638 research outputs found

    VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition

    Full text link
    Reliable facial expression recognition plays a critical role in human-machine interactions. However, most of the facial expression analysis methodologies proposed to date pay little or no attention to the protection of a user's privacy. In this paper, we propose a Privacy-Preserving Representation-Learning Variational Generative Adversarial Network (PPRL-VGAN) to learn an image representation that is explicitly disentangled from the identity information. At the same time, this representation is discriminative from the standpoint of facial expression recognition and generative as it allows expression-equivalent face image synthesis. We evaluate the proposed model on two public datasets under various threat scenarios. Quantitative and qualitative results demonstrate that our approach strikes a balance between the preservation of privacy and data utility. We further demonstrate that our model can be effectively applied to other tasks such as expression morphing and image completion

    Distinguishing Lightweight Block Ciphers in Encrypted Images

    Get PDF
    Modern day lightweight block ciphers provide powerful encryption methods for securing IoT communication data. Tiny digital devices exchange private data which the individual users might not be willing to get disclosed. On the other hand, the adversaries try their level best to capture this private data. The first step towards this is to identify the encryption scheme. This work is an effort to construct a distinguisher to identify the cipher used in encrypting the traffic data. We try to establish a deep learning based method to identify the encryption scheme used from a set of three lightweight block ciphers viz. LBlock, PRESENT and SPECK. We make use of images from MNIST and fashion MNIST data sets for establishing the cryptographic distinguisher. Our results show that the overall classification accuracy depends firstly on the type of key used in encryption and secondly on how frequently the pixel values change in original input image

    A survey of machine and deep learning methods for privacy protection in the Internet of things

    Get PDF
    Recent advances in hardware and information technology have accelerated the proliferation of smart and interconnected devices facilitating the rapid development of the Internet of Things (IoT). IoT applications and services are widely adopted in environments such as smart cities, smart industry, autonomous vehicles, and eHealth. As such, IoT devices are ubiquitously connected, transferring sensitive and personal data without requiring human interaction. Consequently, it is crucial to preserve data privacy. This paper presents a comprehensive survey of recent Machine Learning (ML)- and Deep Learning (DL)-based solutions for privacy in IoT. First, we present an in depth analysis of current privacy threats and attacks. Then, for each ML architecture proposed, we present the implementations, details, and the published results. Finally, we identify the most effective solutions for the different threats and attacks.This work is partially supported by the Generalitat de Catalunya under grant 2017 SGR 962 and the HORIZON-GPHOENIX (101070586) and HORIZON-EUVITAMIN-V (101093062) projects.Peer ReviewedPostprint (published version

    Privacy-Preserving Chaotic Extreme Learning Machine with Fully Homomorphic Encryption

    Full text link
    The Machine Learning and Deep Learning Models require a lot of data for the training process, and in some scenarios, there might be some sensitive data, such as customer information involved, which the organizations might be hesitant to outsource for model building. Some of the privacy-preserving techniques such as Differential Privacy, Homomorphic Encryption, and Secure Multi-Party Computation can be integrated with different Machine Learning and Deep Learning algorithms to provide security to the data as well as the model. In this paper, we propose a Chaotic Extreme Learning Machine and its encrypted form using Fully Homomorphic Encryption where the weights and biases are generated using a logistic map instead of uniform distribution. Our proposed method has performed either better or similar to the Traditional Extreme Learning Machine on most of the datasets.Comment: 26 pages; 1 Figure; 7 Tables. arXiv admin note: text overlap with arXiv:2205.1326

    Multilayer Feedforward Neural Network for Internet Traffic Classification

    Get PDF
    Recently, the efficient internet traffic classification has gained attention in order to improve service quality in IP networks. But the problem with the existing solutions is to handle the imbalanced dataset which has high uneven distribution of flows between the classes. In this paper, we propose a multilayer feedforward neural network architecture to handle the high imbalanced dataset. In the proposed model, we used a variation of multilayer perceptron with 4 hidden layers (called as mountain mirror networks) which does the feature transformation effectively. To check the efficacy of the proposed model, we used Cambridge dataset which consists of 248 features spread across 10 classes. Experimentation is carried out for two variants of the same dataset which is a standard one and a derived subset. The proposed model achieved an accuracy of 99.08% for highly imbalanced dataset (standard)

    Darknet traffic classification and adversarial attacks using machine learning

    Get PDF
    The anonymous nature of darknets is commonly exploited for illegal activities. Previous research has employed machine learning and deep learning techniques to automate the detection of darknet traffic in an attempt to block these criminal activities. This research aims to improve darknet traffic detection by assessing a wide variety of machine learning and deep learning techniques for the classification of such traffic and for classification of the underlying application types. We find that a Random Forest model outperforms other state-of-the-art machine learning techniques used in prior work with the CIC-Darknet2020 dataset. To evaluate the robustness of our Random Forest classifier, we obfuscate select application type classes to simulate realistic adversarial attack scenarios. We demonstrate that our best-performing classifier can be degraded by such attacks, and we consider ways to effectively deal with such adversarial attacks
    • …
    corecore