level vector α is denoted as

Eα,N =
N∑
i=1

αiEi, (3.3.4)

whose quantile function is represented by F−1
α,N (ε) and defined similar to (3.2.3). Then by

applying Theorem 3.2.1, we can obtain the optimal expected cost of the weighted power

demand as

cα(N) = µ+
p

∫ ε∗

0

F−1
α,N (θ) dθ + µ−

p

∫ 1

ε∗
F−1
α,N (θ) dθ. (3.3.5)

The positive homogeneity and subadditivity proved in Lemma 3.2.1 can be easily extended

to the case where we consider the weighted optimal expected cost cα(N). Further, we show

another property as follows:

Lemma 3.3.1 The weighted optimal expected cost cα(N) of any coalition S is nonincreasing

37

over α, i.e., for any two aggregation level vectors, if α ⪰ α′1, then cα(N) ≤ cα′(N).

Proof. Given two aggregation level vectors α and α′ where α ⪰ α′, then for any element in

the vector α − α′, we have 0 ≤ αi − α′
i ≤ 1,∀i ∈ N . Using the subadditivity property, we

have

cα(N) ≤ cα′(N) + cα−α′(N), (3.3.6)

which indicates the nonincreasing property.

According to Lemma 3.3.1, the optimal expected cost will be achieved when α = 1, where

1 ∈ RN×1 is an all-one vector. Then it follows that cα(N)|α=1 = c(N).

To distribute the total expected cost c(N) among the tenants in the grand coalition, we

compute the expected cost for each tenant i as

πi =
∂cα(N)

∂αi

∣∣∣
α=1

, ∀i ∈ N . (3.3.7)

Indeed, πi can be decomposed as the multiplication of two terms:

πi =
∂cα(N)

∂Eα,N

∣∣∣
α=1
× ∂Eα,N

∂αi

∣∣∣
α=1

, ∀i ∈ N , (3.3.8)

where the second term is exactly the power demand Ei of each tenant. On the other hand, the

first term is the partial derivative of the weighted optimal expected cost with respect to the

weighted power demand and then evaluating at the full aggregation level, i.e., α = 1, which

can be considered as the marginal cost assigned to each tenant. Therefore, the multiplication

of the marginal cost and power demand gives the distributed cost to each tenant. Further,

we prove that the cost allocation vector π = [π1, . . . , πN]
T given in (3.3.7) lies in the core as

shown in following theorem:

Theorem 3.3.2 The resulting cost allocation vector of the proposed cost allocation scheme

is fair and lies in the core of our cooperative game.

1The operator ⪰ represents component-wise vector comparison.

38

Proof. The proof is referred to Appendix.

The most significant advantage of exploiting this method is its low computational complexity.

Compared to using the nucleolus, we only need to calculate O(N) equations.

3.4 Numerical Experiments

In this section, we first introduce our simulation setup and then conduct trace-driven sim-

ulations to show the benefits of tenant aggregation in purchasing power in the wholesale

electricity market and the effectiveness of our proposed cost allocation scheme.

3.4.1 Simulation Setup

A set of four independent tenants N = {1, 2, 3, 4} is considered in our simulations. The total

number of servers for each tenant is 10,000, 12,500, 15,000 and 17,500, respectively. Assume

the idle power and peak power of each server is 150 W and 250 W, respectively. Besides, the

average PUEs of all the tenants are set to 1.5. The average service rate of a server in each

tenant is set to be 200, 250, 300 and 350 requests per second, respectively. The maximum

average response time for each tenant is set to be 100, 80, 60 and 40 ms, respectively. The

above simulation parameters are summarized in Table 1.

Table 1: Simulation parameters

Mi µi (requests/s) Tmax
i (ms)

Tenant 1 10000 200 100
Tenant 2 12500 250 80
Tenant 3 15000 300 60
Tenant 4 17500 350 40

The real-world dataset we use to simulate the workloads is from the Google cluster trace

[86]. The selected dataset includes workload information over 29 days (i.e., 696 hours) during

May 2011 for a cluster of 12,500 severs. We repeat the original data and extend it to 1008-

hour workloads (i.e., 42 days). Then, we randomly choose 4 different 720-hour (i.e., 30 days)

portions from the extended dataset as our tenant workloads. Figure III.5(a) shows the CDFs

39

of the normalized tenant workload arrival rate for four tenants at hour 22. Then we can

estimate the power demand of each tenant according to (3.1.6). The CDFs of the power

demand for four tenants are depicted in Figure III.5(b).

In our simulations, tenants can purchase power either individually or cooperatively by

forming the grand coalition. Moreover, we assume tenants bid their power demand in the

day-ahead market for each hour in the following operating day. By default, the expected

day-ahead price µd
p is set to be 50 cents per kWh, the expected negative imbalance price µ−

p

is set to be 2 dollars per kWh, and the expected positive imbalance price µ+
p is set to be 20

cents per kWh in the simulations.

Last, all our simulations are conducted on a desktop computer with an Intel Core i7-4790

3.60GHz CPU and 8GB RAM using MATLAB R2016a.

3.4.2 Experimental Results

In this section, we simulate and analyze how tenants can benefit from forming the grand

coalition to save their electricity cost when purchasing power in the wholesale electricity

market. Here, we consider the case where each tenant bids its power demand individually

by minimizing its expected energy cost as the baseline scenario for comparison.

Benefits of Aggregation

We first observe the benefits of coalitional bidding in the wholesale market. Based on The-

orem 3.2.1, we can calculate the optimal day-ahead bid Q∗
S of any coalition S. Figure 6

shows the resulting optimal day-ahead bidding level of our proposed method and the sum of

optimal individual bidding level in the baseline over 24 hours. Figure 7 shows the energy cost

comparison of our proposed approach and the baseline. The result of the baseline scenario

is obtained by adding up the optimal expected electricity cost of each tenant when they bid

in the day-ahead market individually, while the result of the proposed method is obtained

by letting tenants form the grand coalition to bid in the day-ahead market cooperatively.

40

0 0.2 0.4 0.6 0.8 1

Nomalized Workload Arrival Rates

0

0.2

0.4

0.6

0.8

1

Tenant 1

Tenant 2

Tenant 3

Tenant 4

(a)

0 2 4 6 8 10 12 14 16 18

Power Demand (MW)

0

0.2

0.4

0.6

0.8

1

Tenant 1

Tenant 2

Tenant 3

Tenant 4

(b)

Figure 5: CDFs of the normalized tenant workload arrival rates and power demand at hour
22.

It is shown in Figure 7 that the total electricity cost is effectively reduced by cooperative

day-ahead bidding, which validates the subadditivity property of our cooperative game given

in Lemma 3.2.1. The average hourly cost saving is around 11.03% under the current setting.

41

0 5 10 15 20 25

Hour

20

21

22

23

24

25

26

27

28

B
id

d
in

g
 L

e
v
e
l
(M

W
)

Baseline

Proposed Method

Figure 6: Day-ahead bidding level comparison over 24 hours.

0 5 10 15 20 25

Hour

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

E
x
p
e
c
te

d
 C

o
s
t
($

)

×10
4

Baseline

Proposed Method

Figure 7: Total expected cost comparison over 24 hours.

Cost Allocation

Next we focus on how to fairly distribute the total energy cost after coalitional bidding

among each participating tenant using our proposed cost allocation method. We split the

total expected cost based on the marginal contribution of each tenant in the grand coalition

by applying the proposed cost allocation scheme in Section 3.3.2. Figure 8 presents the

cost allocation to each tenant at hour 22. The height of each bar (yellow bar plus blue

42

bar) denotes the expected cost of each tenant when it bids individually in the day-ahead

market at hour 22. The height of yellow bar shows the reduced cost of each tenant after

coalitional day-ahead bidding. The cost saving percentage of each tenant over 24 hours in a

day is given in Figure 9. It can be observed that our proposed allocation method can always

ensure positive cost reductions for each tenant and the cost saving amount of each tenant is

different, depending on its contribution to the aggregation benefits.

1 2 3 4

Tenant

0

1000

2000

3000

4000

5000

6000

E
x
p
e
c
te

d
 C

o
s
t
($

)

Proposed Method

Cost Reduction

Figure 8: Cost allocation of each tenant at hour 22 under the current setting.

Table 2 presents the noncooperative and coalitional electricity cost of each coalition at

hour 22. The last column gives the corresponding excesses e(π, S) defined in (2.3.8). From

row 1 to row 14, the calculated excesses are all negative which satisfies the condition of

subgroup rationality, i.e.,
∑

i∈S πi ≤ c(S). The last row indicates that our cost allocation is

efficient since
∑

i∈N πi = c(N). It verifies that our proposed cost allocation lies in the core of

the cooperative game since both subgroup rationality and efficiency conditions are satisfied.

Impact of Price Penalty Ratio

Now we present how market prices affect the cost saving and the day-ahead bid of each

tenant when they form the grand coalition. According to Theorem 3.2.1, the optimal day-

ahead bid depends on the quantile function where the percentile ε∗ is decided by expected

43

0 5 10 15 20 25

Hour

0

5

10

15

20

25

30

35

C
o
s
t
S

a
v
in

g
 P

e
rc

e
n
ta

g
e
 (

%
) Tenant 1

Tenant 2

Tenant 3

Tenant 4

Figure 9: Individual cost saving percentage of each tenant after coalitional day-ahead bidding
over 24 hours.

Table 2: Cost comparison for all coalitions of four tenants at hour 22

S c(S)
∑

i∈S πi
∑

i∈S πi − c(S)
1 {1} 5492.2 4937.7 −554.5
2 {2} 4075.6 3639.0 −436.6
3 {3} 3099.8 2720.8 −379.0
4 {4} 2187.8 1450.4 −737.4
5 {1, 2} 8809.2 8576.7 −232.5
6 {1, 3} 8132.5 7658.5 −474.0
7 {1, 4} 7018.5 6388.1 −630.4
8 {2, 3} 6748.7 6359.8 −388.9
9 {2, 4} 5941.8 5089.4 −852.4
10 {3, 4} 4966.8 4171.2 −795.6
11 {1, 2, 3} 11498.0 11297.5 −200.5
12 {1, 2, 4} 10300.0 10027.1 −272.9
13 {1, 3, 4} 9574.0 9108.9 −465.1
14 {2, 3, 4} 8454.0 7810.2 −643.8
15 {1, 2, 3, 4} 12747.9 12747.9 0

electricity prices µd
p, µ

−
p and µ+

p . For the simplicity of presentation, we set the expected

positive imbalance price µ+
p to be 0 but it does not affect our analytical analysis beforehand.

It follows that the percentile ε∗ will reduce to 1 − µd
p/µ

−
p . Under this simplification, we

introduce the price penalty ratio ω defined as µd
p/µ

−
p [16]. In order to obtain different price

penalty ratios, we fix the expected day-ahead price µd
p as a constant and adjust the expected

44

1 2 3 4

Tenant

0

5

10

15

20

25

30

35

40

C
o

s
t

S
a

v
in

g
 P

e
rc

e
n

ta
g

e
 (

%
)

(a) ω = 0.25

1 2 3 4

Tenant

0

5

10

15

20

25

30

35

40

C
o

s
t

S
a

v
in

g
 P

e
rc

e
n

ta
g

e
 (

%
)

(b) ω = 0.50

1 2 3 4

Tenant

0

5

10

15

20

25

30

35

40

C
o

s
t

S
a

v
in

g
 P

e
rc

e
n

ta
g

e
 (

%
)

(c) ω = 0.75

Figure 10: Cost saving percentage of each tenant at hour 22 when the price penalty ratio ω
is 0.25, 0.50 and 0.75, respectively.

45

negative imbalance price µ−
p to different values.

Figure 10 depicts the cost saving percentage of each tenant at hour 22 when the price

penalty ratio ω is 0.25, 0.50 and 0.75, respectively. Further, the percentage of the average

cost saving of each tenant over 24 hours is listed in Table 3. We can observe that the

percentage of the average cost saving decreases when the price penalty ratio ω increases.

This is intuitive since we have less chance to reduce cost through aggregation when the

penalty price is lower. Indeed, when the expected negative penalty price is the same as the

expected day-ahead electricity price, there is no need for aggregation since one could always

buy any shortfall from the real-time market without penalty.

Table 3: The percentage of the average cost saving of each tenant under different price
penalty ratios

ω = 0.25 ω = 0.50 ω = 0.75
Tenant 1 10.11% 6.23% 3.08%
Tenant 2 10.17% 7.05% 3.78%
Tenant 3 14.67% 8.15% 4.98%
Tenant 4 17.12% 8.23% 4.90%

0 0.2 0.4 0.6 0.8 1

Price Penalty Ratio

10

15

20

25

30

35

40

45

50

55

B
id

d
in

g
 L

e
v
e
l
(M

W
)

Baseline

Proposed method

Figure 11: Day-ahead bidding level comparison under price penalty ratios from 0 to 1.

Figure 11 shows the changes of day-ahead bidding level of the baseline and the proposed

method under different price penalty ratios. It can be observed that under both cases,

46

the day-ahead bidding level decreases as the price penalty ratio increases. The reason is

that when the price penalty ratio is near 0, tenants behave more conservatively since the

expected negative imbalance price is much higher than the expected day-ahead price. In

order to avoid high penalty for energy shortfall, they tend to bid more power amount to

lower the possible mismatch between committed power supply in the day-ahead market and

realized power demand in the real-time market. On the other hand, when the price penalty

ratio is approaching 1, tenants can buy any shortfall in the real-time market without penalty

and therefore tend to bid less. Moreover, the change rate of bidding level of our proposed

method with respect to the price penalty ratio is smaller than that of the baseline. This

is due to the fact that the proposed method has a smaller power demand uncertainty and

therefore is less sensitive to the price penalty ratio.

3.5 Summary

In this chapter, we have proposed a new approach to minimize the electricity cost for tenants

participating in the wholesale electricity market. The electricity cost can be effectively

reduced by bidding in the day-ahead market collectively since aggregation can reduce the

uncertainty of power demand. We model this aggregation process as a cooperative game and

present a cost allocation mechanism based on the marginal contribution of each tenant to

the total expected cost to fairly distribute the optimal expected cost to each tenant within

the grand coalition. Finally, simulations based on real-world traces verify the effectiveness

of our proposed cost saving method.

47

CHAPTER IV

RESOURCE MANAGEMENT IN GEOGRAPHICALLY DISTRIBUTED

DATACENTERS

In this chapter, we investigate the optimal energy procurement for datacenter operator who

manages geographically distributed datacenters when participates in the multi-timescale elec-

tricity markets. Given the uncertain interactive workload demand, renewable generation and

real-time electricity prices, we jointly optimize electricity procurement in the multi-timescale

electricity markets, workload routing decisions, IT server allocation decisions, thermal en-

ergy storage charge and discharge decisions such that the total cost of datacenters when

serving both interactive and batch workload can be minimized. We formulate it as a two-

stage stochastic optimization problem by considering random scenarios and then reformulate

as its deterministic equivalent problem. Finally, a case study based on real-world traces is

presented to validate the effectiveness of our proposed stochastic approach.

The rest of this chapter is organized as follows. In Section 4.1, we present the system

model including models of workload, datacenter power consumption, electricity market, re-

newable energy, thermal energy storage and cost. In Section 4.2, we present the formulation

of two-stage stochastic optimization problem. In Section 4.3, we reformulate the two-stage

stochastic optimization problem as its deterministic equivalent problem. Extensive numeri-

cal simulations based on real-world traces are presented in Section 4.4. Finally, the summary

is given in Section 4.5.

48

4.1 System Modeling

As illustrated in Fig. 12, we consider a cloud service provider (CSP) who operates N

geographically located datacenters, procuring electricity by participating in two-timescale

electricity markets: long-term market and real-time market. Each datacenter i ∈ N =

{1, 2, · · · , N} is equipped with on-site renewable generators and thermal energy storage. We

consider a discrete-time model whose time periods denoted by t ∈ T = {0, 1, 2, · · · , T − 1}

match the timescale at which the capacity provisioning and scheduling decisions can be

updated. The duration of each time period t varies from 15 minutes to one hour.

4.1.1 Workload Model

Assume there is a set of sources J representing aggregate workload demand which can be

routed to a set of geographically deployed datacentersN through geographical load balancing

(GLB). Each source j ∈ J = {1, 2, · · · , J} can be interpreted as collective workload demand

from a group of local users. Moreover, the workload that datacenters are dealing with can

be classified into two classes: delay-sensitive workload and delay-tolerant workload.

Delay-sensitive Workload

Delay-sensitive workload is also known as interactive workload such as web searches and

emails. It requires real-time processing and is constrained by the quality of service (QoS)

requirements. For interactive workload, there is a maximum response time as indicated by

the service-level agreement (SLA).

Denoted by λi,j,t the amount of interactive workload dispatched from source j ∈ J to

datacenter i ∈ N at time period t, we can express the total interactive workload received from

datacenter i at time period t as λi,t =
∑

j∈J λi,j,t and total interactive workload generated

from each source j at time period t as Lj,t =
∑

i∈N λi,j,t. In reality, interactive workload

demand is highly uncertain and therefore can be modeled as random variables.

49

Figure 12: Geographically distributed datacenters participate in two-timescale electricity
markets.

Delay-tolerant Workload

Delay-tolerant workload is also known as batch workload such as anti-virus software scanning

and scientific simulations. Usually it can be scheduled at any time as long as it is completed

50

by the designated deadline, i.e., there is a maximum completion time. We denote by Hi, fi

andMPi the batch workload demand in datacenter i, IT resources provided by a single server

in datacenter i at one time period to process batch workload and maximum parallelization

in datacenter i, respectively. Here, we assume that the batch workload demand is known

beforehand.

4.1.2 Datacenter Power Consumption Model

At each time period t, assume each datacenter i has 0 ≤ mi,t ≤ Mi homogeneous servers

that are turned on, where Mi is the total number of servers in datacenter i. Usually there

are more than thousands of servers in a single datacenter, therefore we relax the mi,t as real

numbers lying in the interval [0,Mi].

Since there are two types of workload, at each time period t, we assume datacenter i

assign ai,t and bi,t servers to process interactive workload and batch workload, respectively.

It follows that the total number of active servers at time period t in datacenter i can be

returned as mi,t = ai,t + bi,t. Note that the interactive workload is routed from source

j ∈ J to datacenter i ∈ N through the GLB scheme while batch workload is assumed to be

generated from the datacenters themselves. We have the following two constraints for batch

workload in datacenter i at time period t:

T−1∑
t=0

bi,tfi = Hi, (4.1.1)

0 ≤ bi,t ≤MPi. (4.1.2)

Constraint (4.1.1) indicates that the total batch workload in datacenter i has to be completed

within the whole T time periods. Constraint (4.1.2) indicates that the number of allocated

servers to process batch workload in datacenter i at each time period t cannot exceed the

maximum parallelization MPi.

It is known that [67] the average IT power consumption of a single server in datacenter

51

i can be estimated as

pi(ui) = P idle
i + ui

(
P peak
i − P idle

i

)
, (4.1.3)

where P peak
i , P idle

i and ui denotes its power consumption at idle status, power consumption

at fully utilized status and average CPU utilization level, respectively. From this affine

relationship in (4.1.3), ui equals 0 indicates that the server consumes its idle power P idle
i

while ui equals 1 indicates that the server consumes its peak power P peak
i .

M/GI/1 Processor Sharing (PS) queue is adopted here to model the service process

at each server [69]. Therefore, the average CPU utilization level can be represented as

λi,t/(ai,tµi) where µi is the average server service rate at which user requests are processed

by a server in datacenter i. Therefore, the total IT power consumption of datacenter i at

time period t when mi,t servers are kept active is given by

Ei,t = ai,t

[
P idle
i +

λi,t
ai,tµi

(
P peak
i − P idle

i

)]
+ bi,tP

peak
i

= ai,tP
idle
i +

λi,t
µi

(
P peak
i − P idle

i

)
+ bi,tP

peak
i . (4.1.4)

Note that we assume batch workload is processed at full utilized CPU level (i.e., ui = 1).

Also, the queuing delay of user requests given ai,t active servers and workload arrival

rates λi,t in datacenter i at time period t is represented as

gi(ai,t, λi,t, t) =
1

µi − λi,t/ai,t
. (4.1.5)

Let Tmax
i denote the maximum average response time of user requests that can be tolerated

at datacenter i. To ensure that gi(ai,t, λi,t, t) ≤ Tmax
i , we obtain the following constraint for

ai,t:

ai,t ≥
λi,t

µi − 1/Tmax
i

. (4.1.6)

Besides, there is non-IT power consumption (e.g., cooling) associated with each datacen-

ter and the average power usage effectiveness (PUE) which is defined as the ratio of the total

52

power consumption to the IT power consumption at each datacenter is adopted to capture

its nature. Denote the average PUE in datacenter i as γi, and therefore the corresponding

total power consumption of datacenter i at time period t can be represented as γiEi,t.

4.1.3 Electricity Market Model

In the chapter, we consider datacenters participating in two-timescale electricity markets.

Assume each geographically distributed datacenter is associated with a local long-time (for-

ward) market and a real-time (spot) market.

Long-term Market

Long-term market is also known as retail market. Datacenters can sign contracts with

market operator ahead of time (e.g., weekly/monthly/quarterly/yearly) at a fixed electricity

price for certain amount of committed electricity in the future time periods. We denote

the long-term electricity price for datacenter i at time period t as pli,t and the long-term

electricity procurement as qli,t. When signing contracts, the interactive and batch workload

demand, renewable generation and real-time electricity prices are all uncertain and therefore

long-term electricity procurement can be interpreted as first-stage decisions for datacenters.

Real-time Market

Different from the long-term market, real-time market serves the instantaneous needs for

purchasing electricity in the operating time. Usually it follows a pay-as-you-go fashion and

has higher real-time electricity prices than long-term electricity prices. In this chapter,

we consider the case where datacenters have to procure electricity in the real-time market

whenever there is an energy shortage in the operating day to make up the electricity deficit.

We denote the real-time electricity price for datacenter i at time period t as pri,t and the

real-time electricity procurement as qri,t.

Different from the long-term market with a fixed electricity price, the electricity price

53

in real-time market is uncertain since it is cleared on the real-time basis and the involving

buyers and sellers can not know the exact value beforehand. Thus, we model the real-time

electricity price pri,t for datacenter i at time period t as random variables.

4.1.4 Renewable Energy Model

Assume each datacenter is equipped with renewable generators such as wind turbines and/or

solar panels. Due to the intermittent nature of the wind and solar renewable energy, the

renewable generation of datacenter i at time period t can be modeled as random variables

wi,t. Without loss of generality, we assume the operating cost of renewable generation is

zero.

4.1.5 Thermal Energy Storage Model

For each datacenter i, we denote the thermal energy storage capacity as Smax
i , the energy

level at time period t as Si,t, the charged energy into thermal energy storage system at

time period t as s+i,t, and the discharged energy out of the thermal energy storage system

at time period t as s−i,t. In practice, thermal energy storage system will undergo conversion

loss during charging and discharging processes. We denote the round-trip efficiency during

charging and discharging processes as η+i < 1 and η−i < 1, respectively. Then, we derive the

following dynamic equation for energy level at adjacent time periods in datacenter i as

Si,t+1 = Si,t + η+i s
+
i,t − s−i,t/η−i , ∀t ∈ [1, T − 1]. (4.1.7)

Moreover, there exists upper limits on the charge and discharge rate. Denote the maximum

charge rate and discharge rate by s+i,max and s−i,max, respectively, and therefore we have the

54

following constraints:

0 ≤ s+i,t ≤ s+i,max, (4.1.8)

0 ≤ s−i,t ≤ s−i,max. (4.1.9)

Also, at each time period t in datacenter i, the energy level of the thermal energy system is

bounded by the maximum capacity. That is,

0 ≤ Si,t ≤ Smax
i , ∀t ∈ [1, T]. (4.1.10)

The initial energy level at datacenter i is assumed to be Si,0 ∈ [0, Smax
i].

Without loss of generality, at each time period t in datacenter i, we assume the discharged

energy from the thermal energy storage is less than the cooling power consumption, i.e.,

s−i,t ≤ (γi−1)Ei,t. That is to say, the thermal energy cannot be utilized to power the servers.

4.1.6 Cost Model

The total cost when operating geographically distributed datacenters consists of two parts:

bandwidth cost and energy cost. Bandwidth cost is the monetary cost incurred due to the

communication demand from the interactive workload routed between sources and data-

centers. Energy cost is due to the electricity procurement in both long-term markets and

real-time markets.

Bandwidth Cost

In this chapter, we apply a linear bandwidth cost model to represent the bandwidth cost

between the sources and datacenters. Bandwidth cost when routing interactive workload

λi,j,t from source j to datacenter i at time period t is given by

Bi,j,t = yi,jλi,j,t, (4.1.11)

55

where yi,j is the unit cost associated with each interactive workload λi,j,t.

Energy Cost

Energy cost consists of two parts, long-term energy procurement cost and real-time energy

procurement cost. Long-term and real-time energy procurement cost of datacenter i at time

period t can be represented as pli,tq
l
i,t and p

r
i,tq

r
i,t, respectively. It follows that the total energy

cost of datacenter i at time period t is given by

Ei,t = pli,tq
l
i,t + pri,tq

r
i,t. (4.1.12)

4.2 Two-Stage Stochastic Formulation

In this chapter, we are interested in minimizing the total cost over a large time horizon in-

curred when geographically distributed datacenters participating in the two-timescale elec-

tricity markets. Therefore, this optimization problem can be stated as follows: given the

uncertain interactive workload demand L, renewable generation w and real-time electricity

prices pr, jointly optimize electricity procurement ql and qr in the two-timescale electricity

markets, workload routing decisions λ, IT server allocation decisions a and b, and thermal

energy storage charge/discharge decisions s+ and s− such that the total cost of datacenters

when serving both interactive and batch workload can be minimized. All the decision vari-

ables are continuous. It can be formulated as the following two-stage stochastic optimization:

2SP : min
ql

T−1∑
t=0

N∑
i=1

pli,tq
l
i,t + Eξ[Q(ql, ξ)] (4.2.1a)

s.t.

qli,t ≥ 0, ∀i, t (4.2.1b)

56

where

Q(ql, ξ) = min
a,b,λ,

qr,s+,s−

T−1∑
t=0

N∑
i=1

J∑
j=1

yi,jλi,j,t(ξ) +
T−1∑
t=0

N∑
i=1

pri,t(ξ)q
r
i,t(ξ) (4.2.2a)

s.t.∑
i∈N

λi,j,t(ξ) = Lj,t(ξ), ∀j, t (4.2.2b)

ai,t(ξ) ≥
λi,t(ξ)

µi − 1/Tmax
i

, ∀i, t (4.2.2c)

T−1∑
t=0

bi,t(ξ)fi = Hi, ∀i (4.2.2d)

0 ≤ bi,t(ξ) ≤MPi, ∀i, t (4.2.2e)

ai,t(ξ) + bi,t(ξ) ≤Mi, ∀i, t (4.2.2f)

Si,1(ξ) = Si,0 + η+i s
+
i,0(ξ)− s−i,0(ξ)/η−i , ∀i (4.2.2g)

Si,t+1(ξ) = Si,t(ξ) + η+i s
+
i,t(ξ)− s−i,t(ξ)/η−i ,∀i, t ∈ [1, T − 1] (4.2.2h)

s−i,t(ξ) ≤ (γi − 1)Ei,t(ξ), ∀i, t (4.2.2i)

qli,t + wi,t(ξ) + s−i,t(ξ) + qri,t(ξ) ≥ γiEi,t(ξ) + s+i,t(ξ),∀i, t (4.2.2j)

0 ≤ s+i,t(ξ) ≤ s+i,max, ∀i, t (4.2.2k)

0 ≤ s−i,t(ξ) ≤ s−i,max, ∀i, t (4.2.2l)

0 ≤ Si,t(ξ) ≤ Smax
i , ∀i, t ∈ [1, T] (4.2.2m)

λi,j,t(ξ) ≥ 0, ∀i, j, t (4.2.2n)

ai,t(ξ), q
r
i,t(ξ) ≥ 0, ∀i, t (4.2.2o)

where ξ represents random scenarios, constraint (4.2.2j) describes the power supply-demand

relationship in datacenter i at time period t, and IT power consumption Ei,t(ξ) for datacenter

i at time period t is given by replacing with ai,t(ξ), bi,t(ξ) and λi,t(ξ) in (4.1.4).

57

4.3 Solution Methodology

The proposed two-stage stochastic programming (2SP) can be reformulated as a deter-

ministic equivalent problem (DEP) with its finite number of scenarios assumed with known

discrete probability distributions so that the expectations can be expressed as the finite sum-

mations and each constrain in the second stage is given separately for each scenario. Further,

we apply Monte Carlo simulations to reduce the scenario set to a manageable size. Assuming

that all our random parameters are independent and identically distributed (i.i.d.), we can

generate a sample containing K scenarios ξ1, ξ2, . . . , ξK of the random parameters with

equal probability 1/K. Then, the expectation function Eξ[Q(ql, ξ)] can be approximated by

the sample average

Q̂(ql, ξ) =
1

K

K∑
k=1

Q(ql, ξk). (4.3.1)

Next, let x denote the first-stage decision variables ql, and z(ξ) denote the second-stage

decision variables a(ξ), b(ξ), λ(ξ), qr(ξ), s+(ξ) and s−(ξ). Then, with properly chosen

matrices c, q(ξ), T(ξ), W(ξ) and h(ξ), the corresponding deterministic equivalent problem

can be reformulated as following matrix form:

DEP : min
x

c⊤x+
1

K

K∑
k=1

Q(x, ξk) (4.3.2a)

s.t.

x ≥ 0 (4.3.2b)

where for each scenario ξk, k = 1, . . . , K

Q(x, ξk) = min
z(ξ)

q(ξ)⊤z(ξ) (4.3.2c)

s.t.

T(ξ)x+W(ξ)z(ξ) = h(ξ) (4.3.2d)

z(ξ) ≥ 0 (4.3.2e)

58

4.4 Case Study

In this section, we present the results of the proposed stochastic approach based on real-

world traces. We compare the performance of our proposed stochastic approach with the

deterministic approach. All the experiments are implemented in MATLAB R2018a using

GUROBI 8.0.1 on a desktop computer with an Intel Core i7-4790 3.60GHz CPU and 16GB

RAM.

4.4.1 Numerical Settings

In what follows, we present the parameter settings of datacenters and workload, stochastic

parameters and thermal energy storage.

Datacenters and Workload

In this chapter, the number of geographically distributed datacenters N , sources J and

time periods T are set to be 4, 4 and 24, respectively. For each datacenter i, server idle

power consumption P idle
i , server peak power consumption P peak

i and PUE γi are to be 150W,

250W and 1.2, respectively. Assume all the workload can be fully processed by half of the

total datacenters and therefore we set the number of servers Mi for each datacenter i to

be 8000. The maximum parallelization MPi for datacenter i is set to be 20% of the total

number of servers Mi. The unit cost yi,j associated with each interactive workload λi,j,t is

set proportionally to the distance between each datacenter and source. The average server

service rate µi, maximum average response time Tmax
i , local batch workload demand Hi and

provided IT resources fi for processing batch workload for each datacenter i are summarized

in Table 4.

Stochastic Parameters

The nominal value of renewable power generation wi,t for each datacenter i at time period

t is taken from the NREL National Wind Technology Center (M2) [7], where coefficients

59

Table 4: Datacenters and workload parameters

Datacenters µi (requests/s) Tmax
i (ms) Hi fi

1 100 20 50000 10
2 80 25 48000 12
3 100 20 60000 15
4 75 30 55000 10

are appropriately scaled. The nominal value of interactive workload demand Lj,t for each

source j at time period t is taken from the Google cluster trace [86], where coefficients are

appropriately scaled. For the electricity market parameter settings, the long-term electricity

price pli,t and the nominal value of real-time electricity price pri,t for each datacenter i at time

period t are taken from [8], where coefficients are appropriately scaled.

Thermal Energy Storage

In this chapter, we assume each datacenter is equipped with the same thermal energy storage

device. The initial energy level Si,0 is assumed to be 10kWh while the maximum capacity

Smax
i is assumed to be 100kWh for datacenter i. Round-trip efficiency during charging η+i and

discharging η−i for datacenter i are assumed to be 0.9. Maximum charge s+i,t and discharge

s−i,t rate are assumed to be 10kW for each datacenter i at time period t.

4.4.2 Results and Discussions

In what follows, we first describe the chosen benchmark (i.e., deterministic approach), and

then apply it to contrast our proposed stochastic approach in terms of the optimality when

reduce the total operating cost.

Deterministic Approach

Assume that the expected values of interactive workload demand Lj,t for each source j at

time period t and renewable generation wi,t and real-time electricity prices pri,t for each dat-

acenter i at time period t can be accurately estimated before the operating period. Then,

60

we replace the random parameters L, w and pr by their corresponding expected values in

the second stage of 2SP. Therefore, the two-stage stochastic optimization problem reduces

to a simple linear programming (LP) without any uncertainties, which can be easily solved.

The deterministic approach can be stated as following two steps:

• Given the expected values of stochastic parameters Lj,t, wi,t and pri,t, solve 2SP for

optimal first-stage long-term electricity procurement decisions q
l(∗)
i,t .

• Fix first-stage decisions at q
l(∗)
i,t and apply Monte Carlo simulations as illustrated in

Section 4.3. Solve 2SP with respect to each generated scenario ξk, k = 1, 2, . . . , K to

obtain the second-stage cost and return the total operating cost C as

C =
T−1∑
t=0

N∑
i=1

pli,tq
l(∗)
i,t +

1

K

K∑
k=1

Q(ql(∗), ξk). (4.4.1)

Comparison with Stochastic Approach

In this part, we compare the performance of our proposed stochastic approach against the

benchmark deterministic approach. We assume symmetrical deviations for each stochastic

parameter and set them to be 80% of their nominal values. For instance, the renewable gener-

ation wi,t for each datacenter i at time period t can take values in the interval [0.2wi,t, 1.8wi,t].

Three sets of 1000 randomly sampled renewable generation wi,t scenarios are generated for

each datacenter i at time period t, one following a uniform distribution in the interval

[0.2wi,t, 1.8wi,t] and the other two following normal distribution and Laplacian distribution

with mean wi,t and standard deviation 0.8wi,t/
√
3. Samples from normal distribution falling

outside of the region [0.2wi,t, 1.8wi,t] are truncated. In the same way, we generate another

two three sets of 1000 randomly sampled interactive workload demand Lj,t for each source j

at time period t and real-time electricity price pri,t for each datacenter i at time period t.

61

From Fig. 13, we observe that the Laplacian probability distribution renders the lowest

operating cost among the chosen three probability distributions both for the deterministic

approach and stochastic approach. Specific amount of each cost for both approaches, in-

cluding first-stage cost, bandwidth cost, real-time cost and total cost, are summarized in

Table 5. We observe that the first-stage cost is higher for deterministic approach since it

behaves more conservative by only considering the expected values of stochastic parameters

while for the stochastic approach, all the randomly sampled scenarios are taken into account.

Moreover, the stochastic approach outperforms deterministic approach by 2.74% on average

in terms of optimality by reducing the average total operating cost.

Table 5: Comparison of datacenter operating cost with the stochastic approach and the
deterministic approach under three different probability distributions

Approaches Cost ($) Normal Laplacian Uniform

Deterministic

First-stage 752.58 752.58 752.58
Bandwidth 1376.73 1387.83 1562.66
Real-time 105.18 91.13 212.94
Total 2234.49 2231.54 2528.18

Stochastic

First-stage 563.32 601.31 616.27
Bandwidth 1386.77 1398.94 1569.00
Real-time 215.71 161.57 291.83
Total 2165.80 2161.82 2477.10

4.5 Summary

In this chapter, we investigate the optimal energy procurement for datacenter operator who

manages geographically distributed datacenters when participating in the multi-timescale

electricity markets. A two-stage stochastic optimization problem is developed with the ob-

jective to minimize the total operating cost spanning the whole operating period considering

the uncertainties of renewable generation, interactive workload demand and real-time elec-

tricity prices. Furthermore, we reformulate the two-stage stochastic optimization problem

into its deterministic equivalent problem and perform Monte Carlo simulations to efficiently

solve it. Finally, extensive simulations are conducted based on real-world traces to verify

62

Deterministic Approach

Normal Laplacian Uniform

Probability Distributions

0

500

1000

1500

2000

2500

3000

A
v
e
ra

g
e
 O

p
e
ra

ti
n
g
 C

o
s
t
($

)
First-stage Cost

Bandwidth Cost

Real-time Cost

(a) Deterministic Approach

Stochastic Approach

Normal Laplacian Uniform

Probability Distributions

0

500

1000

1500

2000

2500

A
v
e
ra

g
e
 O

p
e
ra

ti
n
g
 C

o
s
t
($

)

First-stage Cost

Bandwidth Cost

Real-time Cost

(b) Stochastic Approach

Figure 13: Average operating cost of deterministic and stochastic approach under normal,
Laplacian and uniform probability distributions.

the correctness of our proposed stochastic approach. The deterministic approach is adopted

to contrast with our proposed stochastic approach in terms of optimality by reducing the

total operating cost. Under three different probability distributions, the stochastic approach

outperforms the deterministic approach by 2.74% on average.

63

CHAPTER V

JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN

UAV-ENABLED MOBILE EDGE COMPUTING

MEC is an emerging technology to support resource-intensive yet delay-sensitive applications

using small cloud-computing platforms deployed at the mobile network edges. However, the

existing MEC techniques are not applicable to the situation where the number of mobile

users increases explosively or the network facilities are sparely distributed. In view of this

insufficiency, UAVs have been employed to improve the connectivity of ground IoT devices

due to their high altitude. In this chapter, we propose an innovative UAV-enabled MEC

system involving the interactions among IoT devices, UAV and edge clouds (ECs). The

system deploys and operates a UAV properly to facilitate the MEC service provisioning to

a set of IoT devices in regions where existing ECs cannot be accessible to IoT devices due

to terrestrial signal blockage or shadowing. The UAV and ECs in the system collaboratively

provide MEC services to the IoT devices. For optimal service provisioning in this system,

we formulate an optimization problem aiming at minimizing the weighted sum of the service

delay of all IoT devices and UAV energy consumption by jointly optimizing UAV position,

communication and computing resource allocation, and task splitting decisions. However,

the resulting optimization problem is highly non-convex and thus difficult to solve optimally.

To tackle this problem, we develop an efficient algorithm based on successive convex ap-

proximation to obtain sub-optimal solutions. Numerical experiments demonstrate that our

proposed collaborative UAV-EC offloading scheme largely outperforms baseline schemes that

solely rely on UAV or edge clouds for MEC in IoT.

64

The rest of this chapter is organized as follows. In Section 5.1, we describe the system

model and then formulate the optimal IoT task offloading processes as a non-convex opti-

mization problem. In Section 5.2, we reformulate the original problem as an approximated

convex optimization problem and then solve it by means of successive convex approxima-

tion. Simulation results based on real-world traces are presented in Section 5.3. Finally, the

summary is given in Section 5.4.

5.1 System Model and Problem Formulation

In this section, we first introduce the system model for UAV-enabled MEC system. After

that, we formulate an optimization problem to model the optimal UAV-enabled IoT task

offloading process.

5.1.1 System Model

In this chapter, we consider the UAV-enabled MEC system as depicted in Fig. 14, which

consists of a set of ground mobile users1 (MUs) i ∈ N = {1, 2, . . . , N}, a UAV, and a set of

ground ECs j ∈ J = {1, 2, . . . , J}. The UAV is deployed to facilitate the MEC service

provisioning for ground MUs who cannot establish wireless communication with nearby

cellular base stations or WiFi access points due to signal blockage and shadowing. In this

scenario, ground-to-air (G2A) uplink communication is from MUs to the UAV while air-to-

ground (A2G) downlink communication is from the UAV to ECs, which form a 3D wireless

communication network.

We assume the UAV is equipped with certain CCS resources but subject to the size,

weight, and power (SWAP) limitations. The ECs are composed of ground MEC servers

co-located with cellular base stations or WiFi access points that have more CCS resources

compared to the UAV and MUs. Each MU i has periodical computation-intensive tasks to

perform, which are modeled as a triplet Wi = ⟨Li, Ci, λi⟩, where Li (in bits) denotes the

1Note that we use mobile users and IoT devices interchangeably in this chapter.

65

Figure 14: Illustration of an exemplary UAV-enabled MEC system with N MUs, J ECs,
and a UAV.

input data size for processing the task, Ci (in CPU cycles/bit) denotes the number of CPU

cycles required to process 1-bit of task data and λi (in unit of #task per second) denotes

the arrival rate of tasks.

In this chapter, we use the 3D Cartesian coordinate system to represent the locations of

MUs, the UAV and ECs. The position of the UAV is denoted by QUAV = (xUAV, yUAV, H),

where the height H is assumed to be fixed while the horizontal coordinates xUAV and yUAV

affect the channel gain during data communication processes and need to be optimized in

our problem. Besides, we assume the positions of MU i and EC j are fixed in our model,

which are denoted as QMU
i = (xMU

i , yMU
i , 0) and QEC

j = (xECj , yECj , 0), respectively.

Communication Model

In the UAV-enabled network, the LoS links are much more dominant than other channel

impairments such as shadowing or small-scale fading due to the high altitude of the UAV.

Therefore, the uplink channel gain from MU i to the UAV can be described by the free-space

66

path loss model:

hUL
i ≜ α0(d

UL
i)−2 =

α0

∥QMU
i −QUAV∥2

, (5.1.1)

where α0 represents the received power at the reference distance of 1 m for a transmission

power of 1 W, dUL
i denotes the uplink distance from MU i to the UAV, and ∥·∥ denotes the

Euclidean norm of a vector. Similarly, the downlink channel gain from the UAV to EC j

can be described as

hDL
j ≜ α0(d

DL
j)−2 =

α0∥∥QUAV −QEC
j

∥∥2 , (5.1.2)

where dDL
j denotes the downlink distance from the UAV to the EC j.

We assume the FDMA protocol for bandwidth sharing among MUs during the task

offloading process. According to Shannon’s capacity, the achievable uplink transmission

data rate (in bps) from MU i to the UAV can be expressed as

RUL
i = BUL

i log2

(
1 +

hUL
i PMU

i

σ2

)
, (5.1.3)

where BUL
i , PMU

i and σ2 represent the assigned bandwidth to MU i, transmit power of MU

i and the noise power at the UAV, respectively. For simplicity, we assume the noise power is

the same at UAV and ECs [131]. However, it can be easily extended to the case when they

are different. Similarly, the downlink transmission data rate (in bps) from the UAV to EC

j can be computed as

RDL
j = BDL

j log2

(
1 +

hDL
j PUAV

TX

σ2

)
, (5.1.4)

where BDL
j and PUAV

TX represent the per-device bandwidth2 preassigned to EC j and transmit

power of the UAV, respectively.

2We assume that each MU is assigned a certain bandwidth beforehand when they communicate with ECs
via the UAV.

67

Delay Analysis

In our model, we assume that MUs do not perform local computing due to their limited

computation capacities. In contrast, tasks will be first offloaded to the UAV, and then the

UAV will determine the portion of tasks that are processed locally or further offloaded to

ECs on the ground. Note that the decision time to split a task is very short compared to the

entire communication and computation latency, and therefore can be neglected. Besides, the

output data size of the computation results is often very small compared to the input data

size in many computation-intensive applications such as face recognition and video analysis.

Thus, the time needed to send the computation results back to MUs can be ignored as well.

In what follows, we will describe the four key components of the total delay for the

offloading process: 1) G2A uplink transmission delay from MUs to the UAV; 2) computa-

tion delay at the UAV; 3) A2G downlink transmission delay from the UAV to the ECs; 4)

computation delay at the ECs.

G2A uplink transmission delay from MUs to the UAV: As mentioned before, all

the tasks will be offloaded to the UAV first via G2A links without any local computation.

Therefore, the G2A transmission delay from MU i to the UAV is computed as the ratio of

task input data size and the associated uplink transmission data rate:

tG2A
i =

Li

RUL
i

. (5.1.5)

Computation delay at the UAV: The UAV will decide the portion of the received

tasks that will be processed locally at the UAV or further offloaded to the ground ECs for

processing. Denote {βij ∈ [0, 1], i ∈ N , j ∈ J } and {βi0 ∈ [0, 1], i ∈ N} as the portion

of received tasks from MU i to be processed at EC j and the UAV, respectively. Then

the computation delay at the UAV side to process the offloaded tasks from MU i can be

calculated as

tUAV
i =

βi0LiCi

fUAV
i

, (5.1.6)

68

where fUAV
i (in CPU cycles/s) is the computation resource that the UAV allocates to MU i.

Note that βi0 equals 0 means that no computation will be executed at the UAV side while

βi0 equals 1 indicates that no further offloading will occur from the UAV to ECs.

A2G downlink transmission delay from the UAV to ECs: The UAV may further

offload the tasks to more powerful ECs on the ground to reduce the computation latency.

Then, the A2G transmission delay from the MU i to EC j via UAV is described as the ratio

of offloaded task input data size and the associated downlink transmission data rate:

tA2G
ij =

βijLi

RDL
j

. (5.1.7)

Computation delay at ECs: After receiving the offloaded task data from the UAV,

ECs can start the computation process. Therefore, the computation delay at the EC side to

process the offloaded task from the MU i to EC j via UAV is

tECij =
βijLiCi

fEC
ij

, (5.1.8)

where fEC
ij (in CPU cycles/s) is the computation resource that EC j allocates to MU i.

UAV Energy Consumption Analysis

To ensure service availability, it is important to manage the energy consumption of the UAV

due to its limited battery size. In this chapter, we focus on computation and transmission

energy consumption of UAV, and ignore the hovering power since it is independent of our

decisions.

Computation Energy Consumption: Similar to [105], we model the power consump-

tion of the CPU in UAV as κ(fUAV
i)3, where κ denotes the effective switched capacitance

depending on the CPU architecture. It follows that the corresponding energy consumption

of UAV when processing tasks offloaded from MU i is given by the product of the power

69

level and computation time:

ECP
i = κ(fUAV

i)3tUAV
i = κβi0LiCi(f

UAV
i)2. (5.1.9)

Transmission Energy Consumption: The transmission energy consumption of the

UAV when receiving the task input data via the G2A uplink transmission channels from MU

i is given by

ERX
i = PUAV

RX tG2A
i =

LiP
UAV
RX

RUL
i

, (5.1.10)

where PUAV
RX is the receiving power of UAV. Besides, the transmission energy consumption

of the UAV when offloading the task input data of MU i via the A2G downlink transmission

channels to EC j is given by

ETX
ij = PUAV

TX tA2G
ij =

βijLiP
UAV
TX

RDL
j

. (5.1.11)

Therefore, the total energy consumption of the UAV when serving the task offloading

and computation of MU i is given by

EUAV
i = λi(E

CP
i + ERX

i +
∑
j∈J

ETX
ij). (5.1.12)

5.1.2 Problem Formulation

In this chapter, we are interested in minimizing the total energy consumption of the UAV

when serving the computation and communication needs of the MUs and the total service

delay of all MUs. To define the service delay of each MU, we make the following assumptions:

(i) the UAV cannot partition a task until receiving its entire input data to ensure the accuracy

of task splitting; (ii) the UAV and ECs cannot start the processing of tasks until the end of

the transmission between MUs and the UAV or the UAV and ECs to ensure the reliability of

the computation results; and (iii) the computation at the UAV can proceed simultaneously

70

with the transmission of the tasks to each EC since the communication and computation

modules are often separated at the UAV. Based on the above assumptions, the service delay

of MU i can be represented as

Ti = tG2A
i +max

j∈J
{tUAV

i , tA2G
ij + tECij }. (5.1.13)

Our problem becomes jointly optimizing the UAV position QUAV, G2A uplink communi-

cation resource allocation BUL
i , task partition variables βi0 and βij and computation resource

allocation of the UAV fUAV
i and ECs fEC

ij with the goal of minimizing the weighted sum of to-

tal energy consumption of UAV and total service delay of all MUs. All the decision variables

are continuous. It can be formulated as the following optimization problem:

min
QUAV,BUL

i ,βi0,

βij ,f
UAV
i ,fEC

ij

∑
i∈N

EUAV
i + ρ

∑
i∈N

Ti (5.1.14a)

s.t.
∑
i∈N

BUL
i ≤ BUL (5.1.14b)

βi0 +
∑
j∈J

βij = 1, ∀i (5.1.14c)

∑
i∈N

fUAV
i ≤ FUAV (5.1.14d)

∑
i∈N

fEC
ij ≤ FEC

j , ∀j (5.1.14e)

0 ≤ βij ≤ 1, ∀i, j (5.1.14f)

0 ≤ βi0 ≤ 1, ∀i (5.1.14g)

BUL
i , fUAV

i ≥ 0, ∀i (5.1.14h)

fEC
ij ≥ 0, ∀i, j (5.1.14i)

where ρ > 0 is a parameter defining the relative weight of energy and delay, (5.1.14b),

(5.1.14d), (5.1.14e), (5.1.14h) and (5.1.14i) ensure that the allocated resources for uplink

71

bandwidth, UAV and EC CPU frequencies are non-negative and no more than their limits

while (5.1.14c), (5.1.14f) and (5.1.14g) constrain that the offloading tasks of MUs are com-

pletely processed by UAV and ECs, and the values of partition variables are between 0 and

1.

5.2 Solution Methodology

Problem (5.1.14) is hard to solve due to the non-convexity of the objective function and con-

straints. In what follows, we will first linearize the maximum term in (5.1.13) by leveraging

auxiliary variables and reformulate the original optimization problem into a tractable one.

Then, we develop a SCA-based algorithm to transform the non-convex objective function and

constraints into suitable convex approximants to iteratively solve the resulting optimization

problem.

5.2.1 Problem Reformulation

We first define an auxiliary variable for each MU i as zi ≜ maxj∈J {tUAV
i , tA2G

ij + tECij }. Then,

we linearize the service delay term in (5.1.14a) using zi and reformulate the original opti-

mization problem into the following:

min
zi,Q

UAV,BUL
i ,

βi0,βij ,f
UAV
i ,fEC

ij

∑
i∈N

EUAV
i + ρ

∑
i∈N

(tG2A
i + zi) (5.2.1a)

s.t. zi ≥ tUAV
i , ∀i (5.2.1b)

zi ≥ tA2G
ij + tECij , ∀i, j (5.2.1c)

(5.1.14b)− (5.1.14i) (5.2.1d)

However, the reformulated optimization problem is still difficult to solve due to the non-

convex objective function (5.2.1a) and non-convex constraints (5.2.1b) and (5.2.1c). Note

that both the uplink and downlink transmission data rate functions (5.1.3) and (5.1.4) are

72

non-convex with respect to the UAV position QUAV.

5.2.2 Successive Convex Approximation

In this subsection, we will show how to build the convex approximation for the non-convex

objective function and non-convex constraints in the reformulated problem (5.2.1) while

preserving the local first-order behavior of the original non-convex problem and solve the

resulting problem iteratively to obtain sub-optimal solutions by means of SCA. Before we

develop the SCA-based algorithm, we first present the background of SCA.

Background of SCA

Consider the following optimization problem:

P : min
x

U(x) (5.2.2a)

s.t. gl(x) ≤ 0, ∀l = 1, . . . ,m (5.2.2b)

x ∈ K, (5.2.2c)

where the objective function U : K → R is smooth (possibly non-convex) and gl : K → R

is smooth (possibly non-convex), for all l = 1, . . . ,m; the feasible set is denoted as X .

A widely used method for solving this specific problem is SCA (also known as majoriza-

tion minimization) where at each iteration, a convex approximation of original problem is

solved via replacing the non-convex objective function and constraints by suitable convex

approximants. The convex approximation of original problem can be stated as follows: given

xk ∈ X ,

Pxk : min
x

Ũ(x;xk) (5.2.3a)

s.t. g̃l(x;x
k) ≤ 0, ∀l = 1, . . . ,m (5.2.3b)

x ∈ K, (5.2.3c)

73

where Ũ(x;xk) and g̃l(x;x
k) represent the approximants of U(x) and gl(x) at current iterate

xk, respectively; the feasible set is denoted as X (xk). More specifically, we consider the

SCA method presented in Algorithm 1. It is assumed that at each iteration, some original

functions U(x) and gl(x) are approximated by their upper bounds where the same first-order

behavior is preserved [85]. It is well known that a stationary point of the problem P is also

local minimum [91].

Algorithm 1 SCA algorithm for problem P
Find a feasible solution x ∈ X in P , choose a step size θ ∈ (0, 1] and set k = 0.
Repeat

1. Compute x̂(xk), the solution of Pxk ;

2. Set xk+1 = xk + θ(x̂(xk)− xk);

3. Set k ← k + 1.

Until some convergence criterion is met.

SCA-based algorithm

The authors in [91] proposes a framework that unifies several existing SCA-based algorithms

to solve the problem P in a parallel and distributed fashion. It also offers much flexibility

in the choice of the convex approximation functions, and the objective function U need not

be an upper bound of itself at any feasible point. Multiple examples are summarized to

find the candidate approximants g̃l(x) and Ũ(x) while necessary assumptions are satisfied

to develop the SCA-based algorithm. We first present the assumptions and examples that

we will utilize to approximate the non-convex terms in our problem as follows:

Assumption 1: The key assumptions on the choice of the approximated function g̃l :

K ×X → R are given as follows:

A1) g̃l(•;y) is convex on K for all y ∈ X ;

A2) Upper-bound : gl(x) ≤ g̃l(x;y), ∀x ∈ K,y ∈ X ;

74

A3) Function value consistency : g̃l(y;y) = gl(y), for all y ∈ X ;

A4) g̃l(•; •) is continuous on K ×X ;

A5) ∇xg̃l(•; •) is continuous on K ×X ;

A6) Gradient consistency : ∇xg̃l(y;y) = ∇xgl(y), for all y ∈ X ;

where ∇xg̃l(y;y) denotes the partial gradient of function g̃l with respect to the argument x

evaluated at (y;y).

Assumption 2: The key assumptions on the choice of the approximated function Ũ :

K ×X → R are given as follows:

B1) Ũ(•;y) is uniformly strongly convex on K with constant µ > 0, i.e., for all x, z ∈ K

and y ∈ X :

(x− z)⊤(∇xŨ(x;y)−∇xŨ(z;y)) ≥ µ ∥x− z∥2 .

B2) Gradient consistency : ∇xŨ(y;y) = ∇xU(y), for all y ∈ X ;

B3) ∇xŨ(•; •) is continuous on K ×X ;

where ∇xŨ(u;v) denotes the partial gradient of function Ũ with respect to the argument

x evaluated at (u;v). Note that A1) and B1) make the problem Pxk strongly convex while

A2) and A3) guarantee the iterate feasibility that xk ∈ X (xk) ⊆ X .

Example 1–Approximation of gl(x): (Example 3 in [91]) Suppose that gl has a Difference

of Convex (DC) structure, i.e., gl(x) = g+j (x) − g−j (x) with both g+l and g−l being convex

and continuously differentiable. By linearizing the concave part g−l , we obtain the convex

upper approximation of gl as follows: for all x ∈ K and y ∈ X ,

g̃l(x;y) ≜ g+l (x)− g
−
l (y)−∇xg

−
l (y)

⊤(x− y) ≥ gj(x). (5.2.4)

Example 2–Approximation of gl(x): (Example 4 in [91]) Suppose that gl(x) has a Product

of Functions (PF) structure, i.e., gl(x) = f1(x)f2(x) with both f1 and f2 being convex and

75

non-negative. Observe that gl(x) can be rewritten as a function with DC structure:

gl(x) =
1

2
(f1(x) + f2(x))

2 − 1

2
(f 2

1 (x) + f 2
2 (x)). (5.2.5)

Then, the convex upper approximation of gl can be obtained by linearizing the concave part

in (5.2.5): for any y ∈ X ,

g̃l(x;y) ≜
1

2
(f1(x) + f2(x))

2 − 1

2
(f 2

1 (y) + f 2
2 (y))

− f1(y)f ′
1(y)(x− y)− f2(y)f ′

2(y)(x− y) ≥ gl(x). (5.2.6)

Example 3–Approximation of U(x): (Example 8 in [91]) Suppose that U(x) has a PF

structure, i.e., U(x) = h1(x)h2(x) with both h1 and h2 being convex and non-negative. For

any y ∈ X , a convex approximation of U(x) is given by

Ũ(x;y) = h1(x)h2(y) + h1(y)h2(x)

+
τ

2
(x− y)⊤H(y)(x− y), (5.2.7)

where τ > 0 is a positive constant, and H(y) is a uniformly positive definite matrix.

Then, we transform the non-convex constraints and non-convex objective function in the

reformulated problem (5.2.1) into suitable approximants by following the above examples.

For constraint (5.2.1b), we observe that the non-convex term tUAV
i can be written as the

product of convex and non-negative functions3

tUAV
i = LiCigl(βi0, f

UAV
i) = LiCif1(βi0)f2(f

UAV
i), (5.2.8)

where f1(βi0) = βi0 and f2(f
UAV
i) = 1/fUAV

i . Then, given a feasible solution βi0(k) and

fUAV
i (k) for the kth iteration of SCA-based algorithm, we derive a convex upper approxima-

3Without loss of generality, we factorize the constants (Li, Ci, etc.) out of the term since they will not
affect the convexity.

76

tion of tUAV
i by using Example 2 as

tUAV
i ≤ t̃UAV

i (βi0, f
UAV
i ; βi0(k), f

UAV
i (k)) ≜

LiCi

[
1

2

((
βi0 +

1

fUAV
i

)2

− (βi0(k))
2 −

(
1

fUAV
i (k)

)2
)
−

(βi0(k)(βi0 − βi0(k))) +
(

1

fUAV
i (k)

)3(
1

fUAV
i

− 1

fUAV
i (k)

)]
. (5.2.9)

For constraint (5.2.1c), tA2G
ij can be written as the product of Li, βij and 1/RDL

j . However,

1/RDL
j is a non-convex function with respect to the UAV location QUAV, and therefore

Example 2 cannot be directly applied to derive a convex upper approximation. To tackle

the non-convexity, we replace it by non-negative auxiliary variables {ϕj}j∈J . Then, the

non-convex term tA2G
ij can be written as the product of convex and non-negative functions

tA2G
ij = Ligl(βij, ϕj) = Lif1(βij)f2(ϕj), (5.2.10)

where f1(βij) = βij and f2(ϕj) = 1/ϕj in (5.2.10). Similarly, the non-convex term tECij in

(5.2.1c) can be written as the product of convex and non-negative functions

tECij = LiCigl(βij, f
EC
ij) = LiCif1(βij)f2(f

EC
ij), (5.2.11)

where f1(βij) = βij and f2(f
EC
ij) = 1/fEC

ij in (5.2.11). Then, given a feasible solution βij(k),

ϕj(k) and fEC
ij (k) for the kth iteration of SCA-based algorithm, we derive convex upper

approximation of tA2G
ij and tECij by using Example 2 as

tA2G
ij ≤ t̃A2G

ij (βij, ϕj; βij(k), ϕj(k)) ≜

Li

[
1

2

((
βij +

1

ϕj

)2

− (βij(k))
2 −

(
1

ϕj(k)

)2
)

− (βij(k)(βij − βij(k))) +
(

1

ϕj(k)

)3(
1

ϕj

− 1

ϕj(k)

)]
, (5.2.12)

77

and

tECij ≤ t̃ECij (βij, f
EC
ij ; βij(k), f

EC
ij (k)) ≜

LiCi

[
1

2

((
βij +

1

fEC
ij

)2

− (βij(k))
2 −

(
1

fEC
ij (k)

)2
)
−

(βij(k)(βij − βij(k))) +
(

1

fEC
ij (k)

)3(
1

fEC
ij

− 1

fEC
ij (k)

)]
. (5.2.13)

By defining R
UL

i ≜ log2(1+
hUL
i PMU

i

σ2), we replace 1/R
UL

i in tG2A
i by non-negative auxiliary

variables {γi}i∈N since it is a non-convex function with respect to the UAV location QUAV.

Then, the non-convex terms in objective function (5.2.1a) can be written as the product of

convex and non-negative functions

ECP
i = κLiCih1(βi0)h2(f

UAV
i) (5.2.14)

ETX
ij = LiP

UAV
TX h1(βij)h3(ϕj) (5.2.15)

tG2A
i = Lih3(B

UL
i)h3(γi), (5.2.16)

ERX
i = PUAV

RX tG2A
i = PUAV

RX Lih3(B
UL
i)h3(γi), (5.2.17)

where h1(βi0) = βi0 and h2(f
UAV
i) = (fUAV

i)2 in (5.2.14), h1(βij) = βij and h3(ϕj) = 1/ϕj

in (5.2.15), while h3(B
UL
i) = 1/BUL

i and h3(γi) = 1/γi in (5.2.16). Then, given a feasible

solution βi0(k), βij(k), ϕj(k), γi(k), B
UL
i (k) and fUAV

i (k) for the kth iteration of SCA-based

algorithm, we derive convex approximation of ECP
i , ETX

ij , tG2A
i and ERX

i by using Example

78

3 as

ẼCP
i (βi0, f

UAV
i ; βi0(k), f

UAV
i (k)) ≜

κLiCi

(
βi0(f

UAV
i (k))2 + βi0(k)(f

UAV
i)2

)
+
τβi0

2
(βi0 − βi0(k))2 +

τfUAV
i

2
(fUAV

i − fUAV
i (k))2, (5.2.18)

ẼTX
ij (βij, ϕj; βij(k), ϕj(k)) ≜ LiP

UAV
TX

(
βij
ϕj(k)

+
βij(k)

ϕj

)
+
τβij

2
(βij − βij(k))2 +

τϕj

2
(ϕj − ϕj(k))

2, (5.2.19)

t̃G2A
i (BUL

i , γi;B
UL
i (k), γi(k)) ≜ Li

(
1

BUL
i γi(k)

+
1

BUL
i (k)γi

)
+
τBUL

i

2
(BUL

i −BUL
i (k))2 +

τγi
2
(γi − γi(k))2, (5.2.20)

and

ẼRX
i (BUL

i , γi;B
UL
i (k), γi(k)) ≜

PUAV
RX t̃G2A

i (BUL
i , γi;B

UL
i (k), γi(k)), (5.2.21)

where τβi0
, τβij

, τϕj
, τγi , τBUL

i
, τfUAV

i
> 0. Therefore, the convex surrogate objective function

of (5.2.1a) can be denoted as the non-negative weighted sum of convex functions

∑
i∈N

λi(Ẽ
CP
i + ẼRX

i +
∑
j∈J

ẼTX
ij) + ρ

∑
i∈N

(t̃G2A
i + zi), (5.2.22)

where the convexity is preserved.

Moreover, as we replace the non-convex data rate functions in both objective function and

constraints by the auxiliary variables {ϕj}j∈J and {γi}i∈N , we obtain equality constraints

{ϕj}j∈J = 1/RDL
j and {γi}i∈N = 1/R

UL

i . To further address the non-convexity, we first relax

79

them as the following inequalities

0 ≤ ϕj ≤ RDL
j , ∀j (5.2.23)

0 ≤ γi ≤ R
UL

i , ∀i (5.2.24)

where the optimality is preserved since at optimal solutions the auxiliary variables will

equate their upper bounds. The key observation is that in (5.2.23) and (5.2.24), although

RDL
j and R

UL

i are not concave with respect to QUAV, they are convex functions with respect

to
∥∥QUAV −QEC

j

∥∥2 and
∥∥QMU

i −QUAV
∥∥2, respectively. Recall that any convex function is

globally lower-bounded by its first-order Taylor expansion at any point [17]. Therefore, by

taking the first-order Taylor expansion of RDL
j and R

UL

i with respect to
∥∥QUAV −QEC

j

∥∥2
and

∥∥QMU
i −QUAV

∥∥2 respectively, we obtain lower bounds of RDL
j and R

UL

i at local point

QUAV(k) for the kth iteration of SCA-based algorithm as follows:

RDL
j ≥ RDL

j,LB(Q
UAV;QUAV(k)) ≜ RDL

j (QUAV(k))

−
BDL

j η(
∥∥QUAV −QEC

j

∥∥2 − ∥∥QUAV(k)−QEC
j

∥∥2)
ln 2(

∥∥QUAV(k)−QEC
j

∥∥2)(η + ∥∥QUAV(k)−QEC
j

∥∥2) , ∀j (5.2.25)

and

R
UL

i ≥ R
UL

i,LB(Q
UAV;QUAV(k)) ≜ R

UL

i (QUAV(k))

−
εi(
∥∥QMU

i −QUAV
∥∥2 − ∥∥QMU

i −QUAV(k)
∥∥2)

ln 2(∥QMU
i −QUAV(k)∥2)(εi + ∥QMU

i −QUAV(k)∥2)
, ∀i, (5.2.26)

where η ≜ α0P
UAV
TX /σ2 and εi ≜ α0P

MU
i /σ2. Note that both RDL

j,LB and R
UL

i,LB are concave

functions with respect to QUAV. Then, by replacing RDL
j and R

UL

i with their lower bounds,

we obtain the approximated convex constraints as

0 ≤ ϕj ≤ RDL
j,LB(Q

UAV;QUAV(k)), ∀j (5.2.27)

0 ≤ γi ≤ R
UL

i,LB(Q
UAV;QUAV(k)), ∀i. (5.2.28)

80

Finally, we denote the set of decision variables for our optimization problem as ψ =

(zi, Q
UAV, BUL

i , βi0, βij, f
UAV
i , fEC

ij , ϕj, γi). The convex approximation of the reformulated

problem (5.2.1) with a feasible solution ψ(k) for the kth iteration of SCA-based algorithm

is given by

min
ψ

∑
i∈N

λi

(
ẼCP

i (ψ;ψ(k)) + ẼRX
i (ψ;ψ(k))

+
∑
j∈J

ẼTX
ij (ψ;ψ(k))

)
+ ρ

∑
i∈N

(t̃G2A
i (ψ;ψ(k)) + zi) (5.2.29a)

s.t. zi ≥ t̃UAV
i (ψ;ψ(k)), ∀i (5.2.29b)

zi ≥ t̃A2G
ij (ψ;ψ(k)) + t̃ECij (ψ;ψ(k)), ∀i, j (5.2.29c)

0 ≤ ϕj ≤ RDL
j,LB(ψ;ψ(k)), ∀j (5.2.29d)

0 ≤ γi ≤ R
UL

i,LB(ψ;ψ(k)), ∀i (5.2.29e)

(5.1.14b)− (5.1.14i), (5.2.29f)

which has a unique solution denoted by ψ̂(ψ(k)). The above optimization problem (5.2.29)

is convex, and the SCA-based algorithm is summarized in Algorithm 2.

Algorithm 2 SCA-based algorithm for problem (5.2.29)

Input: ψ(0) = (zi, Q
UAV(0), BUL

i (0), βi0(0), βij(0),
fUAV
i (0), fEC

ij (0), ϕj(0), γi(0)), and τβi0
, τβij

, τϕj
, τγi , τBUL

i
,

τfUAV
i

> 0 for i ∈ N and j ∈ J , θ(k) ∈ (0, 1]. Set k = 0, α = 0.5.
Repeat

1. Compute ψ̂(ψ(k)), the solution of (5.2.29);

2. Set ψ(k + 1) = ψ(k) + θ(k)(ψ̂(ψ(k))−ψ(k)), with θ(k) = θ(k − 1)(1− αθ(k));

3. Set k ← k + 1.

Until ψ(k) is a stationary solution of (5.1.14).
Output: QUAV, BUL

i , βi0, βij, f
UAV
i and fEC

ij .

Note that a diminishing step-size rule is applied in step 2), which is numerically more

efficient than a constant one. The convergence of Algorithm 1 is guaranteed if the step size

81

0 100 200 300 400 500 600 700 800 900 1000

x (m)

0

100

200

300

400

500

600

700

800

900

1000

y
 (

m
)

ECs

MUs

EC4

EC2

EC3

EC1

Figure 15: Locations of 10 MUs and 4 ECs in the MEC system.

θ(k) is chosen so that θ(k) ∈ (0, 1], θ(k)→ 0 and
∑

v θ(k) =∞, then ψ(k) is bounded and

at least one of its limit points is stationary [91]. For the termination criterion, it is very

convenient to use
∥∥∥ψ̂(ψ(k))−ψ(k)∥∥∥, which is a measure of stationarity. Thus, a reliable

termination rule is to check
∥∥∥ψ̂(ψ(k))−ψ(k)∥∥∥ ≤ ζ, where ζ is the desired accuracy.

5.3 Numerical Experiments

In this section, we validate the effectiveness of our proposed SCA-based algorithm via ex-

tensive numerical experiments. All the experiments are implemented in MATLAB R2018a

using CVX on a desktop computer with an Intel Core i7-4790 3.60 GHz CPU and 16 GB

RAM. The convergence tolerance threshold ζ for the proposed algorithm is set to be 10−2.

5.3.1 Simulation Setup

We consider a UAV-enabled MEC system with 4 ground ECs placed at each vertex and 10

ground MUs that are randomly distributed within a 2D area of 1000×1000 m2, as illustrated

in Fig. 15. The UAV is deployed and operated to facilitate the MEC service provisioning,

and the optimal 3D location of UAV can be found using our proposed SCA-based algorithm.

The simulation parameter settings are summarized in Table 6 unless otherwise stated.

82

Table 6: Simulation Parameters

Parameters Values Parameters Values

H 100 m PUAV
TX 1 W

α0 −50 dB Li [1, 5] Mbits

σ2 −100 dBm Ci [100, 200] CPU cycles/bit

κ 10−28

[129, 130]
BUL 10 MHz

λi 30 tasks/min BDL
j 0.5 MHz

PMU
i 0.1 W FUAV 3 GHz

PUAV
RX 0.1 W FEC

j [6, 9] GHz

ρ 5

Our system settings involving the interactions among IoT devices, UAV and ECs are dif-

ferent from prior works. The approaches proposed in their studies are not directly applicable

to our settings. Therefore, we consider the following intuitive methods as baselines:

1. Random UAV location scheme: the task splitting and resource allocation decisions are

optimized while the UAV location is randomly selected without optimization;

2. UAV-only scheme: all tasks are offloaded to and processed at the UAV without further

offloading to any ECs;

3. EC-only scheme: all tasks are first offloaded to the UAV without any computations

and further offloaded to ECs for processing;

4. Fixed UAV-EC scheme: half of the tasks are processed at the UAV while the other

half are processed at ECs.

Note that the UAV is deployed at optimal position for the last three baselines similar to our

proposed method. To investigate the importance of UAV location optimization, we name

our proposed method as optimized UAV location scheme and compare it with the random

UAV location scheme. To study the benefits of utilizing computing capacity at both UAV

and ECs, we rename our proposed method as collaborative UAV-EC scheme and compare it

with UAV-only, EC-only and fixed UAV-EC schemes.

83

1 2 3 4 5 6 7 8 9 10

MUs

0

0.2

0.4

0.6

0.8

1

O
p
ti
m

a
l
ta

s
k
 s

p
lit

ti
n
g
 r

a
ti
o
s

i0

i1

i2

i3

i4

Figure 16: Optimal task splitting ratios of the UAV βi0 (i = 1, 2, . . . , 10) and ECs βij
(j = 1, 2, 3, 4) for MUs.

5.3.2 Experimental Results

In this section, we first simulate and analyze how UAV position and per-device bandwidth

in the downlink communication will affect the system cost of studied UAV-enabled MEC

system. Then, we compare the performances of our proposed collaborative UAV-EC scheme

with UAV-only, EC-only and fixed UAV-EC schemes to verify the effectiveness of our method

in reducing the overall system cost as well as the benefits of UAV-EC collaboration. We set

the simulation parameters FEC
j (j = 1, 2, 3, 4) and Li (i = 1, 2, . . . , 10) to be [8, 9, 6, 7] GHz

and [3, 5, 2, 3, 5, 1, 1, 5, 4, 5] Mbits, respectively.

Importance of optimizing the UAV position

In this part, we compare the performances of our proposed optimized UAV location scheme

with random UAV location scheme where the location of UAV is randomly assigned without

optimization in terms of reducing the system cost. The results are summarized in Ta-

ble 7. It is shown that under the optimized UAV location scheme, the optimal 3D position

(xUAV
∗ , yUAV

∗ , H) found for the UAV is at (558.11, 724.52, 100) m. The system cost of the

optimized UAV location scheme is 20.83, which is the best compared with random selected

84

Table 7: System cost comparison for optimized UAV location and random UAV location
schemes

Optimal UAV location System cost

(558.11, 724.52, 100) m 20.83

Random UAV location System cost Cost saving percentage

(500, 500, 100) m 22.19 6.13%

(100, 100, 100) m 24.05 13.39%

(900, 100, 100) m 23.85 12.67%

(900, 900, 100) m 22.44 7.17%

(100, 900, 100) m 23.07 9.71%

UAV locations (at the center or near each EC), and our proposed scheme can achieve high

cost saving as 13.39%. The rationale behind the system cost difference is that for our pro-

posed approach, the UAV location is optimized to obtain better channel condition when

providing the offloading opportunities for ground MUs while for the random UAV location

scheme, the UAV location is randomly assigned beforehand without optimization. Besides,

the optimal task splitting ratios of MUs for UAV and ECs are shown in Fig. 16. We observe

that for MUs 2, 5, 8, 9 and 10 with large amount of input data size, 32.12% tasks in average

are first processed at the UAV (i.e., βi0) to reduce the data size, and then the remaining

tasks are distributed to ECs for further processing.

Impact of the per-device bandwidth

In this part, we first study how the per-device bandwidth will affect the optimal task splitting

ratios at ECs. As mentioned before, per-device bandwidth is assigned to each MU before-

hand, and it plays an important role in affecting the optimal task splitting ratios at ECs

and system cost. To proceed, we increase the per-device bandwidth BDL
1 assigned to EC1

from 0.5 to 5 MHz while the other three BDL
2 , BDL

3 and BDL
4 remain unchanged. In Fig. 17,

we observe that the optimal task splitting ratio β11 for MU1 at EC1 is increasing while the

other three β12, β13 and β14 are decreasing. The reason is that as BDL
1 increases, the A2G

downlink transmission delay tA2G
11 from the UAV to the EC1 can be reduced, and then more

85

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Per-device bandwidth B
1

DL
 assigned to EC1 (MHz)

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

O
p

ti
m

a
l
ta

s
k
 s

p
lit

ti
n

g
 r

a
ti
o

s
 a

t
E

C
s

11 12 13 14

Figure 17: Optimal task splitting ratios at each EC for MU1 as a function of per-device
bandwidth BDL

1 assigned to EC1.

tasks will be offloaded to EC1 for further processing and therefore the corresponding optimal

task splitting ratio grows.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Per-device bandwidth assigned to jth EC (MHz)

19.4

19.6

19.8

20

20.2

20.4

20.6

20.8

21

S
y
s
te

m
 c

o
s
t

j=1

j=2

j=3

j=4

Figure 18: System cost as a function of per-device bandwidth BDL
j assigned to jth EC

(j = 1, 2, 3, 4) while fixing the others at 0.5 MHz.

Next, we investigate how the per-device bandwidth will affect the system cost. To pro-

ceed, we increase the per-device bandwidth BDL
j assigned to jth EC (j = 1, 2, 3, 4) from 0.5

to 5 MHz while the other three remain at 0.5 MHz. In Fig. 18, we observe that the system

86

5 10 15 20 25 30

UAV computation capacity (GHz)

10

20

30

40

50

60

70

80

90

100

S
y
s
te

m
 c

o
s
t

UAV-only scheme

EC-only scheme

Fixed UAV-EC scheme

Collaborative UAV-EC scheme

Figure 19: System cost as a function of the UAV computation capacity FUAV under four
different offloading schemes.

cost reduces as the per-device bandwidth assigned to jth EC increases. The reason is that

as more bandwidth assigned to each MU when tasks are offloaded from the UAV to jth

EC, higher downlink transmission data rates can be achieved, and thus the downlink trans-

mission delay and downlink transmission energy consumption of the UAV can be reduced

accordingly.

Benefits of UAV-EC Collaboration

In this part, we compare the performances of our proposed collaborative UAV-EC schemes

with UAV-only, EC-only and fixed UAV-EC schemes in terms of reducing the system cost.

Meanwhile, we investigate how system cost behaves as the UAV computation capacity and

UAV transmission power change, respectively. First, we study how system cost behaves as

the UAV computation capacity FUAV increases from 3 to 30 GHz. As described in Fig. 19, the

system cost of EC-only scheme does not change as FUAV varies since this scheme prescribes

that all MUs must offload their tasks to ECs without any computations at the UAV side. We

further observe that for the other three offloading schemes, system cost all decreases as FUAV

increases since more computation resources are available to reduce the task computation

87

1 2 3 4 5 6 7 8 9 10

UAV transmission power (W)

0

20

40

60

80

100

S
y
s
te

m
 c

o
s
t

UAV-only scheme

EC-only scheme

Fixed UAV-EC scheme

Collaborative UAV-EC scheme

Figure 20: System cost as a function of the UAV transmission power PUAV
TX under four

different offloading schemes.

delay at the UAV side. Then, we investigate how system cost will be affected as the UAV

transmission power PUAV
TX increases from 1 to 10 W. As illustrated in Fig. 20, the system

cost of UAV-only scheme remains constant as PUAV
TX varies since this scheme indicates that

all MUs must offload their tasks to the UAV for execution without further offloading to any

ECs. We further observe that for the other three offloading schemes, system cost increases

as PUAV
TX increases since the downlink transmission energy consumption of the UAV is an

increasing function of PUAV
TX . Under the above two scenarios, we observe that our proposed

approach largely outperforms baseline schemes such as UAV-only, EC-only and fixed UAV-

EC offloading schemes in terms of reducing the system cost, which verifies the benefits of

UAV-EC collaboration in the task offloading processes.

5.4 Summary

In this chapter, we have studied an innovative UAV-enabled MEC system involving the

interactions among IoT devices, UAV and ECs. We have proposed to deploy a UAV properly

to facilitate the MEC service provisioning to a set of stationary IoT devices in regions

where existing ECs cannot be accessible to IoT devices due to terrestrial signal blockage

88

and shadowing. The UAV and the ECs in our system collaboratively provide MEC services

to the IoT devices using aerial-to-ground communications. We have formulated a non-

convex optimization problem with the goal of minimizing the weighted sum of the service

delay of all IoT devices and UAV energy consumption by jointly optimizing UAV position,

communication and computing resource allocation and task splitting decisions. We have

developed a SCA-based algorithm to tackle the non-convexity of the original problem by

first transforming the original non-convex problem into its approximated convex form and

then solve it efficiently. We have also conducted numerical experiments to verify that our

proposed collaborative UAV-EC offloading scheme largely outperforms baseline schemes that

solely rely on UAV or ECs for MEC in IoT.

89

CHAPTER VI

JOINT DIFFERENTIAL EVOLUTION AND SUCCESSIVE CONVEX

APPROXIMATION IN UAV-ENABLED MOBILE EDGE COMPUTING

UAV-enabled mobile edge computing (MEC) is an emerging technology to support resource-

intensive yet delay-sensitive applications with edge clouds (ECs) deployed in the proximity

to mobile users and UAVs served as computing base stations in the air. The formulated

optimization problems therein are highly nonconvex and thus difficult to solve. To tackle

the nonconvexity, the successive convex approximation (SCA) technique has been widely

used to solve for the nonconvex optimization problems by transforming the nonconvex ob-

jective functions and constraints into suitable convex surrogates. However, the optimal

solutions are based on the approximated optimization problem not the original one and

they are highly dependent on the feasible solution initialization. Unlike SCA, Differential

Evolution (DE) is a global optimization method that iteratively updates the best candidate

solutions with respect to the predefined objective functions. DE works well especially in

unconstrained optimization problems since it can freely search very large regions of possible

solutions without considering the convexity of the original problem. However, when it comes

to the constrained optimization problem, DE becomes inefficient to find the feasible and

optimal solutions within given time limits. In view of the shortcomings incurred in both DE

and SCA, we propose an innovative algorithm by jointly applying DE and SCA (DE-SCA)

to solve for the nonconvex optimization problems. However, directly using full DE solutions

to initialize the SCA-based algorithm will result in worse objective function values as the

DE solutions are often infeasible. Therefore, we further design to screen the feasible parts

90

from the DE solutions and utilize them to initialize the SCA-based algorithm. In experi-

mental simulations, we consider a system of UAV-enabled MEC where IoT devices, the UAV

and ECs interact with each other. The simulation results demonstrate that our proposed

Screened DE-SCA algorithm largely outperforms the benchmarks including DE, SCA-based

and state-of-the-art algorithms in the UAV-enabled MEC system.

The rest of this chapter is organized as follows. In Section 6.1, we present preliminaries

on constrained optimization problems, Differential Evolution and successive convex approx-

imation. In Section 6.2, we describe the concrete framework and algorithm of our proposed

method. In Section 6.3, we introduce the system model of a UAV-enabled MEC system and

then formulate the optimal IoT task offloading processes as a nonconvex optimization prob-

lem. The numerical experiment results based on real-world traces are analyzed in Section

6.4. Finally, the conclusion is summarized in Section 6.5.

6.1 Preliminaries

In this section, we will briefly introduce the fundamental concepts of constrained optimization

problems, differential evolution and successive convex approximation.

6.1.1 Constrained Optimization Problems

Without loss of generality, COPs in a minimization sense can be formulated as follows:

min
x

f(x)

s.t. gj(x) ≤ 0, ∀j = 1, . . . ,m (6.1.1a)

hj(x) = 0, ∀j = m+ 1, . . . , l (6.1.1b)

where f(x) is the objective function that needs to be minimized over the decision variables

x = [x1, . . . , xn]
⊤ ∈ Rn while satisfying the m inequality constraints and l − m equality

constraints. Note that the equality constraints (6.1.1b) can also be converted into inequality

91

constraints with positive tolerance degree δ as

|hj(x)| − δ ≤ 0. (6.1.2)

For COPs, the degree of constraint violation over the decision variable x can be denoted

as

G(x) =
l∑

j=1

Gj(x), (6.1.3)

where Gj(x) is the degree of constraint violation on the jth constraint and can be calculated

as

Gj(x) =

 max{0, gj(x)}, j = 1, . . . ,m

max{0, |hj(x)| − δ}, j = m+ 1, . . . , l
(6.1.4)

Therefore, a candidate solution is called feasible if Gj(x) = 0, for all j = 1, . . . , l, i.e., all

constraints are satisfied. Optimal solutions must be feasible but feasible solutions are not

necessarily optimal.

6.1.2 Differential Evolution

DE belongs to the category of evolutionary algorithms. Different from other genetic algo-

rithms, DE generates offspring by incorporating the difference between genes from randomly

chosen parents in the pool. Generally, the main procedure of DE can be described as follow-

ing stages.

Initialization

DE initializes by selecting a population size of NP , which is the cardinality of the set of

decision vectors P = {x1, . . . ,xNP}. For ith decision vector xi, the jth decision variable

can be randomly generated as follows:

xi,j = x
lb
i,j + rand(0, 1) · (xub

i,j − xlb
i,j), (6.1.5)

92

where xlb
i,j and xub

i,j represents the lower bound and upper bound for decision variable xi,j

while rand(0, 1) is the uniformly distributed random numbers between 0 and 1.

Mutation

After the initialization of population and decision vectors, the individuals in the population

will undergo a mutation stage. In this stage, a mutation operation is applied to generate

a mutant decision vector for each original decision vector xt
i (i ∈ S = {1, . . . , NP}) at

generation t. For simplicity, DE/rand/1 mutation scheme is selected for illustration as

follows:

vti = x
t
r1 + F · (xt

r2 − xt
r3), (6.1.6)

where vti is the ith mutant decision vector at generation t, F ∈ (0, 1+] is the differential

scaling factor and r1, r2 and r3 are randomly generated integers from S such that r1 ̸= r2 ̸=

r3 ̸= i. Other commonly used mutation schemes include DE/rand/2, DE/rand-to-best/1,

DE/current-to-best/1 and DE/current-to-rand/1 [103].

Crossover

In order to maintain diversity in the population, for the ith individual at stage t, a trial

decision vector ut
i is generated between original decision vector xt

i and mutant decision

vector vti. The crossover operation can be described as follows:

ut
i,j =

 vti,j, if rand(0, 1) < CR or j = j0

xt
i,j, otherwise

(6.1.7)

where ut
i,j, v

t
i,j and xt

i,j represents the jth variable of ut
i, v

t
i and xt

i at generation t, re-

spectively; CR ∈ [0, 1] is the crossover rate and j0 is a randomly generated integer from

S.

93

Selection

In this stage, the decision vector of the next generation is determined from the current

generation by comparing the fitness (i.e., objective function value) of the trial decision vector

and original decision vector. It is important to handle constraints when we apply DE to deal

with COPs. Classical feasibility rules [31] to handle constraints are summarized as follows:

• Between two feasible decision vectors, the one with smaller objective function value

(minimization sense) is selected.

• If one decision vector is feasible and the other one is infeasible, the feasible one is

selected.

• Between two infeasible decision vectors, the one with less degree of constraint violation

is selected.

Therefore, the selection operation for COPs with positive tolerance ε [101] can be described

as follows:

xt+1
i =

ut
i, if G(xt

i) ≤ ε and G(ut
i) ≤ ε

and f(ut
i) < f(xt

i)

xt
i, if G(xt

i) ≤ ε and G(ut
i) ≤ ε

and f(xt
i) < f(ut

i)

ut
i, if G(xt

i) > ε and G(ut
i) ≤ ε

xt
i, if G(ut

i) > ε and G(xt
i) ≤ ε

ut
i, if G(xt

i) > G(ut
i) ≥ ε

xt
i, if G(ut

i) > G(xt
i) ≥ ε

(6.1.8)

6.1.3 Successive Convex Approximation

SCA technique has been broadly applied in many areas such as communications, machine

learning, networking and signal processing. In what follows, we will review the specific

94

optimization problem solved by the SCA technique under required assumptions and give

some examples of function approximation.

Problem Statement

Consider the optimization problem as follows:

min
x

f0(x) ≜ h0(x) + g0(x)

s.t. fj(x) ≜ hj(x) + gj(x) ≤ 0, ∀j = 1, . . . , l (6.1.9a)

x ∈ X , (6.1.9b)

where the function fj(x) is smooth (possibly nonconvex) and gj(x) is convex (possibly

nonsmooth), for all j = 0, . . . , l and the feasible set is denoted as X . A commonly used

method for solving this specific problem is SCA (also known as majorization minimization)

where under a tight convex restriction of the constraint sets, a locally tight approximation of

the original optimization problem is solved iteratively. A tight approximation of the original

optimization problem can be stated as follows: given xk ∈ X at iterate k

min
x

f̃0(x;x
k)

s.t. f̃j(x;x
k) ≤ 0, ∀j = 1, . . . , l (6.1.10a)

x ∈ X k, (6.1.10b)

where f̃0(x;x
k) and f̃j(x;x

k) represent the approximated functions of f̃0(x) and f̃j(x),

respectively and x ∈ X k is the feasible set at iterate k. More precisely, the SCA method is

presented in Algorithm 3. It is well known that a stationary point of the problem (6.1.9) is

also local minimum [91]. The key assumptions [85] to validate this algorithm are summarized

as follows:

Assumption 1: The approximated functions f̃j(•; •) for all j = 0, . . . , l are assumed to

95

Algorithm 3 SCA Algorithm for Problem (6.1.9)

Find a feasible solution xk ∈ X in (6.1.9), choose a step size γ ∈ (0, 1] and set k = 0.
Repeat

1. Compute x̂k, the solution of (6.1.10);

2. Set xk+1 = xk + γ(x̂k − xk);

3. Set k ← k + 1.

Until some convergence criterion is met.

satisfy the following statements:

• f̃j(x;y) is continuous in (x,y) for all x,y ∈ X .

• f̃j(•;y) is convex for all y ∈ X .

• f̃j(x;y) = h̃j(x;y) + gj(x) for all x,y ∈ X .

• Function value consistency : h̃j(x;x) = hj(x) for all x ∈ X .

• Gradient consistency : ∇xf̃j(•;x) = ∇xfj(x) for all x ∈ X , where ∇xf̃j(•;x) denotes

the partial gradient of the function f̃j(•;x) with respect to the argument x evaluated

at (•;x).

• Upper bound : f̃j(x;y) ≥ fj(x) for all x,y ∈ X .

Therefore, the above assumptions guarantee that the original functions can be approximately

replaced by suitable upper-bounding functions where the same first-order behavior can be

preserved.

Examples of Function Approximation

In this section, we will briefly introduce some examples of function approximation technique

that will be used throughout this chapter.

Example 1–Approximation of f0(x): (Example 8 in [91]) Suppose that f0(x) has a product

of functions (PF) structure, i.e., f0(x) = p1(x)p2(x) with both p1 and p2 being positive and

96

convex. For any y ∈ X , a convex approximation of f0(x) is given by

f̃0(x;y) = p1(x)p2(y) + p1(y)p2(x)

+
τ

2
(x− y)⊤U (y)(x− y), (6.1.11)

where τ > 0 is a positive constant, and U(y) is a uniformly positive definite matrix.

Example 2–Approximation of fj(x): (Example 3 in [91]) Suppose that fj(x) has a dif-

ference of convex (DC) structure, i.e., fj(x) = f+
j (x) − f−

j (x) with both f+
j (x) and f

−
j (x)

being continuously differentiable and convex. By linearizing the concave part −f−
j (x), we

obtain a convex upper approximation of fj(x) as follows: for all x,y ∈ X ,

f̃j(x;y) ≜ f+
j (x)− f−

j (y)−∇xf−
j (y)

⊤(x− y) ≥ fj(x). (6.1.12)

Example 3–Approximation of fj(x): (Example 4 in [91]) Suppose that fj(x) has a PF

structure, i.e., fj(x) = q1(x)q2(x) with both q1(x) and q2(x) being positive and convex.

Observe that fj(x) can be rewritten as a function with a DC structure:

fj(x) =
1

2
(q1(x) + q2(x))

2 − 1

2
(q21(x) + q22(x)). (6.1.13)

Then, a convex upper approximation of fj(x) can be obtained by linearizing the concave

part in (6.1.13): for any y ∈ X ,

f̃j(x;y) ≜
1

2
(q1(x) + q2(x))

2 − 1

2
(q21(y) + q22(y))

− q1(y)q′1(y)(x− y)− q2(y)q′2(y)(x− y) ≥ fj(x). (6.1.14)

6.2 Screened DE-SCA

Motivated by the pros and cons of DE and SCA, we propose to merge their own advantages in

jointly optimizing COPs such that better local optimal solutions of the original problem can

97

be obtained. The framework and algorithm of Screened DE-SCA are presented in Figure

21 and Algorithm 4, respectively. In Figure 21, the process of finding and screening DE

solutions (step 1–7) can be implemented in parallel to the process of problem reformulation

(step 1 and step 8–9). In step 10–12, the screened DE solutions from step 7 will be used to

initialize the SCA-based algorithm on reformulated convex problem from step 9, and then

the optimal solutions can be found.

Figure 21: Framework of Screened DE-SCA method. Optimal solutions of the original
nonconvex problem can be found by initializing the SCA-based algorithm with partial feasible
solutions of DE algorithm applied to the original nonconvex problem.

6.2.1 DE Stages

Our algorithm starts from applying the DE algorithm. Specifically, DE algorithm spans

from line 1 to line 6 where stages of initialization, mutation, crossover and selection that

are implemented based on equations from (6.1.5) to (6.1.8) are applied to solve the original

nonconvex problem (6.1.9). Note that we selected DE/rand/1 as a mutation scheme and

ε approximation as a constraint-handling technique [29, 62]. One can also choose different

mutation schemes and constraint-handling techniques in this stage. However, it is out of

98

the scope of our chapter to determine which mutation schemes and constraint-handling

techniques work best in our proposed algorithm.

Algorithm 4 Screened DE-SCA Algorithm for Problem (6.1.9)

Input:
DE: NP , F ∈ (0, 1+], CR ∈ [0, 1], δ, ε,
MaxIter: the maximum DE iterations.
SCA: α, γ(k) ∈ (0, 1], τ > 0.
1: Set t = 1;
2: Randomly generate an initial population P t = {xt

1, . . . ,x
t
NP} using equation (6.1.5);

Repeat:
3: Evaluate the objective functions f0(x

t
i) and degree of constraint violation G(xt

i) for all
i ∈ S;
4: for i = 1 : NP do

1) Calculate mutant decision vector vti using equation (6.1.6);

2) for j = 1 : ND do
/*ND is the number of decision variables*/

i) Obtain trial decision variable ut
i,j using equation (6.1.7);

3) Apply the feasibility rule with tolerance ε according to equation (6.1.8);

5: Set t← t+ 1;
Until t > MaxIter
6: Output and store the best individual in P t as xDE

∗ ;
7: Set k = 0;
8: Randomly initialize the SCA-based algorithm with feasible solutions xk ∈ X where the
feasible parts of xDE

∗ are directly used for assignment;
Repeat:
9: Compute x̂k, the solution of (6.1.10);
10: Set xk+1 = xk + γ(x̂k − xk), with γ(k) = γ(k − 1)(1− αγ(k)) ;
11: Set k ← k + 1;
Until x̂k is a stationary solution of (6.1.10);
12: Output the optimal solution xSCA

∗ and objective function value f0(x
SCA
∗).

6.2.2 Screened DE Solutions

The DE algorithm will simply terminate if the number of iterations exceeds the pre-defined

maximum DE iterations MaxIter. Then, we can output and store the best solutions xDE
∗ as

in line 6. Next, we will need to initialize the SCA-based algorithm and the straightforward

99

idea is to initialize it with xDE
∗ . However, direct initialization with full DE solutions can

actually result in worse initialization in the SCA-based algorithm. We observe that xDE
∗ is

infeasible in general as the degree of constraint violation G(xDE
∗) cannot be small enough

(e.g., δ = 10−4) especially when there are hundreds of constraints. Therefore, it is necessary

to go through the screening process of the best DE solutions before we perform the initial-

ization. In real problems, there can be constraints that contain all decision variables as well

as constraints that contain only one decision variable. The set of indices of feasible decision

variables from the best DE solution can be found as

K = {z ∈ Z|Gj(x
DE
z,∗) = 0,∀j = 1, . . . , l}, (6.2.1)

where Z = {1, . . . , ND} denotes the set of indices for decision variables; Gj(x
DE
z,∗) denotes

the zth decision variable from the best DE solution. In order for the zth decision variable to

be considered feasible, we require that all the constraints that contain it must have degree

of constraint violation with 0. Therefore, the feasible parts of DE solutions can be denoted

as xDE
K,∗ while the infeasible parts are simply denoted as xDE

Z\K,∗.

6.2.3 SCA Stages

While we apply DE algorithm to solve for the original nonconvex problem, we also need

to convert the original problem into its approximated convex problem such that the SCA-

based algorithm can be applied to find the feasible and optimal solutions of it. Specifically,

SCA-based algorithm spans from line 7 to line 12 where the approximated convex problem

(6.1.10) is iteratively solved with a random solution x0 as initialization. It is meaningful to

only use the feasible parts xDE
K,∗ of the best DE solution to initialize the SCA-based algorithm

in line 8 as the initialization must be feasible over all decision variables x ∈ X . Note that at

line 10, in order to improve the convergence rate of the SCA-based algorithm, a diminishing

step-size rule is applied compared to a constant step size in Algorithm 3. To terminate the

100

SCA-based algorithm by finding the stationary solution of (6.1.10), we can simply check if

∥x̂k − xk∥ ≤ ζ where ζ is the desired algorithm accuracy. Finally in line 12, we output the

optimal solution xSCA
∗ and plug it into the original objective function to find f0(x

SCA
∗).

6.3 UAV-enabled Mobile Edge Computing

In this section, we will briefly introduce the proposed model in [128] used to validate our

innovative Screened DE-SCA algorithm. We first present the system model for a UAV-

enabled IoT task offloading process. Then, a nonconvex optimization problem is formulated

to model this process.

6.3.1 System Model

In this chapter, we consider a UAV-enabled IoT task offloading process as illustrated in

Figure 22, which reflects a three-tier network infrastructure: 1) User layer consists of a set

of ground IoT devices i ∈ N = {1, . . . , N} which have periodical computation-intensive

tasks to perform; 2) UAV layer consists of a UAV that is equipped with CCS resources but

is constrained by SWAP; 3) Edge layer consists of a set of ground ECs j ∈ J = {1, . . . , J}.

ECs are composed of edge servers co-located with base stations or access points, which are

deployed in the proximity of IoT devices.

We assume that the IoT devices do not perform local computing due to their limited

computational capacities and thus the generated tasks need to be offloaded to the ECs that

have more resources for processing. We consider the scenario that these IoT devices cannot

directly communicate with ground ECs due to terrestrial signal blockage and shadowing

but a UAV can be deployed to help facilitate the task offloading process via unhindered

ground-to-air (G2A) and air-to-ground (A2G) communications due to its high altitude.

101

Figure 22: 3D plane of the UAV-enabled MEC system with N IoT devices, J ECs and a
UAV.

Task Model

The generated task for each IoT device i can be modeled as a tripletMi = ⟨Li, Ci, λi⟩ where

Li denotes the input data size in bits, Ci denotes the required CPU cycles to process 1 bit

of data and λi denotes the number of tasks generated per second.

Coordinate Model

Our model can be visualized in a 3D Cartesian coordinate system where the locations of

ground IoT devices, UAV and ground ECs can be denoted as OM
i = (xMi , y

M
i , 0), O

U =

(xU , yU , H) and OE
j = (xEj , y

E
j , 0), respectively. We assume the height H of the UAV is

fixed but the horizontal locations xU and yU of the UAV need to be optimized in our prob-

lem since the deployment of the UAV will affect the channel gain during G2A and A2G

communications.

102

Communication Model

The G2A uplink channel gain from IoT device i to the UAV can be obtained using the

free-space path loss model

guli ≜
β0
d2i,ul

=
β0

∥OM
i −OU∥2

, (6.3.1)

where β0 represents the received power at the reference distance of 1 m for a transmission

power of 1 W, di,ul denotes the distance from IoT device i to the UAV, and ∥ · ∥ denotes the

Euclidean norm of a vector. Accordingly, the A2G downlink channel gain from the UAV to

EC j can be obtained as

gdlj ≜
β0
d2j,dl

=
β0

∥OU −OE
j ∥2

, (6.3.2)

where dj,dl denotes the distance from the UAV to EC j.

Assume a FDMA protocol is applied for bandwidth sharing in our studied model. Then,

the achievable uplink transmission data rate in bps from IoT device i to the UAV can be

calculated according to Shannon–Hartley theorem as

Dul
i = Bul

i log2

(
1 +

guli P
M
i

σ2

)
, (6.3.3)

where Bul
i denotes the allocated bandwidth to IoT device i, PM

i denotes the transmission

power of IoT device i and σ2 denotes the noise power at the UAV. Without loss of generality,

we assume both UAV and ECs have the same noise power [131]. Accordingly, the achievable

downlink transmission data rate in bps from the UAV to EC j can be calculated as

Ddl
j = Bdl

j log2

(
1 +

gdlj P
U
TX

σ2

)
, (6.3.4)

where Bdl
j denotes the per-device bandwidth pre-allocated to the UAV when it communicates

with EC j and PU
TX denotes the transmission power of UAV.

103

Delay Model

In this model, the total delay incurred during the IoT task offloading process can be divided

into: i) G2A uplink transmission delay; ii) computation delay at the UAV; iii) A2G downlink

transmission delay; and iv) computation delay at ECs.

G2A Uplink Transmission Delay : As mentioned before, IoT devices are assumed to not

perform any local computing due to their limited computational capacities and thus all tasks

will be first offloaded to the UAV. The G2A uplink transmission delay from IoT device i can

be calculated as

tG2A
i =

Li

Dul
i

. (6.3.5)

Computation Delay at the UAV : After receiving all the tasks from IoT device i, the UAV

will determine the task partitioning where the portion of αi0 ∈ [0, 1] will be processed at the

UAV while the portion of αij ∈ [0, 1] will be further offloaded to EC j for processing. The

computation delay at the UAV when processing the offloaded tasks from IoT device i can

be calculated as

tUi =
αi0LiCi

fU
i

, (6.3.6)

where fU
i denotes the allocated computation capacities in CPU cycles/s from the UAV to

IoT device i.

A2G Downlink Transmission Delay : The A2G downlink transmission delay of task of-

floading from IoT device i to EC j via the UAV can be calculated as

tA2G
ij =

αijLi

Ddl
j

. (6.3.7)

Computation Delay at ECs : The computation delay at ECs when processing the tasks

offloaded from IoT device i to EC j via the UAV can be calculated as

tEij =
αijLiCi

fE
ij

, (6.3.8)

104

where fE
ij denotes the allocated computation capacities in CPU cycles/s from EC j to IoT

device i.

Finally, the total delay experienced by IoT device i during task offloading can be calcu-

lated as

Ti = tG2A
i +max

j∈J
{tUi , tA2G

ij + tEij}. (6.3.9)

Energy Model

In this model, we mainly consider the energy consumed at the UAV side during computation

and communication processes since the battery size of the UAV is limited.

Computation Energy Consumption: The power consumption of the CPU in the UAV

when processing tasks offloaded from IoT device i can be modeled as κ(fU
i)

3 according to

[105], where κ denotes the effective switched capacitance based on the CPU architecture.

Therefore, the energy consumption of the UAV when processing tasks offloaded from IoT

device i can be calculated as

ECP
i = κ(fU

i)
3tUi = κβi0LiCi(f

U
i)

2. (6.3.10)

Communication Energy Consumption: The reception energy consumption of the UAV

when receiving the task input data from IoT device i can be calculated as

ERX
i = PU

RXt
G2A
i =

LiP
U
RX

Dul
i

, (6.3.11)

where PU
RX denotes the receiving power of UAV. Similarly, the transmission energy consump-

tion of the UAV when transmitting the task input data of IoT device i from the UAV to EC

j can be calculated as

ETX
ij = PU

TXt
A2G
ij =

αijLiP
U
TX

Ddl
j

. (6.3.12)

Finally, the total energy consumption of the UAV when serving the computation and

105

communication needs of IoT device i during task offloading can be calculated as

Ei = λi(E
CP
i + ERX

i +
∑
j∈J

ETX
ij). (6.3.13)

6.3.2 Problem Formulation

Based on the system model proposed above, our problem can be stated as follows: with the

objective of minimizing the weighted sum of UAV energy consumption and system latency

experienced by all IoT devices, we jointly optimize the UAV position OU , G2A commu-

nication resource allocation Bul
i , task partitioning αi0 and αij and computation resource

allocation of the UAV fU
i and ECs fE

ij . All the decision variables are continuous. It can be

formulated as the following optimization problem:

min
OU ,Bul

i ,αi0,

αij ,f
U
i ,fE

ij

∑
i∈N

Ei + ϱ
∑
i∈N

Ti (6.3.14a)

s.t.
∑
i∈N

Bul
i ≤ Bul (6.3.14b)

αi0 +
∑
j∈J

αij = 1, ∀i (6.3.14c)

∑
i∈N

fU
i ≤ FU (6.3.14d)

∑
i∈N

fE
ij ≤ FE

j , ∀j (6.3.14e)

0 ≤ αij ≤ 1, ∀i, j (6.3.14f)

0 ≤ αi0 ≤ 1, ∀i (6.3.14g)

Bul
i , f

U
i ≥ 0, ∀i (6.3.14h)

fE
ij ≥ 0, ∀i, j (6.3.14i)

where ϱ is a positive constant describing the relative weight of UAV energy consumption

and system latency; (6.3.14b), (6.3.14d), (6.3.14e), (6.3.14h) and (6.3.14i) guarantee that the

106

allocated resources for G2A bandwidth, CPU frequencies of UAV and ECs are non-negative

and cannot exceed their limits Bul, FU and {FE
j }Jj=1, respectively; (6.3.14c), (6.3.14f) and

(6.3.14g) ensure that the offloading tasks of all IoT devices are completely partitioned over

the UAV and ECs, and each partition variable is between 0 and 1.

Problem (6.3.14) is highly nonconvex due to the nonconvex objective function (6.3.14a).

To tackle the nonconvexity, function approximation methods in Section 6.1.3 are applied to

convert them into suitable convex substitutes since all delay terms tG2A
i , tUi , t

A2G
ij and tEij and

energy terms ECP
i , ETX

i and ERX
i have a PF structure. In this chapter, we will skip the

reformulation process of problem (6.3.14) since our focus is mainly on the solution rather

than the system modeling. However, interested readers can refer to Section IV in [128] for

the detailed derivation.

6.4 Numerical Experiments

In this section, we will validate the effectiveness of our proposed Screened DE-SCA algorithm

via extensive numerical experiments. All the experiments are implemented in MATLAB

R2019b on a desktop computer with an Intel Core i7-8700 3.20GHz CPU and 32GB RAM.

6.4.1 Simulation Setup

For simplicity, we consider the same simulation settings used in [128] where 4 ground ECs

are placed at each vertex and 10 ground IoT devices are randomly distributed in a 2D area

of 1×1 km2 as depicted in Figure 23. The simulation parameters are summarized in Table

8 unless otherwise stated.

In order to validate the effectiveness of our proposed Screened DE-SCA algorithm in

terms of achieving the best system cost of problem (6.3.14) in the UAV-enable MEC system,

we consider the baseline algorithms as follows:

• DE: Extend the classical DE algorithm to solve (6.3.14) by utilizing the feasibility rules

introduced in Section 6.1.2.

107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
 (

k
m

)

ECs IoT devices

EC4

EC2

EC3

EC1

Figure 23: 2D plane of the simulated MEC system with 10 IoT devices and 4 ECs.

• DE with Penalty Function (DE-PF): Add the degree of constraint violation G(x) to

the objective function as a penalty function when applying DE to solve (6.3.14).

• DE with Initialization Normalization (DE-IN): Force the equality constraints (6.3.14c)

to be satisfied by normalizing the value of initialized task partitioning variables when

applying DE to solve (6.3.14).

• SCA-based Method: Apply SCA technique to transform problem (6.3.14) into approx-

imated convex problem and then iteratively solve it with random initialization.

• SCA-based Method with Full DE Solutions as Initialization (DE-SCA): Initialize the

approximated convex problem of (6.3.14) by full solutions obtained from solving (6.3.14)

with DE and then iteratively solve it.

• UMEC: We adapt the task selection and scheduling algorithm proposed in [80] to solve

for our nonconvex problem of joint task offloading and resource allocation.

• LCPSO: We adapt the learning-based task sequence and resource allocation algorithm

in [100] to solve for our nonconvex problem of joint task offloading and resource allo-

cation.

108

We would like to clarify that our system setting is different from those in prior works.

Therefore, the approaches proposed in prior studies are not directly applicable to our settings.

We carefully select two state-of-the-art methods (not DE or SCA-based) UMEC and LCPSO

applied in studying the UAV-based MEC systems. Although the problems studied in their

papers are different from ours, we are still able to evaluate them by adapting them into

our model. To differentiate from the DE-SCA algorithm, our proposed Screened DE-SCA

method only uses the partial DE solutions that are feasible to perform initialization of SCA-

based method.

Table 8: Simulation Parameters

Parameters Values Parameters Values

DE:

CR 0.2 F [0.2, 0.8]

MaxIter 10000 NP 700

δ 10−4

SCA:

α 0.5 γ 0.5

ζ 10−2

UAV-based MEC:

Ci [100, 200] CPU cycles/bit ρ 5

σ2 −100 dBm FE
j [6, 9] GHz

β0 −50 dB FU 3 GHz

κ 10−28 [129, 130] H 0.1 km

λi 30 tasks/min Li [1, 5] Mbits

PM
i 0.1 W Bul 10 MHz

PU
RX 0.1 W Bdl

j 0.5 MHz

PU
TX 1 W

6.4.2 Experimental Results

In this section, we will first discuss the tradeoff between feasibility and optimality incurred

while applying DE to solve for COPs. Then, we compare two different DE variants DE-PF

and DE-IN used in handling the constraints with original DE in our problem. Finally, we

109

compare our proposed Screened DE-SCA method with baseline methods that solely rely on

DE or SCA and the DE-SCA method.

Feasibility and Optimality Tradeoff for DE

With current simulation settings of 10 IoT devices and 4 ECs, there are 112 constraints

in total including 10 equality constraints. A large number of constraints combining with

equality constraints generally generally makes it impossible for the DE algorithm to find the

optimal solutions within given time limits. Therefore, it is necessary to relax the constraint

requirements by introducing the ε approximation [101] where a large ε represents more

tolerance we allow for constraint violation. Table 9 summarizes how optimal system cost of

problem (6.3.14) changes as the ε decreases, where Geq(x) denotes the degree of constraint

violation by the equality constraints (6.3.14d) and η defines the ratio of Geq(x) and G(x). We

Table 9: System cost vs. ε for DE Algorithm

ε G(x) Geq(x) η ≜ Geq(x)/G(x) System Cost

10 9.98 7.95 79.64% 8.10

5 4.94 4.49 90.76% 18.24

1 0.97 0.45 46.48% 42.04

0.5 0.46 0.20 43.95% 64.63

0.1 0.19 0.10 54.76% 86.87

0.05 0.14 0.06 44.00% 117.19

0.01 0.17 0.08 48.81% 149.81

observe that when ε ≥ 0.5, the degree of constraint violation G(x) will be strictly less than

ε but when ε < 0.5, ε approximation will be violated as G(x) are larger than ε. Moreover,

the relationship between ε and optimal system cost is plotted in Figure 24. We observe that

the system cost generally decreases as the value of ε increases since there are less restrictions

on meeting all the constraints. In other words, a tradeoff exists between feasibility and

optimality for DE algorithm. The less feasible the solutions are, the better system cost

we can achieve. However, all solutions under the given ε values are actually infeasible as

G(x) are non-zero. Note that in solving real problems, the feasibility of solutions should

110

Figure 24: System cost of problem (6.3.14) as a function of ε for DE algorithm.

be firstly satisfied before considering the optimality. Therefore, the DE algorithm with ε

approximation can generate a worse system cost if we want the feasibility of our solutions

to be better considered.

DE Variants for Constraint Handling

In this section, we will compare the original DE algorithm with its two variants considering

different constraint handling techniques in terms of reducing the system cost. For DE-PF

method, we obtain the adjusted objective function by augmenting the original objective

function with G(x) since in a minimization sense, we want both the objective function value

and G(x) to be as small as possible. According to the value of η in Table 9, we found that

around 58.34% on average of the degree of constraint violation is caused by the equality

constraints. Therefore, in DE-IN method, we force the equality constraints to be satisfied

after random DE initialization by normalization:

α′
i0 =

αi0

αi0 +
∑J

j=1 αij

, ∀i (6.4.1a)

α′
ij =

αij

αi0 +
∑J

j=1 αij

, ∀i, j, (6.4.1b)

111

where we can guarantee that the equality constraints hold for the normalized task partition-

ing variables α′
i0 and α′

ij. Besides, we can also require that the initialized decision variables

for all individuals must satisfy all inequality constraints before we proceed towards mutation

stage. However, one can easily get trapped in this initialize-check feasibility-reinitialize end-

less loop, given the large number of constraints considered in our problem. For simplicity,

we set ε to 1 and summarize the system cost comparison results in Table 10. We observe

that given ε = 1, DE-IN algorithm has the lowest system cost while DE-PF algorithm has

the smallest G(x). According to the feasibility rules, if one decision vector is feasible and

the other one i infeasible, the feasible one is selected. Therefore, we will select the solutions

of DE-PF since it has the smallest degree of constraint violation among all three methods.

Table 10: System cost comparison for different DE algorithms when ε = 1 where DE-PF
and DE-IN stand for DE with Penalty Function and DE with Initialization Normalization,
respectively

Methods ε G(x) System Cost

DE 1 0.97 42.04

DE-PF 1 0.84 37.83

DE-IN 1 1.00 22.67

Effectiveness of Screened DE-SCA

In this section, we will demonstrate the effectiveness of our proposed Screened DE-SCA

algorithm in terms of reducing the system cost of problem (6.3.14) compared to other baseline

methods. We will also verify why our method can lead to better local optimal solutions.

Cost comparison among Screened DE-SCA methods : As discussed in Section 6.4.2, the

solutions obtained by DE algorithm are indeed infeasible no matter how we select the value

of ε. Therefore, we cannot initialize the SCA-based algorithm with full DE solutions since

it requires the initialization to be feasible. In contrast, we will only choose the partial parts

xDE
K,∗ of the solution found by DE to perform the initialization. To validate why DE-PF

method is the best one to initialize the SCA-based method, we compare the system cost of

Screened DE-SCA, Screened DE-IN-SCA and Screened DE-PF-SCA where the SCA-based

112

method is initialized by the feasible parts of DE, DE-IN and DE-PF, respectively. As shown

in Table 11, the Screened DE-PF-SCA method can achieve the lowest system cost and thus it

demonstrates the superiority of DE-PF over DE and DE-IN methods as a means to initialize

the SCA-based method.

Table 11: System cost comparison for Screened DE-SCA algorithms where DE, DE-IN and
DE-PF are used to initialize the SCA-based method, respectively

Methods System Cost Energy Cost Delay Cost

Screened DE-SCA 39.09 1.89 7.44

Screened DE-IN-SCA 44.26 2.16 8.42

Screened DE-PF-SCA 32.32 1.68 6.13

Initialization feasibility over the iterates : Apart from initializing the SCA-based method

with feasible solution at the first iteration, we also require that the solutions to the ap-

proximated convex problem to be feasible at each iteration since this algorithm runs in an

iterative fashion until a stationary solution is found. In other words, the found solutions

at the (k − 1)th iteration are used to initialize the approximated convex problem at the

kth iteration. Table 12 summarizes the initialization feasibility comparison between SCA-

based and Screened DE-SCA methods, where ”#Iterations” denotes the average number of

iterations needed to obtain a stationary solution while Ḡ(x) denotes the average degree of

constraint violation over all iterations. We observe that the Screened DE-SCA only takes 11

iterations on average, which is twice faster than the SCA-based method in achieving a sta-

tionary solution. Besides, we observe that Ḡ(x) of our method is approximately zero across

all iterates, which implies the solutions found at all iterates are feasible. However, Ḡ(x) of

0.77 in SCA-based method indicates that some of the iterative solutions found are indeed

infeasible. Therefore, we conclude that because of the initialization feasibility guaranteed at

each iterate, our proposed method can generate better local optimal solutions compared to

the SCA-based method.

Cost comparison with benchmark methods : The system cost comparison with other bench-

mark methods are given in Table 13, where the DE-PF method with ε = 1 is selected for

113

Table 12: Initialization feasibility comparison for SCA-based and Screened DE-SCA algo-
rithms initialized by DE-PF method

Methods #Iterations Ḡ(x)

SCA-based 23 0.77

Screened DE-SCA 11 10−4

initialization as its system cost is comparable to that of the SCA-based algorithm. Note that

all three methods SCA-based, DE-SCA and Screened DE-SCA will generate feasible solu-

tions as the SCA technique can transform the original nonconvex problem into a suitable

convex surrogate and then it can be successfully solved by optimization software such as

Gurobi and CVX. From this table, we observe that the DE-SCA method does not generate

a better system cost as the infeasible solutions of DE-PF violate the feasibility requirements

for SCA-based algorithm initialization. However, our proposed Screened DE-SCA method

using feasible parts of DE-PF solution for initialization can improve the system cost by

6.21%, 15.77% and 27.35% compared to the SCA-based, UMEC and LCPSO algorithms,

respectively, which validates its effectiveness in terms of system cost reduction.

Table 13: System cost comparison for Screened DE-SCA using feasible parts of DE-PF
solution for initialization with other benchmark methods

Methods System Cost Energy Cost Delay Cost

DE-SCA 110.76 0.87 21.98

LCPSO [100] 44.49 3.44 8.21

UMEC [80] 38.37 2.33 7.28

SCA-based 34.46 1.59 6.57

Screened DE-SCA 32.32 1.68 6.13

Discussions

In this section, we will discuss the potential difficulties of applying the screened DE-SCA

method and the future work.

Time complexity : The total number of decision variables considered in our problem can

be calculated as 3N + 2NJ + 2 where N and J are the number of IoT devices and ECs,

respectively. In simulation, we set N to 10 and J to 4 so there are 112 decision variables in

114

total. For the DE method, the time complexity can be denoted as O(MaxIter∗NP ∗(N+J))

whereMaxIter and NP denote the pre-defined maximum DE iterations and population size.

Suppose MaxIter and NP remain constant in our experiments, the time complexity can

be reduced to O(N + J), which has linear running time. As for the SCA-based method,

the reformulated problem can be solved by the interior-point optimizer such as SeDuMi and

the time complexity of this optimizer can be denoted as O(ND3) where ND is the number

of decision variables 3N + 2NJ + 2. Therefore, the SCA-based method has polynomial

running time, which is ”tractable” and ”fast” according to Cobham’s thesis [40]. In summary,

the total time complexity of our proposed method will be O(N + J) + O(ND3), which is

polynomial and thus tractable.

Hyperparameters : Both DE and SCA-based methods are dependent on the hyperparam-

eter initialization such as population size, differential scaling factor and crossover rate in DE

and step size in SCA-based method. These hyperparameters needs to be tuned by lots of

trial and error as there is no theoretic evidence on how to calculate the values of them.

Convex approximation: We shall note that not all nonconvex optimization problems can

be approximated by suitable convex forms. In our problem setting, there are mainly two

types of nonconvex constraints that can be represented by either difference of functions or

product of functions. According to the function approximation examples in Section 6.1.3,

they can be successfully converted into convex forms. More candidate nonconvex constraints

and objective functions can be found in [91, 92].

Future work : There are still some open questions on how to determine qualified DE

solutions to initialize the SCA-based method. First, we can investigate which mutation

scheme and constraint-handing technique will jointly work the best in finding the solutions.

Second, we can define different metrics to evaluate the quality of the DE solutions even if the

DE algorithm cannot converge within time limits. Third, we can design different schemes to

screen the best DE solutions such that the initialization of the SCA-based method will lead

to better solutions.

115

6.5 Summary

In this article, we have proposed an innovative Screened DE-SCA algorithm by jointly con-

sidering both the classical DE algorithm and SCA-based algorithm. This algorithm can

not only overcome the lack of feasibility guarantee in DE algorithm but also the inability of

working on original nonconvex problems in SCA-based algorithm. Specifically, this algorithm

unifies DE and SCA techniques such that the feasible parts of the solutions of an original

nonconvex problem found by DE algorithm can be used to initialize the SCA-based algorithm

on its approximated convex surrogate. We have utilized a UAV-enabled MEC system that

involves the interactions among IoT devices, UAV and ECs to validate the effectiveness of

our proposed algorithm as the formulated problem therein is highly nonconvex. Through ex-

tensive experiments, we have verified that our proposed Screened DE-SCA algorithm largely

outperforms benchmarks including DE, SCA-based and state-of-the-art algorithms to solve

the formulated problem in the UAV-enabled MEC system. In the future, we will extend

our proposed algorithm to solve the optimization problems incurred in a UAV-enabled MEC

system that contains multiple UAVs.

116

CHAPTER VII

CONCLUDING REMARKS

7.1 Conclusions

In this dissertation, we have considered resource management for cost-effective cloud and

edge systems. For multi-tenant colocation datacenter, we have proposed to use aggregation-

based approach to procure power collectively in the wholesale electricity market such that

the total energy cost can be minimized. A novel cost allocation scheme based on the marginal

contribution of each tenant to the total expected cost have been proposed to fairly distribute

the aggregation benefits among participating tenants. For geographically distributed data-

centers, we have proposed to jointly optimize electricity bills and bandwidth cost associated

with workload management from both demand and supply side when participating in multi-

timescale electricity market by utilizing local renewable energy sources and energy storage

systems. We have formulated a two-stage stochastic optimization problem by considering

random scenarios of interactive workload demand, renewable generation and real-time elec-

tricity prices, and then reformulate as its deterministic equivalent problem. Experimental

results based on real-world traces have shown that our proposed cost allocation scheme

and stochastic optimization algorithm can effectively reduce the overall cost for datacenters

participating in electricity markets. We have further studied the task offloading for UAV-

enabled mobile edge computing systems with the goal of minimizing the weighted sum of

total energy consumption of the UAV when serving the computation and communication

needs of the mobile users when they choose to offload tasks and the overall delay of all mo-

bile users. We have also proposed a novel method that combines both DE and SCA-based

117

algorithms. Through extensive experiments, we have verified that our proposed Screened

DE-SCA algorithm largely outperforms the baseline algorithms that solely rely on DE or

SCA to solve the formulated problem in the UAV-enabled MEC system.

7.2 Future Works

In Chapters III and IV, we have discussed the resource management with the goal of energy

cost minimization in the context of cloud computing systems considering multi-agent colo-

cation datacenter and geographically distributed datacenters, respectively. In Chapters V

and VI, we have also discussed how resource management with the goal of overall cost min-

imization in the context of UAV-enabled mobile edge computing systems and proposed a

novel Screened DE-SCA optimization algorithm. Although we have theoretically verified the

correctness of our mathematical modeling and proposed algorithms, we could foresee some

practical issues in order to fully apply our research work in the industry. Apart from applying

optimization and evolutionary computation methods in UAV-enabled MEC, We are further

interested in applying game-theoretic and deep reinforcement learning-based methods. Two

future research topics including selfish task offloading in mobile edge computing systems with

the goal of finding a Nash equilibrium solution to the formulated game, where no mobile

users can be better off by changing strategies while the other mobile users fix their strategies,

and autonomous task offloading and resource allocation by deep reinforcement learning for

UAV-enabled mobile edge computing systems with the goal of minimizing the weighted sum

of total energy consumption of the UAV when serving the computation and communication

needs of the mobile users when they choose to offload tasks and the overall delay of all mobile

users, are introduced as follows.

7.2.1 Practical Issues of Our Research Work

For the research task of energy management in colocation datacenters, it may be difficult for

tenants to form a coalition due to privacy and security concerns. They can be reluctant to

118

disclose their energy demand profile to potential competitors. To tackle this issue, we can

designate a trustworthy arbitrator who will collect the energy demand of all participating

tenants and then split the cooperative energy cost to each tenant. Second, the realized

cost can be very different from the expected cost on a given time interval and may not

be distributed in a satisfactory way for each tenant [20]. Therefore, we need to design an

alternative cost allocation scheme such that it allows for a satisfactory distribution of the

realized cost among the tenants, and the cost allocation lies in the core of the cooperative

game of realized cost.

For the research task of joint task offloading and resource allocation in UAV-enabled

mobile edge computing, we need to further conduct a sensitivity analysis of the constant

ρ in the objective function (5.1.14a). This constant represents the relative weight of UAV

energy consumption and service delay. By performing such analysis, we can gain more

insights into how the choice of ρ will impact the total cost and whether we should put more

emphasis on energy consumption or network latency. Besides, the flying time of the UAV

should be taken into account as the UAV battery size can be the bottleneck especially when

the considered system is deployed in a large space. Adding the UAV flying time constraints

as well as the UAV trajectory planning will further complicate our model but it represents

a more realistic scenario.

7.2.2 Selfish Task Offloading in Mobile Edge Computing Systems

We consider a three-tier architecture for mobile offloading scenario as illustrated in Figure 25,

which consists of local layer of mobile users, middle layer of computing nodes in the proximity

of mobile users, typically characterized by a limited amount of resources, and remote layer

of distant cloud servers, which have relatively infinite resources. For this architecture, we

consider a decentralized scenario where multiple non-cooperative mobile users share the

limited computing resources of nearby computing access points and can selfishly decide

how and where to offload (part of) their computational tasks in a three-tier computing

119

Figure 25: An example of a mobile edge computing system including 5 mobile users, 3 access
points and a remote cloud, where both MU1 and MU2 offload tasks via AP1, MU3 offloads
tasks via AP2, and MU4 offloads tasks via AP3 while MU5 performs local computing without
offloading.

architecture with multiple access points. We assume each mobile user is selfish and rational

aiming to minimize their own cost in the mobile edge computing system, which consists of

weighted sum of the total delay and energy consumption. A strategic form game defined by

players, strategies and cost function is formulated to model this problem. Our goal is to find

a Nash equilibrium solution to the formulated game, where no mobile users can be better

off by changing strategies while the other mobile users fix their strategies.

120

7.2.3 Deep Reinforcement Learning for Joint Task Offloading and Resource

Allocation in UAV-Enabled Mobile Edge Computing

Reinforcement learning (RL) can be employed in a UAV-enabled MEC to learn the opti-

mal policy in the absence of labelled training data by interacting with MEC environment.

Specifically, RL seeks to maximize the expected cumulative reward of the agents in an en-

vironment under the optimal policy taken by the agents. Classical RL results are stored in

a Q-table that consists of states, actions and rewards. However, it will become incapable

when the state space or action space is huge. Thanks to the epoch-making development of

deep learning, deep reinforcement learning (DRL) has been widely used to approximate the

Q values with the assistance of deep neural networks without explicitly designing the state

space.

We will consider the similar UAV-enabled MEC system that is discussed in Sections V and

VI. In the meanwhile, the UAV is allowed to move freely in the 3D architecture but subject

to the SWAP limitations. Therefore, our problem can be reformulated in the framework

of DRL: given current states of UAV battery level, available computation resources and

communication bandwidth, we can optimize the actions of UAV trajectory, task offloading

ratio and resource allocation such that the reward (negative overall system cost) of the UAV-

enabled MEC system can be maximized. However, it is challenging to solve our problem using

DRL. On one hand, the constrains in the formulated problem are highly convex, and there

is no guarantee that all of them can be strictly satisfied by applying the DRL. The optimal

policy can be infeasible in practice. On the other hand, there can be infinite combinations of

action when the actions can take on continuous values. This issue can significantly increase

the time complexity of the DRL, which makes DRL unable to handle the combinatorial

action space.

121

REFERENCES

[1] California ISO, http://www.caiso.com/.

[2] Cloud computing companies, https://www.datamation.com/cloud-computing/

cloud-computing-companies.html.

[3] Edge computing vs. cloud computing: What you need to know, https://www.vxchnge.

com/blog/edge-computing-vs-cloud-computing.

[4] Electric reliability council of texas, http://www.ercot.com/.

[5] Exploring mobile cloud computing, https://www.esds.co.in/blog/exploring-

mobile-cloud-computing-esds/#sthash.v1ekjcfd.dpbs.

[6] Fauna, https://fauna.com/blog/edge-computing-vs-cloud-computing-whats-

the-difference.

[7] Measurement and instrumentation data center (MIDC), http://www.nrel.gov/

midc/.

[8] PJM - markets & operations, https://www.pjm.com/markets-and-operations.

aspx.

[9] Google gets go-ahead to buy, sell energy, https://www.cnet.com/news/google-gets-

go-ahead-to-buy-sell-energy/, Feb. 2010.

122

[10] Alia Asheralieva and Dusit Niyato, Hierarchical game-theoretic and reinforcement

learning framework for computational offloading in UAV-enabled mobile edge comput-

ing networks with multiple service providers, IEEE Internet of Things Journal 6 (2019),

no. 5, 8753–8769.

[11] Muhammad Asim, Wali Khan Mashwani, Habib Shah, and Samir Brahim Belhaouari,

An evolutionary trajectory planning algorithm for multi-UAV-assisted MEC system,

Soft Computing (2021), 1–14.

[12] Enrique Baeyens, Eilyan Y Bitar, Pramod P Khargonekar, and Kameshwar Poolla,

Coalitional aggregation of wind power, IEEE Transactions on Power Systems 28 (2013),

no. 4, 3774–3784.

[13] Sergio Barbarossa, Stefania Sardellitti, and Paolo Di Lorenzo, Joint allocation of com-

putation and communication resources in multiuser mobile cloud computing, Signal

Processing Advances in Wireless Communications (SPAWC), 2013 IEEE 14th Work-

shop on, 2013, pp. 26–30.

[14] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa, To offload or not to

offload? the bandwidth and energy costs of mobile cloud computing, IEEE INFOCOM,

2013, pp. 1285–1293.

[15] Luiz André Barroso and Urs Hölzle, The datacenter as a computer: An introduction to

the design of warehouse-scale machines, Synthesis lectures on computer architecture 4

(2009), no. 1, 1–108.

[16] Eilyan Y Bitar, Ram Rajagopal, Pramod P Khargonekar, Kameshwar Poolla, and

Pravin Varaiya, Bringing wind energy to market, IEEE Transactions on Power Systems

27 (2012), no. 3, 1225–1235.

[17] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge university

press, 2004.

123

[18] Xianbin Cao, Peng Yang, Mohamed Alzenad, Xing Xi, Dapeng Wu, and Halim

Yanikomeroglu, Airborne communication networks: A survey, IEEE Journal on Se-

lected Areas in Communications 36 (2018), no. 9, 1907–1926.

[19] Valeria Cardellini, Vittoria De Nitto Personé, Valerio Di Valerio, Francisco Facchinei,

Vincenzo Grassi, Francesco Lo Presti, and Veronica Piccialli, A game-theoretic ap-

proach to computation offloading in mobile cloud computing, Mathematical Program-

ming 157 (2016), no. 2, 421–449.

[20] Pratyush Chakraborty, Enrique Baeyens, Pramod P Khargonekar, and Kameshwar

Poolla, A cooperative game for the realized profit of an aggregation of renewable energy

producers, 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016,

pp. 5805–5812.

[21] Changbing Chen, Bingsheng He, and Xueyan Tang, Green-aware workload scheduling

in geographically distributed data centers, Cloud Computing Technology and Science

(CloudCom), 2012 IEEE 4th International Conference on, IEEE, 2012, pp. 82–89.

[22] Lijun Chen and Na Li, On the interaction between load balancing and speed scaling,

IEEE Journal on Selected Areas in Communications 33 (2015), no. 12, 2567–2578.

[23] Meng-Hsi Chen, Min Dong, and Ben Liang, Resource sharing of a computing access

point for multi-user mobile cloud offloading with delay constraints, IEEE Transactions

on Mobile Computing 17 (2018), no. 12, 2868–2881.

[24] Meng-Hsi Chen, Ben Liang, and Min Dong, Joint offloading and resource allocation for

computation and communication in mobile cloud with computing access point, IEEE

INFOCOM, 2017, pp. 1–9.

[25] Min Chen and Yixue Hao, Task offloading for mobile edge computing in software defined

ultra-dense network, IEEE Journal on Selected Areas in Communications 36 (2018),

no. 3, 587–597.

124

[26] Xu Chen, Decentralized computation offloading game for mobile cloud computing, IEEE

Transactions on Parallel and Distributed Systems 26 (2015), no. 4, 974–983.

[27] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu, Efficient multi-user computation

offloading for mobile-edge cloud computing, IEEE/ACM Transactions on Networking

(ToN) 24 (2016), no. 5, 2795–2808.

[28] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti,

Clonecloud: elastic execution between mobile device and cloud, Proceedings of the sixth

conference on Computer systems, ACM, 2011, pp. 301–314.

[29] Carlos A Coello Coello, Theoretical and numerical constraint-handling techniques used

with evolutionary algorithms: a survey of the state of the art, Computer Methods in

Applied Mechanics and Engineering 191 (2002), no. 11-12, 1245–1287.

[30] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,

Ranveer Chandra, and Paramvir Bahl, Maui: making smartphones last longer with

code offload, Proceedings of the 8th international conference on Mobile systems, appli-

cations, and services, ACM, 2010, pp. 49–62.

[31] Kalyanmoy Deb, An efficient constraint handling method for genetic algorithms, Com-

puter Methods in Applied Mechanics and Engineering 186 (2000), no. 2-4, 311–338.

[32] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang, A survey of mobile cloud

computing: architecture, applications, and approaches, Wireless communications and

mobile computing 13 (2013), no. 18, 1587–1611.

[33] Theo SH Driessen, Cooperative games, solutions and applications, vol. 3, Springer

Science & Business Media, 2013.

125

[34] Wanmei Feng, Jie Tang, Nan Zhao, Xiuyin Zhang, Xianbin Wang, and Kai-Kit Wong,

A deep learning-based approach to resource allocation in UAV-aided wireless powered

MEC networks, ICC 2021-IEEE International Conference on Communications, IEEE,

2021, pp. 1–6.

[35] Mahdi Ghamkhari and Hamed Mohsenian-Rad, Optimal integration of renewable en-

ergy resources in data centers with behind-the-meter renewable generator, Communi-

cations (ICC), 2012 IEEE International Conference on, IEEE, 2012, pp. 3340–3344.

[36] Mahdi Ghamkhari, Hamed Mohsenian-Rad, and Adam Wierman, Optimal risk-aware

power procurement for data centers in day-ahead and real-time electricity markets,

Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Confer-

ence on, IEEE, 2014, pp. 610–615.

[37] Mahdi Ghamkhari, Adam Wierman, and Hamed Mohsenian-Rad, Energy portfolio

optimization of data centers, IEEE Transactions on Smart Grid (2016).

[38] , Energy portfolio optimization of data centers, IEEE Transactions on Smart

Grid 8 (2017), no. 4, 1898–1910.

[39] James Glanz, Power, pollution and the internet, https://www.nytimes.com/2012/

09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-

industry-image.html, 2012.

[40] Oded Goldreich, Computational complexity: a conceptual perspective, ACM Sigact

News 39 (2008), no. 3, 35–39.

[41] Brian Guenter, Navendu Jain, and Charles Williams, Managing cost, performance, and

reliability tradeoffs for energy-aware server provisioning, INFOCOM, 2011 Proceedings

IEEE, IEEE, 2011, pp. 1332–1340.

126

[42] Songtao Guo, Bin Xiao, Yuanyuan Yang, and Yang Yang, Energy-efficient dynamic

offloading and resource scheduling in mobile cloud computing, IEEE INFOCOM, 2016,

pp. 1–9.

[43] Yuanxiong Guo, Zongrui Ding, Yuguang Fang, and Dapeng Wu, Cutting down electric-

ity cost in internet data centers by using energy storage, Global Telecommunications

Conference (GLOBECOM 2011), 2011 IEEE, IEEE, 2011, pp. 1–5.

[44] Yuanxiong Guo and Yuguang Fang, Electricity cost saving strategy in data centers

by using energy storage, IEEE Transactions on Parallel and Distributed Systems 24

(2013), no. 6, 1149–1160.

[45] Yuanxiong Guo, Yanmin Gong, Yuguang Fang, Pramod P Khargonekar, and Xiao-

jun Geng, Energy and network aware workload management for sustainable data cen-

ters with thermal storage, IEEE Transactions on Parallel and Distributed Systems 25

(2014), no. 8, 2030–2042.

[46] Songyue Han, Dawei Ma, Chao Kang, Wei Huang, Chaoying Lin, and Chunyuan Tian,

Optimization of mobile edge computing offloading model for distributed wireless sensor

devices, Journal of Sensors 2022 (2022).

[47] Qiyu Hu, Yunlong Cai, Guanding Yu, Zhijin Qin, Minjian Zhao, and Geoffrey Ye Li,

Joint offloading and trajectory design for UAV-enabled mobile edge computing systems,

IEEE Internet of Things Journal 6 (2018), no. 2, 1879–1892.

[48] Xiaoyan Hu, Kai-Kit Wong, Kun Yang, and Zhongbin Zheng, UAV-assisted relaying

and edge computing: Scheduling and trajectory optimization, IEEE Transactions on

Wireless Communications 18 (2019), no. 10, 4738–4752.

[49] Dong Huang, Ping Wang, and Dusit Niyato, A dynamic offloading algorithm for mobile

computing, IEEE Transactions on Wireless Communications 11 (2012), no. 6, 1991–

1995.

127

[50] Pei-qiu Huang, Yong Wang, and Ke-zhi Wang, Energy-efficient trajectory planning for

a multi-UAV-assisted mobile edge computing system, Frontiers of Information Technol-

ogy & Electronic Engineering 21 (2020), no. 12, 1713–1725.

[51] Pei-Qiu Huang, Yong Wang, Kezhi Wang, and Kun Yang, Differential evolution with

a variable population size for deployment optimization in a UAV-assisted IoT data col-

lection system, IEEE Transactions on Emerging Topics in Computational Intelligence

4 (2020), no. 3, 324–335.

[52] Mohammad A Islam, Anshul Gandhi, and Shaolei Ren, Minimizing electricity cost for

geo-distributed interactive services with tail latency constraint., IGSC, 2016, pp. 1–8.

[53] Brendan Jennings and Rolf Stadler, Resource management in clouds: Survey and re-

search challenges, Journal of Network and Systems Management 23 (2015), no. 3,

567–619.

[54] Seongah Jeong, Osvaldo Simeone, and Joonhyuk Kang, Mobile edge computing via a

UAV-mounted cloudlet: Optimization of bit allocation and path planning, IEEE Trans-

actions on Vehicular Technology 67 (2018), no. 3, 2049–2063.

[55] Sladana Josilo and Gyorgy Dan, A game theoretic analysis of selfish mobile computa-

tion offloading, IEEE INFOCOM, 2017.

[56] Rakpong Kaewpuang, Dusit Niyato, Ping Wang, and Ekram Hossain, A framework for

cooperative resource management in mobile cloud computing, IEEE Journal on Selected

Areas in Communications 31 (2013), no. 12, 2685–2700.

[57] Dileep Kalathil, Chenye Wu, Kameshwar Poolla, and Pravin Varaiya, The sharing

economy for the smart grid, arXiv preprint arXiv:1608.06990 (2016).

128

[58] Yi-Hsuan Kao, Bhaskar Krishnamachari, Moo-Ryong Ra, and Fan Bai, Hermes: La-

tency optimal task assignment for resource-constrained mobile computing, IEEE Trans-

actions on Mobile Computing 16 (2017), no. 11, 3056–3069.

[59] Mahdi Kohansal and Hamed Mohsenian-Rad, Price-maker economic bidding in two-

settlement pool-based markets: The case of time-shiftable loads, IEEE Transactions on

Power Systems 31 (2016), no. 1, 695–705.

[60] Anis Koubâa, Adel Ammar, Mahmoud Alahdab, Anas Kanhouch, and Ahmad Taher

Azar, Deepbrain: Experimental evaluation of cloud-based computation offloading and

edge computing in the internet-of-drones for deep learning applications, Sensors 20

(2020), no. 18, 5240.

[61] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava, A survey of com-

putation offloading for mobile systems, Mobile Networks and Applications 18 (2013),

no. 1, 129–140.

[62] Jouni Lampinen, A constraint handling approach for the differential evolution algo-

rithm, Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.

No. 02TH8600), vol. 2, IEEE, 2002, pp. 1468–1473.

[63] Tan N Le, Jie Liang, Zhenhua Liu, Ramesh K Sitaraman, Jayakrishnan Nair, and

Bong Jun Choi, Optimal energy procurement for geo-distributed data centers in multi-

timescale electricity markets, ACM SIGMETRICS Performance Evaluation Review 45

(2017), no. 2, 58–63.

[64] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew, Online al-

gorithms for geographical load balancing, Green Computing Conference (IGCC), 2012

International, IEEE, 2012, pp. 1–10.

129

[65] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska, Online dy-

namic capacity provisioning in data centers, Communication, Control, and Computing

(Allerton), 2011 49th Annual Allerton Conference on, IEEE, 2011, pp. 1159–1163.

[66] , Dynamic right-sizing for power-proportional data centers, IEEE/ACM Trans-

actions on Networking (TON) 21 (2013), no. 5, 1378–1391.

[67] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui Wang,

Manish Marwah, and Chris Hyser, Renewable and cooling aware workload management

for sustainable data centers, ACM SIGMETRICS Performance Evaluation Review,

vol. 40, ACM, 2012, pp. 175–186.

[68] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H Low, and Lachlan LH An-

drew, Geographical load balancing with renewables, ACM SIGMETRICS Performance

Evaluation Review 39 (2011), no. 3, 62–66.

[69] , Greening geographical load balancing, Proceedings of the ACM SIGMETRICS

joint international conference on Measurement and modeling of computer systems,

ACM, 2011, pp. 233–244.

[70] Zhenhua Liu, Iris Liu, Steven Low, and Adam Wierman, Pricing data center demand

response, ACM SIGMETRICS Performance Evaluation Review 42 (2014), no. 1, 111–

123.

[71] Weidang Lu, Yu Ding, Yuan Gao, Su Hu, Yuan Wu, Nan Zhao, and Yi Gong, Re-

source and trajectory optimization for secure communications in dual unmanned aerial

vehicle mobile edge computing systems, IEEE Transactions on Industrial Informatics

18 (2021), no. 4, 2704–2713.

130

[72] Zhoujia Mao, Can Emre Koksal, and Ness B Shroff, Near optimal power and rate

control of multi-hop sensor networks with energy replenishment: Basic limitations with

finite energy and data storage, IEEE Transactions on Automatic Control 57 (2011),

no. 4, 815–829.

[73] Mohamed HMousa and Mohamed K Hussein, Efficient UAV-based mobile edge comput-

ing using differential evolution and ant colony optimization, PeerJ Computer Science

8 (2022), e870.

[74] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Mérouane Debbah, Mobile un-

manned aerial vehicles (UAVs) for energy-efficient internet of things communications,

IEEE Transactions on Wireless Communications 16 (2017), no. 11, 7574–7589.

[75] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, Young-Han Nam, and Mérouane

Debbah, A tutorial on UAVs for wireless networks: Applications, challenges, and open

problems, IEEE Communications Surveys & Tutorials 21 (2019), no. 3, 2334–2360.

[76] Roger B Myerson, Game theory: analysis of conflict, Harvard University (1991).

[77] Michael J Neely, Intelligent packet dropping for optimal energy-delay tradeoffs in wire-

less downlinks, IEEE Transactions on Automatic Control 54 (2009), no. 3, 565–579.

[78] Martin J Osborne and Ariel Rubinstein, A course in game theory, MIT press, 1994.

[79] Guillermo Owen, Game theory, Emerald Group, 2013.

[80] Zhen Qin, Hai Wang, Zhenhua Wei, Yuben Qu, Fei Xiong, Haipeng Dai, and Tao

Wu, Task selection and scheduling in UAV-enabled MEC for reconnaissance with time-

varying priorities, IEEE Internet of Things Journal 8 (2021), no. 24, 17290–17307.

[81] Yuben Qu, Haipeng Dai, Haichao Wang, Chao Dong, Fan Wu, Song Guo, and Qihui

Wu, Service provisioning for UAV-enabled mobile edge computing, IEEE Journal on

Selected Areas in Communications 39 (2021), no. 11, 3287–3305.

131

[82] M Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, and Athanasios V

Vasilakos, Mapcloud: mobile applications on an elastic and scalable 2-tier cloud archi-

tecture, Utility and Cloud Computing (UCC), 2012 IEEE Fifth International Confer-

ence on, 2012, pp. 83–90.

[83] Lei Rao, Xue Liu, Le Xie, and Wenyu Liu, Minimizing electricity cost: optimization of

distributed internet data centers in a multi-electricity-market environment, INFOCOM,

2010 Proceedings IEEE, IEEE, 2010, pp. 1–9.

[84] Lei Rao, Xue Liu, Le Xie, and Zhan Pang, Hedging against uncertainty: A tale of

internet data center operations under smart grid environment, IEEE Transactions on

Smart Grid 2 (2011), no. 3, 555–563.

[85] Meisam Razaviyayn, Successive convex approximation: Analysis and applications,

Ph.D. thesis, University of Minnesota, 2014.

[86] Charles Reiss, John Wilkes, and Joseph L Hellerstein, Google cluster-usage traces:

format+ schema, Google Inc., White Paper (2011), 1–14.

[87] Jinke Ren, Guanding Yu, Yinghui He, and Ye Li, Collaborative cloud and edge comput-

ing for latency minimization, IEEE Transactions on Vehicular Technology 68 (2019),

no. 5, 5031–5044.

[88] Walid Saad, Zhu Han, Mérouane Debbah, Are Hjorungnes, and Tamer Basar, Coali-

tional game theory for communication networks, IEEE Signal Processing Magazine 26

(2009), no. 5, 77–97.

[89] Jayaram K Sankaran, On finding the nucleolus of an n-person cooperative game, Inter-

national Journal of Game Theory 19 (1991), no. 4, 329–338.

132

[90] Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa, Joint optimization of

radio and computational resources for multicell mobile-edge computing, IEEE Transac-

tions on Signal and Information Processing over Networks 1 (2015), no. 2, 89–103.

[91] Gesualdo Scutari, Francisco Facchinei, and Lorenzo Lampariello, Parallel and dis-

tributed methods for constrained nonconvex optimization—part I: Theory, IEEE Trans-

actions on Signal Processing 65 (2017), no. 8, 1929–1944.

[92] Gesualdo Scutari, Francisco Facchinei, Lorenzo Lampariello, Stefania Sardellitti, and

Peiran Song, Parallel and distributed methods for constrained nonconvex optimization-

part II: Applications in communications and machine learning, IEEE Transactions on

Signal Processing 65 (2016), no. 8, 1945–1960.

[93] Lloyd S Shapley, On balanced sets and cores, Naval research logistics quarterly 14

(1967), no. 4, 453–460.

[94] , Cores of convex games, International journal of game theory 1 (1971), no. 1,

11–26.

[95] Gaurav Sharma, Ravi Mazumdar, and Ness B Shroff, Delay and capacity trade-offs in

mobile ad hoc networks: A global perspective, IEEE/ACM Transactions on Networking

(ToN) 15 (2007), no. 5, 981–992.

[96] Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin, Jonathan

Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and William Lintner, United

states data center energy usage report, (2016).

[97] Yongpeng Shi, Yujie Xia, and Ya Gao, Joint gateway selection and resource allocation

for cross-tier communication in space-air-ground integrated IoT networks, IEEE Access

9 (2020), 4303–4314.

133

[98] Jian Song, Yong Cui, Minming Li, Jiezhong Qiu, and Rajkumar Buyya, Energy-traffic

tradeoff cooperative offloading for mobile cloud computing, Quality of Service (IWQoS),

2014 IEEE 22nd International Symposium of, 2014, pp. 284–289.

[99] Rade Stanojevic and Robert Shorten, Distributed dynamic speed scaling, INFOCOM,

2010 Proceedings IEEE, IEEE, 2010, pp. 1–5.

[100] Lu Sun, Liangtian Wan, and Xianpeng Wang, Learning-based resource allocation strat-

egy for industrial IoT in UAV-enabled MEC systems, IEEE Transactions on Industrial

Informatics 17 (2020), no. 7, 5031–5040.

[101] Tetsuyuki Takahama and Setsuko Sakai, Constrained optimization by the ε constrained

differential evolution with gradient-based mutation and feasible elites, 2006 IEEE In-

ternational Conference on Evolutionary Computation, IEEE, 2006, pp. 1–8.

[102] Stef H Tijs and Theo SH Driessen, Game theory and cost allocation problems, Man-

agement Science 32 (1986), no. 8, 1015–1028.

[103] Bing-Chuan Wang, Han-Xiong Li, Jia-Peng Li, and Yong Wang, Composite differential

evolution for constrained evolutionary optimization, IEEE Transactions on Systems,

Man, and Cybernetics: Systems 49 (2018), no. 7, 1482–1495.

[104] Cheng Wang, Bhuvan Urgaonkar, George Kesidis, Uday V Shanbhag, and Qian Wang,

A case for virtualizing the electric utility in cloud data centers., HotCloud, 2014.

[105] Yanting Wang, Min Sheng, Xijun Wang, Liang Wang, and Jiandong Li, Mobile-edge

computing: Partial computation offloading using dynamic voltage scaling, IEEE Trans-

actions on Communications 64 (2016), no. 10, 4268–4282.

[106] Yefu Wang, Xiaorui Wang, and Yanwei Zhang, Leveraging thermal storage to cut the

electricity bill for datacenter cooling, Proceedings of the 4th Workshop on Power-Aware

Computing and Systems, ACM, 2011, p. 8.

134

[107] Yong Wang, Zhi-Yang Ru, Kezhi Wang, and Pei-Qiu Huang, Joint deployment and

task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile

edge computing, IEEE Transactions on Cybernetics 50 (2019), no. 9, 3984–3997.

[108] Zhen Wang, Wenjun Xu, Dingcheng Yang, and Jiaru Lin, Joint trajectory optimiza-

tion and user scheduling for rotary-wing UAV-enabled wireless powered communication

networks, IEEE Access 7 (2019), 181369–181380.

[109] Yonggang Wen, Weiwen Zhang, and Haiyun Luo, Energy-optimal mobile application

execution: Taming resource-poor mobile devices with cloud clones, IEEE INFOCOM,

2012, pp. 2716–2720.

[110] Adam Wierman, Lachlan LH Andrew, and Ao Tang, Power-aware speed scaling in

processor sharing systems, INFOCOM 2009, IEEE, IEEE, 2009, pp. 2007–2015.

[111] Qiang Wu, Making Facebook’s software infrastructure more energy efficient with

Autoscale, https://code.fb.com/production-engineering/making-facebook-s-

software-infrastructure-more-energy-efficient-with-autoscale/.

[112] Qingqing Wu, Liang Liu, and Rui Zhang, Fundamental trade-offs in communication

and trajectory design for UAV-enabled wireless network, IEEE Wireless Communica-

tions 26 (2019), no. 1, 36–44.

[113] Qingqing Wu, Yong Zeng, and Rui Zhang, Joint trajectory and communication design

for multi-UAV enabled wireless networks, IEEE Transactions on Wireless Communi-

cations 17 (2018), no. 3, 2109–2121.

[114] Qiufen Xia, Weifa Liang, Zichuan Xu, and Bingbing Zhou, Online algorithms for

location-aware task offloading in two-tiered mobile cloud environments, Utility and

Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on, 2014,

pp. 109–116.

135

[115] Yong Xiao and Marwan Krunz, QoE and power efficiency tradeoff for fog comput-

ing networks with fog node cooperation, IEEE INFOCOM 2017-IEEE Conference on

Computer Communications, IEEE, 2017, pp. 1–9.

[116] Lifeng Xie, Jie Xu, and Rui Zhang, Throughput maximization for UAV-enabled wireless

powered communication networks, IEEE Internet of Things Journal 6 (2018), no. 2,

1690–1703.

[117] Bin Xu, Lu Zhang, Zipeng Xu, Yichuan Liu, Jinming Chai, Sichong Qin, and Yanfei

Sun, Energy optimization in multi-UAV-assisted edge data collection system, Comput-

ers, Materials & Continua (2021).

[118] Jie Xu, Lixing Chen, and Pan Zhou, Joint service caching and task offloading for

mobile edge computing in dense networks, IEEE INFOCOM, 2018, pp. 207–215.

[119] Yu Xu, Tiankui Zhang, Yuanwei Liu, Dingcheng Yang, Lin Xiao, and Meixia Tao,

UAV-assisted MEC networks with aerial and ground cooperation, IEEE Transactions

on Wireless Communications 20 (2021), no. 12, 7712–7727.

[120] Shi Yan, Mugen Peng, and Xueyan Cao, A game theory approach for joint access

selection and resource allocation in UAV assisted IoT communication networks, IEEE

Internet of Things Journal 6 (2018), no. 2, 1663–1674.

[121] Lei Yang, Haipeng Yao, Jingjing Wang, Chunxiao Jiang, Abderrahim Benslimane, and

Yunjie Liu, Multi-UAV-enabled load-balance mobile-edge computing for IoT networks,

IEEE Internet of Things Journal 7 (2020), no. 8, 6898–6908.

[122] Yuan Yao, Longbo Huang, Abhihshek Sharma, Leana Golubchik, and Michael Neely,

Data centers power reduction: A two time scale approach for delay tolerant workloads,

INFOCOM, 2012 Proceedings IEEE, IEEE, 2012, pp. 1431–1439.

136

[123] Shanhe Yi, Cheng Li, and Qun Li, A survey of fog computing: concepts, applications

and issues, Proceedings of the 2015 workshop on mobile big data, ACM, 2015, pp. 37–

42.

[124] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim, Energy-

efficient resource allocation for mobile-edge computation offloading, IEEE Transactions

on Wireless Communications 16 (2017), no. 3, 1397–1411.

[125] H Peyton Young, Cost allocation: methods, principles, applications, North Holland

Publishing Co., 1985.

[126] Hao Yu and Michael J Neely, A new backpressure algorithm for joint rate control and

routing with vanishing utility optimality gaps and finite queue lengths, IEEE/ACM

Transactions on Networking (ToN) 26 (2018), no. 4, 1605–1618.

[127] Liang Yu, Tao Jiang, Yang Cao, and Qian Zhang, Risk-constrained operation for in-

ternet data centers in deregulated electricity markets, IEEE Transactions on Parallel

and Distributed Systems 25 (2014), no. 5, 1306–1316.

[128] Zhe Yu, Yanmin Gong, Shimin Gong, and Yuanxiong Guo, Joint task offloading and

resource allocation in UAV-enabled mobile edge computing, IEEE Internet of Things

Journal 7 (2020), no. 4, 3147–3159.

[129] Wanghong Yuan and Klara Nahrstedt, Energy-efficient soft real-time CPU scheduling

for mobile multimedia systems, ACM SIGOPS Operating Systems Review, vol. 37,

2003, pp. 149–163.

[130] , Energy-efficient CPU scheduling for multimedia applications, ACM Transac-

tions on Computer Systems (TOCS) 24 (2006), no. 3, 292–331.

137

[131] Yong Zeng, Rui Zhang, and Teng Joon Lim, Throughput maximization for UAV-enabled

mobile relaying systems, IEEE Transactions on Communications 64 (2016), no. 12,

4983–4996.

[132] Cheng Zhan, Han Hu, Xiufeng Sui, Zhi Liu, and Dusit Niyato, Completion time and

energy optimization in the UAV-enabled mobile-edge computing system, IEEE Internet

of Things Journal 7 (2020), no. 8, 7808–7822.

[133] Cheng Zhan and Yong Zeng, Completion time minimization for multi-UAV-enabled

data collection, IEEE Transactions on Wireless Communications 18 (2019), no. 10,

4859–4872.

[134] Jing Zhang, Weiwei Xia, Feng Yan, and Lianfeng Shen, Joint computation offload-

ing and resource allocation optimization in heterogeneous networks with mobile edge

computing, IEEE Access 6 (2018), 19324–19337.

[135] Kaiyuan Zhang, Xiaolin Gui, Dewang Ren, and Defu Li, Energy–latency tradeoff for

computation offloading in UAV-assisted multiaccess edge computing system, IEEE In-

ternet of Things Journal 8 (2020), no. 8, 6709–6719.

[136] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng, Li Pan,

Sabita Maharjan, and Yan Zhang, Energy-efficient offloading for mobile edge computing

in 5G heterogeneous networks, IEEE Access 4 (2016), 5896–5907.

[137] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf Boutaba, and

Joseph L Hellerstein, Dynamic energy-aware capacity provisioning for cloud computing

environments, Proceedings of the 9th international conference on Autonomic comput-

ing, ACM, 2012, pp. 145–154.

[138] Tiankui Zhang, Yu Xu, Jonathan Loo, Dingcheng Yang, and Lin Xiao, Joint computa-

tion and communication design for UAV-assisted mobile edge computing in IoT, IEEE

Transactions on Industrial Informatics 16 (2019), no. 8, 5505–5516.

138

[139] Ying Zhang, Lei Deng, Minghua Chen, and Peijian Wang, Joint bidding and geograph-

ical load balancing for datacenters: Is uncertainty a blessing or a curse?, INFOCOM

2017-IEEE Conference on Computer Communications, IEEE, IEEE, 2017, pp. 1–9.

[140] Yue Zhao, Junjie Qin, Ram Rajagopal, Andrea Goldsmith, and H Vincent Poor, Wind

aggregation via risky power markets, IEEE Transactions on Power Systems 30 (2015),

no. 3, 1571–1581.

[141] Fuhui Zhou, Yongpeng Wu, Rose Qingyang Hu, and Yi Qian, Computation rate maxi-

mization in UAV-enabled wireless-powered mobile-edge computing systems, IEEE Jour-

nal on Selected Areas in Communications 36 (2018), no. 9, 1927–1941.

139

APPENDICES

Proof of Theorem 3.2.1

We first rewrite (3.2.5) as below:

c(S) = min
QS

µd
pQS + µ−

p

∫ Emax
S

QS

(u−QS)fS(u) du− µ+
p

∫ QS

Emin
S

(QS − u)fS(u) du, (A.1)

where fS is the corresponding probability density function (PDF) of the CDF as defined

in (3.2.2). Then by applying the first order optimality condition associated with Leibniz

integral rule, we have

µd
p − µ−

p (1− FS(QS))− µ+
p FS(QS) = 0, (A.2)

Q∗
S = F−1

S (ε∗), where ε∗ =
µ−
p − µd

p

µ−
p − µ+

p

. (A.3)

Optimal expected cost is given by direct substitution of Q∗
S into (A.1):

c(S) = µd
pQ

∗
S + µ−

p

∫ Emax
S

Q∗
S

(u−Q∗
S)fS(u) du− µ+

p

∫ Q∗
S

Emin
S

(Q∗
S − u)fS(u) du

= µd
pQ

∗
S + µ−

p

∫ 1

ε∗
(F−1

S (θ)−Q∗
S) dθ − µ+

p

∫ ε∗

0

(Q∗
S − F−1

S (θ)) dθ

= Q∗
S (µ

d
p − µ−

p + ε∗(µ−
p − µ+

p))︸ ︷︷ ︸
=0

+µ+
p

∫ ε∗

0

F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ. (A.4)

140

Proof of Theorem 3.2.2

We introduce an ancillary random variable Xi := Ei −Qi and rewrite (3.2.4) in terms of Xi

as follows:

ΦS(QS) = µd
pQS + µ−

p E
[(∑

i∈S

Xi

)+]− µ+
p E
[(
−
∑
i∈S

Xi

)+]
, (A.5)

∑
i∈S

Φi(Qi) = µd
p

∑
i∈S

Qi + µ−
p E
[∑
i∈S

(
Xi

)+]− µ+
p E
[∑
i∈S

(
−Xi

)+]
. (A.6)

By adopting the equivalent forms of (x)+:

(x)+ := max(x, 0) :=
x+ |x|

2
, (A.7)

we have

(A.5)− (A.6) = µ−
p E

[∑
i∈S Xi +

∣∣∑
i∈S Xi

∣∣
2

−
∑
i∈S

Xi + |Xi|
2

]

− µ+
p E

[∣∣∑
i∈S Xi

∣∣−∑i∈S Xi

2
−
∑
i∈S

|Xi| −Xi

2

]

=

(
µ−
p − µ+

p

2

)
E
[(∣∣∑

i∈S

Xi

∣∣−∑
i∈S

|Xi|
)]
≤ 0. (A.8)

The above inequality holds according to the triangle inequality, i.e.,
∣∣∑

i∈S Xi

∣∣ ≤∑i∈S |Xi|

and also by assumption, we have µ−
p ≥ µ+

p . Therefore, ΦS(QS) ≤
∑

i∈S Φi(Qi).

Proof of Lemma 3.2.1

First we prove the positive homogeneity. The CDF of the positively scaled ES is denoted as

FβS(u) = Pr(βES ≤ u) = FβS

(
u

β

)
.

141

It follows that the quantile function of FβS(u) is given by

F−1
βS (ε

∗) = βF−1
S (ε∗).

Using the results from Theorem 3.2.1, we can prove the positive homogeneity as

c(βS) = µ+
p

∫ ε∗

0

F−1
βS (θ) dθ + µ−

p

∫ 1

ε∗
F−1
βS (θ) dθ

= β

(
µ+
p

∫ ε∗

0

F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ

)
= βc(S). (A.9)

Next we prove the subadditivity as

c(S1) + c(S2) = min
QS1

ΦS1(QS1) + min
QS2

ΦS2(QS2)

= ΦS1(Q
∗
S1
) + ΦS2(Q

∗
S2
), (A.10)

where Q∗
S1

and Q∗
S2

are the optimal day-ahead bids of their respective minimization problems.

It follows from Theorem 3.2.2 that

ΦS1(Q
∗
S1
) + ΦS2(Q

∗
S2
) ≥ ΦS1∪S2(Q

∗
S1

+Q∗
S2
)

≥ ΦS1∪S2(Q
∗
S1∪S2

)

= c(S1 ∪ S2), (A.11)

where Q∗
S1∪S2

is the optimal solution of the expected cost minimization problem under coali-

tion S1 ∪ S2, while Q
∗
S1

+ Q∗
S1

is a feasible solution of the minimization problem, then it

follows that c(S1 ∪ S2) ≤ c(S1) + c(S2).

142

Proof of Nonconvex Game

Consider a cooperative game involving three datacenters, indexed by A1, A2 and A3, respec-

tively. We assume the marginal distribution of A1 and A2 are given by

Ai =

2, w.p. 0.5

4, w.p. 0.5

∀i = 1, 2.

Further, assume A3 is perfectly positively correlated to A2, i.e., A3 = A2. Set the expected

day-ahead, negative imbalance and positive imbalance prices as µd
p = 0.9, µ−

p = 1.4 and

µ+
p = 0.4, respectively. Then based on Theorem 3.2.1, we have:

ε∗ =
1.4− 0.9

1.4− 0.4
= 0.5,

c({1}) = c({2}) = c({3}) = 3.2,

c({1, 2}) = c({1, 3}) = 5.9,

c({2, 3}) = 6.4,

c({1, 2, 3}) = 9.1.

Here, we choose two coalitions as S = {1, 2} and T = {1, 3}, and then from the above

example, we have:

c({1, 2}) + c({1, 3}) = 10.8 ≤ c({1, 2, 3}) + c({1}) = 12.3,

which violates the definition of convex game given in (2.3.4). Therefore, our cooperative

game is nonconvex.

143

Proof of Theorem 3.3.2

Our proof is similar to [140, 57] which focus on different aggregation problems. Here we

only give a sketch of the proof process. The basic idea is that we could also use the non-

cooperative game theory to model the same problem by allowing power exchange within

datacenters as well, and our proposed allocation method can find the Nash equilibrium of

the formulated noncooperative game. Since the core of our cooperative game can be shown

to be the same as the Nash equilibrium of the corresponding noncooperative game, our

proposed cost allocation scheme is guaranteed to find the core of the cooperative game.

Details about the proof process can be found in [140, 57].

144

VITA

Zhe Yu

Candidate for the Degree of

Doctor of Philosophy

Dissertation: RESOURCE MANAGEMENT FOR COST-EFFECTIVE CLOUD AND EDGE
SYSTEMS

Major Field: Electrical Engineering

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Electrical Engineering
at Oklahoma State University, Stillwater, Oklahoma in December, 2022.

Completed the requirements for the Master of Science in Electrical Engineering at
Vanderbilt University, Nashville, Tennessee in 2016.

Completed the requirements for the Bachelor of Engineering in Communications Engi-
neering at University of Science and Technology Beijing, Beijing, China in 2014.

Experience:

Visual Computing and Image Processing Lab (VCIPL), Oklahoma State University,
10/2019 – 12/2022

Smart Energy and Networked Systems Laboratory, Oklahoma State University, 08/2016
– 07/2019

Professional Membership:

IEEE Graduate Student Member

