
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

4-1-2023

Darknet traffic classification and adversarial attacks using Darknet traffic classification and adversarial attacks using

machine learning machine learning

Nhien Rust-Nguyen
San Jose State University

Shruti Sharma
San Jose State University

Mark Stamp
San Jose State University, mark.stamp@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Nhien Rust-Nguyen, Shruti Sharma, and Mark Stamp. "Darknet traffic classification and adversarial
attacks using machine learning" Computers and Security (2023). https://doi.org/10.1016/
j.cose.2023.103098

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F2213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.cose.2023.103098
https://doi.org/10.1016/j.cose.2023.103098
mailto:scholarworks@sjsu.edu

Computers & Security 127 (2023) 103098

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Darknet traffic classification and adversarial attacks using machine

learning

Nhien Rust-Nguyen, Shruti Sharma, Mark Stamp

∗

Department of Computer Science, San Jose State University, United States

a r t i c l e i n f o

Article history:

Received 12 June 2022

Revised 22 October 2022

Accepted 9 January 2023

Available online 14 January 2023

Keywords:

Darknet

Classification

Adversarial attacks

Convolutional neural network

Auxiliary-Classifier generative adversarial

network

Random forest

a b s t r a c t

The anonymous nature of darknets is commonly exploited for illegal activities. Previous research has em-

ployed machine learning and deep learning techniques to automate the detection of darknet traffic in an

attempt to block these criminal activities. This research aims to improve darknet traffic detection by as-

sessing a wide variety of machine learning and deep learning techniques for the classification of such traf-

fic and for classification of the underlying application types. We find that a Random Forest model outper-

forms other state-of-the-art machine learning techniques used in prior work with the CIC-Darknet2020

dataset. To evaluate the robustness of our Random Forest classifier, we obfuscate select application type

classes to simulate realistic adversarial attack scenarios. We demonstrate that our best-performing clas-

sifier can be degraded by such attacks, and we consider ways to effectively deal with such adversarial

attacks.

© 2023 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Most of us are familiar with the Internet and the World

Wide Web (WWW, or web). We regularly access both using web

browsers or other networked applications to share information

publicly, guided by search engine indexing of the Domain Name

System (DNS) over globally bridged Internet Protocol (IP) networks.

This publicly accessible and indexed address space is known as

the surface web or clearnet. In contrast, the WWW address space

which is not indexed by search engines but still publicly accessible

is known as the deep web. Private networks within the deep web

or networks comprised of unallocated address space are known as

darknets and collectively termed the dark web. Fig. 1 illustrates the

relationship between these layers of the Internet.

The dark web is reached by an overlay network requiring spe-

cial software, user authorization, or non-standard communication

protocols (Demertzis et al.). Many darknets afford users anonymity

during communication and thus facilitate criminal activities, in-

cluding hacking, media piracy, terrorism, human trafficking, and

child pornography (Branwen et al., 2015; Sarwar et al., 2021). Re-

searchers have illuminated darknet traffic with machine learning

and deep learning techniques, to better identify and inhibit these

criminal activities. The research presented in this paper strives

∗ Corresponding author.

E-mail address: mark.stamp@sjsu.edu (M. Stamp) .

to contribute by promoting accurate classification of traffic fea-

tures from the well-studied CIC-Darknet2020 (Lashkari et al., 2020)

dataset, which is a collection of traffic features from two dark-

nets, namely, The Onion Router (Tor) and a Virtual Private Network

(VPN). This dataset also includes corresponding traffic generated

over clearnet sessions using the same applications.

We consider a wide variety of classic machine learning tech-

niques, as well as modern neural networking architectures. We

also represent traffic features as grayscale images and apply image-

based deep learning architectures as classifiers, namely, Convolu-

tional Neural Networks (CNN) and Auxiliary-Classifier Generative

Adversarial Networks (AC-GAN). To assess the issue of extreme

class imbalance within the CIC-Darknet2020 dataset, we explore

data augmentation—specifically, we consider both the generative

network of our AC-GAN model, as well as Synthetic Minority Over-

sampling Technique (SMOTE). Our results show that Random Forest

is the most effective among the models tested, both for classifying

traffic type and for classifying the underlying application types. We

also find SMOTE is beneficial for fine tuning our models, the best

of which is a Random Forest (RF).

Having established baseline classification performance, we con-

sider the robustness of our RF classifier in some detail by ap-

proaching the problem of darknet traffic detection adversarially.

From the perspective of an attacker, we obfuscate the application

classes in an attempt to evade detection. As a proof-of-concept,

we apply an encoding scheme to transform class features using

probability analysis of the CIC-Darknet2020 dataset. We strongly

https://doi.org/10.1016/j.cose.2023.103098

0167-4048/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2023.103098
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103098&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mark.stamp@sjsu.edu
https://doi.org/10.1016/j.cose.2023.103098
http://creativecommons.org/licenses/by/4.0/

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 1. Layers of the Internet (Demertzis et al., 2021).

Fig. 2. Overview of experiments.

correlate the resulting RF confusion with our obfuscation tech-

nique for three attack scenarios, assuming few limitations for traf-

fic modification. We then assess the strength of our obfuscation

technique with one defense scenario, by which we demonstrate

that we can restore the performance of the RF classifier despite

duress. We find that sufficient statistical knowledge of network

traffic features can empower either the classification or obfuscation

tasks.

A high-level overview of our experiments is provided in Fig. 2 .

After some limited initial data cleaning, for each experiment, we

partition the dataset under consideration into training and valida-

tion sets. In the base case, a specific machine learning model is

trained, based on the training set, with the validation set used to

compute accuracy and F1-score statistics. As mentioned above, we

consider data augmentation using SMOTE. We also conduct experi-

ments using the generator module of AC-GAN to produce synthetic

data, which can be viewed as another form of data augmentation.

The three adversarial attack scenarios mentioned above assume

that the attacker can manipulate the training data, the validation

data, or both. In Section 4.2 , we discuss these attack scenarios in

detail, and explain why they are realistic threats.

The remainder of this paper is structured as follows.

Section 2 gives a brief background discussion of Tor and VPN, and

considers related work on darknet traffic detection. Section 3 de-

scribes the dataset used in our experiments and outlines our ex-

perimental methodology. Section 4 provides background knowl-

edge on the machine learning techniques used in our experiments

and gives implementation details. Section 5 discusses the results

of our experiments. Lastly, Section 6 summarizes our research and

considers possible directions for future work.

2. Background

In this section, we first discuss the two broad categories of data

in our dataset, namely, Tor and VPN traffic. Then we discuss the

most relevant examples of related work.

2.1. The onion router

Initially, The Onion Router (Tor) was a project started by the

United States Navy to secure government communication. Since

2006, Tor has become a nonprofit with thousands of servers (called

relays or relay nodes) run by volunteers across the world (Tor

Project History). Tor clients anonymize their TCP application IP

addresses and sessions keys, sending encrypted application traf-

fic through a network of relays (Sarkar et al., 2020). An example

client application is the Tor Browser, which allows users to browse

the web anonymously.

Tor generally selects a relay path of three or more nodes and

encrypts the data once for each node using temporary symmetric

keys. The encrypted data hops from relay to relay, where each relay

node only knows about the previous node and the next node along

the path. This design makes it difficult to trace the original identity

of Tor clients. Each relay removes a layer of encryption, so that by

the last relay, the original data is forwarded to the intended des-

tination as plaintext. Tor then deletes the temporary session keys

used for encryption at each node, so that any subsequently com-

promised nodes cannot decrypt old traffic (Dingledine et al., 2004).

2.2. Virtual private networks

Virtual Private Networks (VPN) are used to ensure communica-

tion privacy for individuals or enterprises, and can serve to sepa-

rate private address spaces from the public Internet. VPN software

disguises client IP addresses by tunneling encrypted communica-

tions through a trusted server, which acts as a gateway or proxy

to route client traffic to the broader network space. Client data is

anonymized behind VPN server credentials before being forwarded

to an intended destination, which may be either public or private.

Any response traffic is sent back through the VPN server over the

encrypted connection for the client to decrypt, ensuring anonymity

between the client and recipient. Third parties, such as Internet

Service Providers (ISP), will only see the VPN server as the des-

tination of client communications. There are many forms of VPN.

Some operate at the network layer, others reside at the transport

or application layer (Venkateswaran, 2001).

2.3. Related work

Several researchers have considered the problem of detecting

darknet traffic. However, there are limited public darknet datasets

available. The CIC-Darknet2020 dataset used in the experiments re-

ported in this paper was generated by Lashkari et al. (2020) . This

dataset was also used in prior research, including (Demertzis et al.;

Iliadis and Kaifas 2021; Sarwar et al. 2021), and it has become a

well-known darknet traffic dataset due to its accessibility. In their

research, Lashkari et al. (2020) grouped Tor and VPN together as

darknet traffic, while non-Tor and non-VPN were grouped as be-

nign traffic (clearnet). They created 8 × 8 grayscale images from 61

select features and used Convolutional Neural Networks (CNN) to

classify samples in the dataset. Their CNN model achieved an over-

all accuracy of 94% classifying traffic as darknet or benign and 86%

accuracy classifying the application type used to generate the traf-

fic. The application traffic was broadly labeled as browsing, chat,

email, file transfer, P2P, audio streaming, video streaming, or VOIP.

The research reported in Sarwar et al. (2021) consisted of clas-

sifying traffic and application type by combining a CNN and two

2

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

other deep-learning techniques: Long Short-Term Memory (LSTM)

and Gated Recurrent Units (GRU). They addressed the issue of

having an imbalanced dataset by performing Synthetic Minority

Oversampling Technique (SMOTE) on Tor, the minority traffic class.

They used Principle Component Analysis (PCA), Decision Trees

(DT), and Extreme Gradient Boosting (XGBoost) to extract 20 fea-

tures before feeding the data into CNN-LSTM and CNN-GRU ar-

chitectures. Their CNN layer was used to extract features from

the input data, while LSTM and GRU did sequence prediction on

these features. CNN-LSTM in combination with XGBoost as the fea-

ture selector produced the best F1-scores, achieving 96% classifying

traffic type and 89% classifying application type.

The study (Iliadis and Kaifas, 2021) focused on just traffic type

from the CIC-Darknet2020 dataset. They used k -Nearest Neigh-

bors (k -NN), Multi-layer Perceptron (MLP), RF, DT, and Gradient-

Boosting Decision Trees (GBDT) to do binary and multi-class clas-

sification. For binary classification, they grouped the data into

two classes, namely, benign and darknet, similar to Lashkari et al.

(2020) . For the multi-class problem, they used the original four

classes of traffic type (Tor, non-Tor, VPN or non-VPN). They found

that RF was the most effective classifier for traffic type, yielding

F1-scores of 98.7% for binary classification and 98.61% for multi-

class classification.

Using the same dataset, the authors of (Demertzis et al.) further

broke down the application categories into 11 classes and used

Weighted Agnostic Neural Networks (WANN) to classify the data.

Unlike regular ANNs, WANNs do not update neuron weights, but

rather update their own network architecture piece-wise. WANNs

rank different architectures by performance and complexity, form-

ing new network layers from the highest ranked architecture. Their

best WANN model achieved 92.68% accuracy on application layer

classification.

The UNB-CIC Tor and non-Tor dataset, also known as ISCX-

Tor2016 (Lashkari et al., 2017), was used by Sarkar et al. (2020) to

classify Tor and non-Tor traffic using Deep Neural Networks (DNN).

They built two models, DNN-A with 3-layers and DNN-B with 5-

layers. DNN-A classified Tor from non-Tor samples with 98.81% ac-

curacy, while DNN-B achieved 99.89% accuracy. For Tor samples,

they built a 4-layer Deep Neural Network to classify eight applica-

tion types. This model attained 95.6% accuracy.

In another study, Hu et al. (2020) generated their own dataset,

capturing darknet traffic across eight application categories (brows-

ing, chat, email, file transfer, P2P, audio, video and VOIP) sourced

from four different darknets (Tor, I2P, ZeroNet, and Freenet). They

used a 3-layer hierarchical approach for classification. The first

layer classified traffic as either darknet or normal. In the second

layer, samples classified correctly as darknet were then classified

by their darknet source. The third layer then classified application

type for each of the darknet sources. The techniques (Hu et al.,

2020) used for classification include Logistic Regression (LR), RF,

MLP, GBDT, Light Gradient Boosting (LightGB), XGBoost, LSTM, and

DT. Their hierarchical method attained 99.42% accuracy in the first

layer, 96.85% accuracy in the second layer and 92.46% accuracy in

the third layer.

Table 1 provides a summary of the prior work presented in

this section. We note that the research in Iliadis and Kaifas (2021) ,

Lashkari et al. (2020) , Sarwar et al. (2021) use the same dataset

that we consider in this paper.

3. Methodology

The primary goal of this research is to improve upon the state-

of-the-art classification of darknet traffic by exploring the perfor-

mance of Support Vector Machines (SVM), Random Forest (RF),

Gradient-Boosting Decision Trees (GBDT), Extreme Gradient Boost-

ing (XGBoost), k -Nearest Neighbors (k -NN), Multilayer Perceptron

(MLP), Convolutional Neural Networks (CNN), and Auxiliary Clas-

sifier Generative Adversarial Networks (AC-GAN) as classifiers. We

experiment with different levels of SMOTE during a preprocessing

phase, oversampling the minority classes of the CIC-Darknet2020

dataset to assess the effects of data augmentation and class bal-

ance on classifier performance. We also consider using the AC-GAN

generator for data augmentation, but we find that it is ineffective

for this purpose. We experiment with representations of the dark-

net traffic features as 2-dimensional grayscale images for CNN and

AC-GAN. Then we test the robustness of our best-performing clas-

sifier in obfuscation scenarios, which serve to simulate adversar-

ial attacks, assuming both the perspectives of an attacker and de-

fender.

In our adversarial attacks, we apply statistical knowledge of the

dataset to obfuscate specific data features, disguising one or more

classes as others. We explore three scenarios whereby we either

obfuscate the training data, the validation data or both. Obfuscat-

ing just the validation data simulates an attack scenario in which

traffic data is disguised while our classifier is yet unaware of the

attack, and thus we can only apply previously trained models with-

out a chance to learn from the obfuscation. Obfuscating just the

training data simulates a scenario in which an attacker has ac-

cessed our training data to poison it, such that we train our clas-

sifier with malformed assumptions or outright malicious supervi-

sion. A third scenario supposes we collect some of the obfuscated

traffic data before training our classifier, and thus have a chance

to update our classification models to detect obfuscated validation

data.

3.1. Dataset

The CIC-Darknet2020 dataset (Lashkari et al., 2020) is an

amalgamation of two public datasets from the University of

New Brunswick. It combines the ISCXTor2016 and ISCXVPN2016

datasets, which capture real-time traffic using Wireshark and

TCPdump (Gil et al., 2016; Lashkari et al., 2017). CICFlowMe-

ter (Lashkari, 2018) is used to generate CIC-Darknet2020 dataset

features from these traffic samples. Each CIC-Darknet2020 sample

consists of traffic features extracted in this manner from raw traffic

packet capture sessions. CIC-Darknet2020 consists of 158,659 hier-

archically labeled samples. The top level traffic category labels con-

sist of Tor, non-Tor, VPN, and non-VPN. Within these top level cate-

gories, samples are further categorized by the types of application

used to generate the traffic. These type subcategories are audio-

streaming, browsing, chat, email, file transfer, P2P, video-streaming,

and VOIP. Table 2 details the applications that are used to generate

each type of traffic at the application level.

3.2. Preprocessing

The CIC-Darknet2020 dataset has samples with missing data,

more specifically, feature values of “NaN ”. We remove samples

with these values in our data cleaning phase. As shown in Table 3 ,

there are significantly less Tor samples compared to the other traf-

fic categories. Prior work using this dataset eliminated CICFlowMe-

ter the flow labels, namely, Flow Id , Timestamp , Source IP
and Destination IP . The Flow Id , and Timestamp , which

are also eliminated in our research as well. However, to obtain as

much information as possible from the CIC-Darknet2020 dataset,

we separate each octet of the source and destination IP addresses

into their own feature columns. Preliminary tests run on the

dataset with and without these IP octet features indicate an im-

provement in the performance of the classifiers when this IP in-

formation is retained. Thus our dataset contains 72 features total

after this preprocessing step.

3

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Table 1

Summary of previous work.

Work Dataset Problem considered Techniques Results

Demertzis et al. (2021) CIC-Darknet2020 Only examines WANN 92.68% accuracy

11 application types

Hu et al. (2020) Self-generated Hierarchial approach: LR, RF, Layer 1:

Layer 1: darknet vs clearnet MLP, GBDT, 99.42% accuracy

Layer 2: Tor, I2P, ZeroNET LightGB, XGB, Layer 2:

and FreeNET LSTM, DT 96.85% accuracy

Layer 3: 8 application types Layer 3:

92.46% accuracy

Iliadis and Kaifas

(2021)

CIC-Darknet2020 Only examines traffic type kNN, MLP Binary:

Binary: darknet vs clearnet RF, DT, GB 98.7% F1-score

Multiclass: 4 traffic types Multiclass:

98.61% F1-score

Lashkari et al. (2020) CIC-Darknet2020 Binary: darknet vs clearnet CNN Binary:

Multiclass: 8 application types 94% accuracy

Multiclass:

86% accuracy

Sarkar et al. (2020) ISCXTor2016 Binary: Tor vs non-Tor DNN Binary:

Multiclass: 99.89% accuracy

8 application types within Tor Multiclass:

95.6% accuracy

Sarwar et al. (2021) CIC-Darknet2020 4 traffic types CNN-LSTM, Traffic:

8 application types CNN-GRU 96% F1-score

Application:

89% F1-score

Table 2

CIC-Darknet2020 application classes (Lashkari et al., 2020).

Application class Applications considered

Audio-Streaming Vimeo and YouTube

Browsing Firefox and Chrome

Chat ICQ, AIM, Skype, Facebook and Hangouts

Email SMTPS, POP3S and IMAPS

File Transfer Skype and FileZilla

P2P uTorrent and Transmission (BitTorrent)

Video-Streaming Vimeo and YouTube

VOIP Facebook, Skype and Hangouts

Table 3

Samples per traffic category.

Traffic Type Samples

Non-Tor 93,357

Non-VPN 23,864

Tor 1393

VPN 22,920

The CIC-Darknet2020 dataset was scaled by min-max normal-

ization, which applies the equation

normalizedValue =

(value − min)
(max − min)

to every value in each feature column. Note that this serves to

scale the feature values between 0 and 1. We also apply min-max

normalization to our IP octet feature columns.

3.2.1. Data balancing

The CIC-Darknet2020 dataset does not have balanced sam-

ple counts among traffic and application classes, as shown in

Tables 3 and 4 . To explore the effect of reducing this imbalance

on the classification task, we oversample each minority class us-

ing SMOTE. SMOTE interpolates linearly between feature values

to produce new samples (Bhagat and Patil, 2015). We experiment

with the following levels of oversampling: 0% (no SMOTE), 20%,

40%, 60%, 80% (partial SMOTE), and 100% (full SMOTE). SMOTE is

performed on all classes with less than the oversampling thresh-

old as compared to the class with the largest sample count. Note

Table 4

Samples per application category.

Class Application Type Samples

0 Audio-Streaming 18,065

1 Browsing 32,809

2 Chat 11,479

3 Email 6146

4 File Transfer 11,183

5 P2P 48,521

6 Video-Streaming 9768

7 VOIP 3567

that 100% SMOTE results in an equal number of samples for each

class, while lower thresholds of SMOTE result in an equal number

of samples among only those classes which are oversampled.

3.2.2. Data representation

SVM and RF both use each the dataset samples in their original

format, which is a 1-dimensional array. However, we reshape each

sample to be 2-dimensional for CNN and AC-GAN. Intuitively, the

data is reshaped as 9 × 9 grayscale images, where each of our 72

features is represented as a single pixel with the remaining pixels

produced by zero padding. The pixels are ordered as their respec-

tive features appeared in the CIC-Darknet2020 dataset, starting at

the top left corner of the image as shown in Fig. 3 , where each

row represents samples from an application class, color-coded for

readability.

Both CNN and AC-GAN convolve local structures within the 2-

D images, so adjacent pixels play an important role in classifi-

cation. Therefore, we experiment with strategies to reorder the

data to achieve better performance. We order the pixels by fea-

ture importance—as determined by our Random Forest classifier—

starting at the top left corner of the image, and also reorganize the

pixels spiraling outward from the center of the image. This latter

strategy tends to group pixels with larger values toward the center

of each image, as shown in Fig. 4 .

3.2.3. Data augmentation experiment

We experimented with AC-GAN as an alternative to SMOTE,

with the goal of generating realistic artificial samples that can be

4

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 3. Data as 2-D images in original order.

Fig. 4. Data in 2-D sorted by RF feature importance and centered.

used to augment our dataset. Again, we use data augmentation to

address the issue of class imbalance. However, we abandoned this

approach as we found that the fake images generated by AC-GAN

are consistently detectable by a CNN model with accuracy ranging

from 99% to 100%. We believe that the failure of our AC-GAN to

produce realistic fake images is due to the depth of the AC-GAN

neural network architecture, which is constrained by the input im-

age size. In any case, we were unsuccessful in our attempt to use

AC-GAN to augment our data.

An example of four fake samples compared to real samples can

be found in Fig. 5 . The fake samples in this figure may appear to be

useful but, again, a CNN can distinguish the fake from the real with

essentially 100% accuracy. This clearly shows that from a machine

learning perspective, the fakes samples are not sufficient for data

augmentation.

3.3. Evaluation metrics

In our experiments, we use accuracy and F1-score to mea-

sure the performance of each classifier. Accuracy is computed as

the total number of correct predictions over the number of sam-

ples tested. The F1-score is the weighted average of precision and

recall metrics, which is better for unbalanced datasets like CIC-

Darknet2020. Similar to accuracy, F1-scores fall between 0 and 1,

with 1 being the best possible. The F1-score is computed as

F1 = 2 × (Precision × Recall)
(Precision + Recall)

Precision calculates the ratio of samples classified correctly for the

positive class, while recall measures the total number of positive

samples that were classified correctly. Precision and recall are com-

5

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 5. Chat class (4 fake and 4 real examples).

Table 5

Computing resources used in experiments.

Computing hardware Experiments

CPU: 8-core Intel(R) CORE(TM) SVM, RF, GBDT, XGBoost, k -NN, MLP

i7-8550U @ 1.80GHz Obfuscation

CPU: 12-core Intel(R) Xeon(R)

W-10855M @ 2.80GHz CNN, AC-GAN

GPU: NVIDIA Quadro SMOTE

RTX 5000

puted as

Precision =

True Positives
(True Positives + False Positives)

and

Recall =

True Positives
(True Positives + False Negatives)

respectively.

4. Implementation

This section details the implementation of the experiments that

we mentioned in Section 3 . All experiments are coded in Python.

The Imblearn library (imblearn) is used to implement SMOTE

to balance the dataset, while the package Scikit-learn (Scikit-

learn: Machine Learning in Python) is employed to run most of

the experiments, with the exceptions being that the Tensorflow
and Keras libraries are utilized to implement CNN and AC-

GAN. From the Scikit-learn library, the metrics module

is used to evaluate the F1-scores and accuracy of the classifiers

and the StratifiedKFold function is applied to perform 5-fold

cross validation. Graphs are generated with the Matplotlib and

Seaborn libraries, with the exception of the confusion matrices

and bar graph, which are typeset directly in L A T E X using PGFPlots.

All experiments in this research are executed on one of two

personal computers, as detailed in Table 5 . We exploit a graph-

ics processing unit (GPU) in the second computer to decrease

the training time of our more computationally demanding exper-

iments, that is those using neural networks to process 2-D image

representations.

4.1. Overview of classification techniques

This section briefly describes the machine learning and deep

learning concepts that we apply to classification in our experi-

ments. These include the boosting techniques of GBDT and XG-

Boost, as well as k -NN, MLP, SVM, RF, CNN, and AC-GAN.

4.1.1. Boosting techniques

Boosting is a general technique where a collection of weak

classifiers are combined to produce a stronger classifier. Gradient-

Boosting Decision Trees (GBDT) assign weights to decision trees

based on residuals (i.e., gradient calculations). Extreme Gradient

Boosting (XGBoost) is a slightly modified—and highly efficient—

implementation of the GBDT technique. XGBoost has performed

well in numerous machine learning competitions (Synced, 2017).

In our GBDT experiments, we employ the log loss function,

while the learning rate is α = 0 . 1 and the number of estimators

is 100. For our XGBoost experiments, the learning rate is selected

to be α = 0 . 3 , the maximum depth of the trees is 6, and we em-

ploy uniform sampling.

4.1.2. k -Nearest Neighbors

As the name suggests, in k -Nearest Neighbors (k -NN), samples

are classified based the k nearest samples in the training set. There

is no explicit training required in k -NN, and hence no algorithm

can be simpler, at least in terms of training. In spite of—or, per-

haps, because of—its simplicity, there exist strong error bounds for

k -NN. However, the technique is sensitive to local structure and,

in particular, for small values of k , overfitting is common. Based

on small-scale experiments, we use k = 5 for all k -NN experiments

reported in this paper.

4.1.3. Multilayer perceptron

Multilayer Perceptrons (MLP) are feedforward networks that

generalize basic perceptrons to allow for nonlinear decision bound-

aries. This is somewhat analogous to the way that nonlinear SVM

generalize linear SVMs. In a sense, MLPs are the simplest useful

neural networking architecture, and hence they are sometimes re-

ferred to simply as Artificial Neural Networks (ANN). In our MLP

experiments, we use an architecture with 100 hidden layers, rec-

tified linear unit (ReLu) activation functions, the Adam optimizer,

and a learning rate of α = 0 . 0 0 01 .

4.1.4. Support vector machines

Support Vector Machines (SVM) are supervised machine learn-

ing models frequently used for classification. An SVM attempts to

find one or more hyperplanes to separate labeled training data

while maximizing the margin of the decision boundaries between

classes. The data must be vectorized into linear feature sets, but

non-linear data can also be encoded with some success. Scaling

the feature values across training samples allows coefficients of the

hyperplanes (weights) to be ranked by relative importance. SVMs

rely on the so-called kernel trick to map data into a higher di-

mensional space, which can yield nonlinear decision boundaries in

the input space. The idea behind the kernel trick is that in higher

dimensions, it is generally easier to find hyperplanes to separate

6

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

classes (Stamp, 2022). For our research, we perform preliminary

tests to determine the best kernel for our dataset, with the result

being the Gaussian radial basis function (RBF).

4.1.5. Random forest

Random Forest (RF) is an ensemble method that generalizes

Decision Trees (DT). While a DT is a simple and efficient classi-

fication algorithm, it is highly sensitive to variance in the train-

ing data and hence prone to overfitting. RF compensates for these

deficiencies by generating many subsets of the dataset, then ran-

domly selecting features (with replacement) and trains a DT for

each subset. This process is called bootstrapping. To classify, RF

takes the majority vote from all resulting DT in a process called

aggregation. Together bootstrapping and aggregation is referred

to as bagging (Misra and Li, 2020; Stamp, 2022). RF also en-

ables us to rank the importance of features based on the mean

entropy within the component DTs. Feature importance tells us

how influential each feature is when classifying samples with

the RF. Based on small-scale experiments, we found that the de-

fault hyperparameters in Scikit-learn yielded the best results;

see (sklearn.ensemble.RandomForestClassifier) for the details.

4.1.6. Convolutional neural networks

Convolutional Neural Networks (CNN) are a unique type of neu-

ral network that focus on local structures, making them ideal for

image analysis. CNNs are composed of an image input layer, con-

volution and pooling layers and a fully-connected output layer that

produces a vector of class scores. Convolutional and pooling lay-

ers are the fundamental components of any CNN architecture. In

convolutional layers, the output of the previous layer (or the raw

image in the initial convolutional layer) is convolved with random-

ized filters to produce local structure maps that are joined to cre-

ate the output of the layer. In the convolutional process, the fil-

ter windows slide across the input image, thus emphasizing lo-

cal structure, and providing a degree of translation invariance. The

components of each filter are learned when training a CNN. Pool-

ing layers decrease total training time by reducing the dimension-

ality of the resulting feature maps, concentrating effort on the

most signifcant features (Convolutional Neural Networks for Visual

Recognition; Lashkari et al. 2020). For this research, we use max
pooling.

Our CNN architecture is based on that described in (Lashkari

et al., 2020). We experiment with various hyperparameters, testing

all combinations of the following in a grid search.

• Initial number of convolution filters (9, 32, 64, 81)

• Filter size (2 × 2 , 3 × 3)

• Percentage dropout (0 . 2 , 0 . 5)

• Number of nodes in the first dense layer (72, 256)

All these architectures yield accuracies within the range of 86%

to 88% when classifying application type. Therefore, we select the

architecture that produces the highest accuracy. Our select CNN ar-

chitecture is illustrated in Fig. 6 . Note that we use Adam for our

optimizer and sparse categorical cross entropy for our loss func-

tion.

Dropout is a common technique used to combat overfitting in

neural networks with fully-connected layers. However, it is found

to be not as effective with convolution layers. A better regular-

ization technique for CNN is to “cut out” sections of the input

images. Such cutouts force CNN to learn from the other parts

of an image during training, which tends to activate filters that

would otherwise atrophy. It is comparative in effect to dropouts

except that it operates on the input stage rather than the in-

termediate layers (DeVries and Taylor; Li et al. 2021). We im-

plement cutouts by creating feature masks of equivalent size to

our input image. We experiment with different cutout sizes in-

cluding 2 × 2 , 3 × 3 , and 4 × 4 and randomize the position of the

cutout within the mask. Refer to Fig. 7 for some examples of masks

with 3 × 3 cutouts. Our cutout experiments are discussed in detail

in Section 5.2 , below.

4.1.7. Auxiliary-classifier generative adversarial network

Generative Adversarial Networks (GAN) are comprised of two

neural network architectures—a generator and a discriminator—

that compete in a zero-sum game during training. The generator

takes noise from a latent space as input and produces images that

feed into the discriminator. The discriminator is given both real

and generated images and is tasked to classify them as either real

or fake. The discriminator error is then fed back into the generator

to improve its image generation. AC-GAN is an extension of this

base GAN architecture, taking a class label as additional input to

the generator while predicting this label as part of the discrimina-

tor output. The objective of the AC-GAN generator is to minimize

the ability of the discriminator to distinguish between real and

fake images and also maximize the accuracy of the discriminator

when predicting the class label (Mudavathu et al., 2018; Nagaraju

and Stamp, 2021). Besides using the AC-GAN generator in data aug-

mentation experiments, we also explore the secondary class pre-

diction output of the discriminator as a classifier.

Our AC-GAN architecture is inspired by the ImageNet model

described in (Odena et al., 2017). However, since that architecture

was built for image sizes 32 × 32 or larger, we modify that ar-

chitecture to accommodate our 9 × 9 image size by reducing the

number of convolutional and transposed convolutional layers in

the discriminator and generator, respectively.

We fine-tune our AC-GAN hyperparameters by experimenting

with the following.

• Latent space size (81, 100)

• Initial number of convolution filters (15, 40, 64, 192, 202, 384,

50 0, 150 0)

• Number of nodes in the first dense layer (31, 81, 128, 384, 405,

768, 10 0 0, 30 0 0)

• Filter size (3 × 3 , 5 × 5)

• Stride size (2 × 2 , 3 × 3)

We observe accuracies within the range of 70% to 73% when

classifying application type with these hyperparameters. The best-

performing architecture with the shortest runtime duration is used

in this research; Tables 6 and 7 detail our generator and discrimi-

nator architecture, respectively.

We feed training data to our AC-GAN model in batches of 64

samples. Batch normalization (BatchNorm) layers are applied be-

tween convolutional layers to regularize the training gradient step

size. BatchNorm is thought to smooth local optimization steps and

stabilize training, thereby accelerating convergence of GAN mod-

els (Santurkar et al., 2018).

4.2. Adversarial attacks

Our adversarial attacks rely on obfuscation, which serves to dis-

guise application classes based on applied probability analysis. We

select application classes to disguise as other classes based on min-

imum and maximum sum statistical distance between all class fea-

tures, as specified in Algorithm 1 .

We also select a third class transformation to perform based

on maximal classifier confusion, whose sum statistical distance be-

tween class features is notably low, but not the minimum between

classes. We ensure our class transformation can be decoded by

encoding features with a deterministic algorithm, given here as

Algorithm 2 . We impose no additional restrictions on feature trans-

formation.

7

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 6. CNN architecture.

Table 6

AC-GAN generator architecture.

Layer Operation Kernel Strides Depth BN Activation

1 × 1 × 100 Input A (Latent Space)

Dense A 405 ReLU

1 × 1 × 1 Input B (Feature Noise)

8 × 32 Class Embedding for B 256

Dense B 1

Merge A + B 406

Conv2DTranspose 5 × 5 3 × 3 202 � ReLU

Conv2DTranspose 5 × 5 3 × 3 1 Tanh

Table 7

AC-GAN discriminator architecture.

Layer Operation Kernel Strides Depth BN Dropout Activation

9x9x1 Input (Image)

Conv2D 3 × 3 2 × 2 32 0.5 Leaky ReLU

Conv2D 3 × 3 1 × 1 64 � 0.5 Leaky ReLU

Conv2D 3 × 3 2 × 2 128 � 0.5 Leaky ReLU

Conv2D 3 × 3 1 × 1 256 � 0.5 Leaky ReLU

Flatten

Dense 1 Sigmoid

Dense 8 Softmax

Leaky ReLU Slope 0.2

Weight Initialization Gaussian (σ = 0 . 02)

Optimizer Adam (α = 0 . 0 0 02 , β1 = 0 . 5)

We start by generating normalized histograms of feature values

per class to assess the probability at which values occur within

each class. To decide which classes to obfuscate, we examine the

sums of the distances between feature probability distributions

from each class to each other class. We use the cdist function of

the scipy Python library to calculate the Euclidean distance be-

tween probability distributions. This provides an estimate of the

overall difference between classes while considering all feature

probability distributions. In the case of application type, this yields

the 8 × 8 array in Table 8 , where the Class numbers correspond to

those in Table 4 , above.

From Table 8 , we observe that class 0 is most different from

class 5 and class 3 is most similar to class 7. We pick the classes

with the minimum and maximum sum of statistical distances be-

tween features, changing class 0 (audiostreaming) to class 5 (P2P)

and class 3 (email) to class 7 (VOIP). We also examine the confu-

sion matrix for our best-performing classifier, RF, which is shown

in Fig. 8 . RF is observed to be most confused between class 2

(chat) and class 3 (email), so we decide to additionally obfuscate

class 2 with class 3. We arbitrarily choose to transform lower num-

bered classes to higher numbered classes, e.g., disguising class 2 as

class 3 instead of class 3 as class 2.

8

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Table 8

Statistical distances between pairs of application classes.

Class 0 1 2 3 4 5 6 7

0 0 25.129 18.709 21.041 23.656 28.195.9 18.371 21.903

1 25.129 0 23.518 21.958 12.884 12.098 16.728 23.623

2 18.709 23.518 0 9.841.75 22.613 25.294 18.408 9.901

3 21.041 21.958 9.841.75 0 21.51 23.021 18.031 6.859.6

4 23.656 12.884 22.613 21.51 0 15.651 14.605 23.211

5 28.195.9 12.098 25.294 23.021 15.651 0 21.085 24.451

6 18.371 16.728 18.408 18.031 14.605 21.085 0 20.089

7 21.903 23.623 9.901 6.859.6 23.211 24.451 20.089 0

Fig. 7. Examples 9 × 9 images with 3 × 3 cutouts.

Algorithm 1 Class feature probability distributions

1: procedure compare (classA , classB)

2: bins = some discrete bins partitioning values 0 to 1 � We use 100 bins

3: A = classA feature probability distributions

4: B = classB feature probability distributions

5: classDistance = 0

6: for each distributionA, distributionB in A, B do

7: featureDistance = cdist (distributionA, distributionB)� Euclidean

8: classDistance += featureDistance � Manhattan sum

9: end for

10: end procedure

Our obfuscation algorithm first calculates the difference in class

probability distributions (DCPD) for each feature between the two

classes under consideration, where the classes are denoted as A

and B, and sorts each distribution from maximum to minimum.

Intuitively the index of each DCPD maximum corresponds to each

feature value most probably belonging to the positive class A while

the minimum corresponds to each feature value most probably be-

longing to the negative class B. To obfuscate a sample, we then

transform individual feature values by subtracting the difference

in bin thresholds between the original feature bin and a target bin

for obfuscation. To choose target bins for this transformation, we

create a 1-to-1 map of the sorted indices of each DCPD with a re-

verse sort of the same DCPD. This ensures a transformed sample

feature could be decoded later given the feature DCPD for a class

obfuscation vector. An example visualization of the DCPD bin map-

ping for the transformation of the most common feature 0 values

from class 2 to class 3 is provided in Section 4.2.1 , below.

Reversing the 1-to-1 bin map facilitates decoding of obfuscated

class sample feature values back to their original values. To do this

we add back the same difference in bin thresholds which we sub-

Algorithm 2 Disguise one class sample as another class sample

1: procedure obfuscate (sample , classA , classB) � To decode, reverse A and B

2: bins = some discrete bins partitioning values 0 to 1 �

We use 100 bins

3: A = classA feature probability distributions

4: B = classB feature probability distributions

5: for each featureValue at featureIndex in the sample do

6: featureBin = the bin which contains featureValue

7: DCPD = A[featureIndex] - B[featureIndex]

8: AtoB = sorted DCPD from maximum to minimum

9: BtoA = sorted DCPD from minimum to maximum

10: oldBin = where AtoB[oldBin] == featureValue �

Red arrows in Figure 9

11: newBin = BtoA[oldBin] � Black arrows in Figure 9

12: newValue = featureValue - (bins[oldBin] - bins[newBin])

13: sample[featureIndex] = newValue

14: end for

15: end procedure

Fig. 8. Best RF results for application classification.

tracted earlier, thus applying each feature DCPD between known

classes as a decoder key to undo an expected class obfuscation

for a particular feature. To test this method of class obfuscation,

we performed the three adversarial attacks summarized in Table 9 ,

with RF as the classifier.

4.2.1. An obfuscation example

To illustrate Algorithm 2 , we will walk through a simple exam-

ple where we are given a sample from class 2 and we want to

transform this sample to look more like class 3. Let us start with

the first feature, feature 0. We note the value of this feature for

class 2; call this value v . Suppose, for example, that v = 0 . 178142 .

We allocate 100 equal-width bins ranging from 0 to 1, so that

9

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 9. Visualization of obfuscation example.

Table 9

Attack scenarios.

Scenario

What is obfuscated? Scenario

description
Training data Validation data

1 � Simulates a novel attack

where we apply an outdated

model for classification

2 � Simulates an attack

on our training data,

poisoning the classifier

3 � � Simulates a novel defense

where we train our model

on some obfuscated data

bin b 0 corresponds to values 0.00 to 0.01 and so on. Given the

value of v , we find the bin that v falls into. The value v = 0 . 178142

is in bin b 17 , which contains values between 0.17 to 0.18. Bin b 17

is indicated by the red arrows in Fig. 9 . We then flip the sorted

DCPD index at b 17 to locate our target bin, indicated by the black

arrows in Fig. 9 . This target bin b 58 , which contains values be-

tween 0.58 to 0.59. To obfuscate, we subtract the difference be-

tween b 17 and b 58 from v . In this example, our new transformed

value is

˜ v = 0 . 178142 − (0 . 17 − 0 . 58) = 0 . 588142

which falls into the target bin b 58 . We repeat this for all the fea-

tures to transform the sample from class 2 to class 3.

Note that this obfuscation technique is designed to maximize

the effectiveness of a simulated adversarial attack. Our approach

ignores practical limitations on the ability of attackers to modify

the statistics of the data. Hence these simulated attacks can be

considered worst-case scenarios, from the perspective of detecting

darknet traffic under adversarial attack.

5. Results and discussion

In this section, we consider a wide range of experiments. First,

we determine which of the three 2-D image representation tech-

niques discussed in Section 5.1 is most effective. Then we consider

the use of cutouts, which can serve to reduce overfitting and im-

prove accuracy in CNNs. We then turn our attention to the imbal-

ance problem, with a series of SMOTE experiments. We conclude

this section with an extensive set of experiments involving various

adversarial attack scenarios.

5.1. Data representation experiments

We evaluate CNN and the AC-GAN discriminator given differ-

ent 2-D pixel representations of the data features. All of our 2-D

representations of the data are of size 9 × 9 , where each pixel is

a feature. The pixels in the original representation follow the or-

der that the features appear in the CIC-Darknet2020 dataset. We

hypothesize that grouping the pixels together would have a posi-

tive effect on the performance of our classifiers since convolutions

operate on local structures. Our results show that CNN performs

best when the pixels are sorted by RF feature importance and then

grouped together at center of the image. However, this is not true

for the AC-GAN discriminator. AC-GAN does better using the origi-

nal data representation, contrary to our hypothesis. Table 10 shows

the results for these experiments.

5.2. Cutout experiments

Initially, our CNN model is able to achieve 88% accuracy classi-

fying application type within 15 epochs. However, we notice that

overfitting starts to occur the longer we run our model. To reduce

overfitting, we apply cutouts to the training data. We experiment

with different cutout sizes: 2 × 2 , 3 × 3 , and 4 × 4 . We observe

that cutouts allow our CNN to train for a longer period of time

without overfitting. The loss graphs in Fig. 10 show how the CNN

model overfits after 20 epochs in the original execution but does

not overfit with cutouts. There is little difference in the effects of

applying 2 × 2 compared to 3 × 3 cutouts. Both delay overfitting

at the same rate and the accuracies for both linger at 88%. No-

tably, we witness a 1% decrease in accuracy with 4 × 4 cutouts. As

our images are only 9 × 9 pixels, a 4 × 4 cutout likely deletes too

much information from the image, negatively affecting the accu-

racy. While cutouts address the issue of overfitting, we find that

more training does not significantly improve the performance of

CNN on the dataset under consideration. Thus, we do not employ

cutouts in the CNN results reported below.

5.3. SMOTE Experiments

We compare the performance of our classifiers with various lev-

els of SMOTE, performing SMOTE to oversample the training data

before training each classifier for both cases, that is, traffic type

and application type. The results from these experiments appear

in Tables 11 and 12 , respectively, where the best result for each

10

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Table 10

2-D data representation results.

CNN AC-GAN

Accuracy F1-scores Accuracy F1-score

Original 0.889 0.887 0.753 0.738

Shaped with RF feature importance 0.890 0.887 0.753 0.731

Shaped with RF feature importance and centered 0.891 0.889 0.742 0.729

Fig. 10. The effects of cutouts on overfitting for CNN.

Table 11

Traffic classification F1-scores at various SMOTE levels.

Learning SMOTE percentage

technique 0% 20% 40% 60% 80% 100%

GBDT 0.961 0.961 0.960 0.960 0.958 0.958

XGBoost 0.983 0.983 0.982 0.980 0.977 0.975

k -NN 0.884 0.884 0.881 0.875 0.871 0.868

MLP 0.821 0.821 0.850 0.788 0.676 0.744

SVM 0.986 0.993 0.993 0.993 0.993 0.993

RF 0.998 0.998 0.998 0.998 0.998 0.998

CNN 0.998 0.995 0.995 0.995 0.996 0.995

AC-GAN 0.974 0.980 0.984 0.986 0.987 0.987

SMOTE level is boxed. We observe that reducing class imbalance

using SMOTE does not have a large effect on the performance of

most of the classifiers. With the exception of the MLP traffic classi-

fication experiments, SMOTE only affects the F1-score by about 1%

to 2% in each case. Note also that the MLP results are the poorest

in every case. We conclude that for the problem under considera-

tion, SMOTE is of some value for fine tuning models.

Our RF model without SMOTE outperforms the state-of-the-

art F1-scores for both traffic and application classification tasks.

We observe a 1.1% improvement for traffic classification as com-

pared to Iliadis and Kaifas (2021) , where they also found RF to be

their best classifier. The study (Iliadis and Kaifas, 2021) only clas-

sified traffic type, thus no application type performance is avail-

able for comparison. For application classification, our RF model

achieved a 3.2% increase over (Sarwar et al., 2021). In addition,

our CNN model outperformed the CNN results in Lashkari et al.

(2020) by 2.8% and is within 0.2% of the more complex and costly

CNN-LSTM results in Sarwar et al. (2021) . We are only able to

compare classification results for application type with (Lashkari

et al., 2020) because they approach traffic type classification as

a binary problem while we address it as a multiclass problem.

Table 13 summarizes the best performance of our classifiers in

comparison to relevant prior work, where the best results in

the Traffic and Application columns are boxed. Overall, RF is our

11

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 11. Confusion matrices for attack scenario 1.

Table 12

Application classification F1-scores at various SMOTE levels.

Learning technique SMOTE percentage

0% 20% 40% 60% 80% 100%

GBDT 0.840 0.840 0.840 0.838 0.837 0.835

XGBoost 0.893 0.890 0.888 0.887 0.885 0.885

k -NN 0.750 0.746 0.742 0.736 0.734 0.734

MLP 0.591 0.587 0.596 0.558 0.547 0.536

SVM 0.834 0.839 0.842 0.846 0.847 0.848

RF 0.922 0.920 0.921 0.921 0.920 0.920

CNN 0.887 0.883 0.883 0.887 0.888 0.885

AC-GAN 0.738 0.750 0.762 0.768 0.767 0.759

best-performing classifier and MLP and k -NN perform the worst.

Also of note is the fact that the AC-GAN classifier is one of

the best performing models in the traffic classification problem,

but it performs relatively poorly in the application classification

task.

5.4. Adversarial attack experiments

With improvement in the accuracy of darknet traffic detection

by machine learning and deep learning techniques, it is realistic to

anticipate that attackers will attempt to find ways to circumvent

12

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 12. Confusion matrices for attack scenario 2.

Table 13

Best F1-scores compared to prior work.

Source Learning technique Traffic Application

Previous

work

CNN-LSTM (Sarwar et al., 2021) 0.960 0.890

RF (Iliadis and Kaifas, 2021) 0.987 —

CNN (Lashkari et al., 2020) — 0.860

Our

results

GBDT 0.961 0.840

XGBoost 0.983 0.893

k -NN 0.875 0.750

MLP 0.850 0.596

SVM 0.993 0.848

RF 0.998 0.922

CNN 0.998 0.888

AC-GAN 0.987 0.768

detection by modifying the profile of their application traffic. For

example, someone pirating copyrighted media with P2P applica-

tions might disguise their illegal activity as VOIP traffic to avoid

prosecution. We show obfuscation of traffic in this fashion can

be accomplished by modifying traffic feature values, understand-

ing that this process is most feasible and desirable at the appli-

cation layer. Also, if an attacker were to discover the methods we

use for classification and pollute our training data, then our classi-

fiers could be compromised, allowing the attacker to avoid detec-

tion without modifying any of their traffic features.

For this experiment we assume the role of an attacker on

the network, with the goal of modifying traffic features such that

classes are incorrectly classified or entirely undetected. This could

represent covert illegal activity that an attacker wishes to hinder

the detection of, with common examples being P2P or file-transfer

applications. Realistically, traffic features common to one applica-

tion class could be modified at the application layer to appear

more similar to other application classes. An attacker could do this

by writing a custom overlay application to change various features,

such as the number of packets sent, their communication intervals,

port assignment, etc. In our experiments, we disguise class 0 as

class 5 (originally the most different), class 2 as class 3 (the classes

which most confused our RF classifier) and class 3 as class 7 (orig-

inally the most similar).

13

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Fig. 13. Classification results compared to previous work.

In attack scenario 1, we train our RF classifier on the original

application class data, then test the same model with an obfus-

cated class in the validation dataset. This represents a hypotheti-

cal scenario where an attacker modifies the traffic features of one

class at the application layer, perhaps with an overlay application.

We demonstrate that our method of obfuscation is able to de-

feat our best classifier in this scenario, significantly reducing de-

tection of the obfuscated class, as well as overall classifier accu-

racy. Before obfuscation, RF classifies application classes with an

accuracy of 92.3% without SMOTE. After obfuscation of the three

class choices mentioned in the previous paragraph, the overall RF

accuracy for application classification without SMOTE decreases

to 80.8%, 85.4%, and 88.7%, respectively.

The confusion matrices in Fig. 11 show that RF consistently mis-

classifies each class we obfuscate, actually detecting no samples

in the case of an obfuscated class 3, where the dashed circle in-

dicates the class we are obfuscating and the solid circle indicates

the class we intended it to appear as. However, RF did not misclas-

sify classes 0 and 3 as the expected classes 5 and 7, respectively.

Instead, the confusion matrices (a) and (c) in Fig. 11 reveal that

RF mostly categorizes class 0 and 3 as class 6 and 2, respectively.

It may be relevant that our obfuscation method does not account

for any interdependence between traffic feature values, obfuscating

each feature independently.

In attack scenario 2, we train our RF classifier with an obfus-

cated class in the training dataset, then test the model with the

original application class data. We consider a hypothetical scenar-

ios where an attacker entirely poisons our training data, perhaps

by injecting malware into our database or by intercepting our traf-

fic capture data stream. We find the attacker could prevent an

entire class from being predicted by our best classifier when the

training data for a class is entirely obfuscated. We see this trend in

the all three confusion matrices in Fig. 12 , where in each case, the

dashed circle indicates the class we are obfuscating and the solid

circle indicates the class we intended it to appear as. Notice that

the entire row in the confusion matrix is zeroed out, indicating

that the class was never predicted for classification by RF. Simi-

lar to attack scenario 1, the overall RF accuracy decreases to 82.0%,

86.5%, and 89.4% respectively, for application classification without

SMOTE. As the obfuscated class is never considered for prediction

by RF, in this scenario, we observe a lesser overall accuracy de-

crease as compared to attack scenario 1.

In attack scenario 3, we train our RF classifier with the same

obfuscated class in both the training dataset and the validation

dataset. We obfuscate only a small portion of the training data

while still obfuscating all of the validation data for each of class 0,

2, and 3. We experiment with the percentage of training data we

Table 14

Class accuracies for attack scenarios.

Scenario Obfuscation

Overall Accuracy Class Accuracy

(0,5) (2,3) (3,7) 0 2 3

No attack — — — — 0.907 0.846 0.821

1 — 0.808 0.854 0.887 0.100 0.006 0.000

2 — 0.820 0.865 0.894 0.000 0.000 0.000

3 20.0% 0.947 0.946 0.939 0.998 0.993 0.997

3 2.0% 0.935 0.939 0.891 0.958 0.921 0.120

3 0.2% 0.820 0.859 0.887 0.503 0.247 0.000

obfuscate. This represents a hypothetical scenario where the obfus-

cation algorithm has been obfuscating network traffic long enough

to pollute a small portion of a network traffic population. A de-

fender then updates the classifier to include this small portion of

obfuscated class data at training time, with increasing exposure

to the obfuscated data over time. As our dataset is split into 80%

training data and 20% validation data, we decide to limit the train-

ing dataset exposure of obfuscated class data to 20% of the total

training dataset. We choose to decrement this value logarithmi-

cally with three total sub-scenarios representing 0.2%, 2%, and 20%

obfuscation exposure, expecting that with more exposure to the

obfuscated class data, our classifier will adapt and outperform the

obfuscation algorithm to correctly classify the obfuscated class in

our validation dataset.

We find that 20% exposure of our obfuscation algorithm to the

RF training data is sufficient for RF to predict the disguised classes

with high accuracy, defeating our obfuscation technique as shown

in Table 14 . Note that the overall accuracies reported for attack sce-

nario 3 are higher than our RF benchmark score of 92.2%. However,

we modify the validation dataset in both attack scenarios 1 and 3,

so the resulting accuracies of those scenarios cannot be directly

compared to the results of prior work. Our results with lower ex-

posure levels of 2% and 0.2% reveal a trend—of the classes tested,

class 0 appears to be the most difficult for our algorithm to obfus-

cate, while class 3 appears to be the easiest to obfuscate. Class 2 is

somewhere in between, providing a loose correlation to our met-

ric of statistical distance between classes and the performance of

our obfuscation algorithm. We observe this trend in Table 14 under

Class Accuracy for attack scenario 3.

6. Conclusion and future work

In this research, we classified the CIC-Darknet2020 network

traffic samples using a wide variety of classifiers. We classified

based on four traffic classes and eight application classes, while

fine tuning the classifier hyperparameters. We experimented with

different levels of SMOTE to assess class imbalance in the dataset

and explored 2-D representations of the traffic features for CNN

and AC-GAN. We also approached the issue of darknet detection

adversarially, from the perspective of an attacker hoping to con-

fuse our best classifier. We demonstrated that we could effectively

obfuscate application class traffic features. We then correlated the

underlying statistics of the CIC-Darknet2020 dataset to the perfor-

mance of this algorithm assuming specific hypothetical attack sce-

narios for added realism.

Among the tested machine learning classifiers, Random For-

est was found to be the most proficient at classifying darknet

traffic for both traffic and application types. It yielded 99.8%

F1-score for traffic classification and 92.2% F1-score for applica-

tion classification, outperforming the state-of-the-art studies on

CIC-Darknet2020 (Iliadis and Kaifas, 2021; Sarwar et al., 2021).

Figure 13 provides a visual comparison of our best results with

those of prior work.

14

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Our research was limited by the availability of darknet traffic

datasets. We selected the CIC-Darknet2020 dataset because it is

frequently cited and publicly accessible; however the dataset suf-

fers from a substantial imbalance. We attempted to compensate for

this class imbalance by generating artificial samples with AC-GAN

and SMOTE. The artificial SMOTE samples marginally improved our

classification results. Seeking to improve the quality of artificial

samples, we assessed AC-GAN as a sample generator. However, our

AC-GAN-generated samples were not useful for data augmentation

purposes. An approach that future researchers might consider is to

use clustering to group samples within a class, then train one GAN

per cluster to generate samples. Other variations of GAN might also

be better suited for multiclass sample generation and could con-

ceivably generate more realistic samples.

We kept our obfuscations fairly basic, with the goal being to

demonstrate that we could confuse our best classifier, with few

restrictions imposed on the hypothetical attacker. Under more re-

alistic attack scenarios, it may not be possible to so easily modify

features which define darknets such as Tor and VPN, but it would

be possible to obfuscate traffic features at the application layer

such as those produced by CICFlowMeter analysis. We introduced

a loose correlation to one statistical metric, an independent sum

of distances between DCPD across all sample features. We noted

that 2 out of the 3 classes we chose to obfuscate were misclassi-

fied not as the intended classes, but with a majority of predictions

distributed among other classes. This results from the fact that our

obfuscation metric does not account for the statistical relationship

between more than two classes, nor does it account for any de-

pendency between the CIC-Darknet2020 feature values.

There is much more remaining work that could be done to

extend the adversarial obfuscation analysis presented this paper.

Real traffic features could be modified on live network traffic (e.g.,

changing IP addresses, ports, packet lengths or intervals), or se-

lect features could be prohibited from modification during ob-

fuscation, which is likely to be a realistic constraint. An even

larger task is to explore the dependency between features in or-

der to anticipate counterattacks. One possible avenue that future

research could take with respect to the CIC-Darknet2020 dataset

is to develop an obfuscation method to exploit Random Forest

feature importance, or the weights of a linear SVM. This might

better correlate the relationship between classifier response and

dataset statistics. We only tested our obfuscation method using

our best-performing classifier. It would also be interesting to ex-

plore how other classifiers respond to similar obfuscation tech-

niques, so as to determine which classifiers are most robust to such

attacks.

Author contribution

Mark Stamp proposed and guided the research, and edited the

paper.

Nhien Rust-Nguyen performed the majority of the experiments,

developed some of the key ideas used in this research, and wrote

the first draft of the paper.

Shruti Sharma completed several of the experiments included

in the paper.

Declaration of Competing Interest

The authors declare the following financial interests/personal

relationships which may be considered as potential competing in-

terests: Mark Stamp reports financial support was provided by San

Jose State University. Nhien Rust-Nguyen reports was provided by

San Jose State University.

Data availability

Data will be made available on request.

References

Bhagat, R.C., Patil, S.S., 2015. Enhanced SMOTE algorithm for classification of imbal-

anced big-data using random forest. In: 2015 IEEE International Advance Com-
puting Conference, pp. 403–408 .

Branwen, G., Christin, N., Décary-Hétu, D., Andersen, R. M., StExo, Presidente,

E., Anonymous, Lau, D., Sohhlz, Kratunov, D., Cakic, V., Buskirk, V., Whom,
McKenna, M., Goode, S., 2015. Dark net market archives, 2011–2015. https:

//www.gwern.net/DNM-archives .
Convolutional Neural Networks for Visual Recognition, 2022. Convolu-

tional neural networks for visual recognition. https://cs231n.github.io/
convolutional-networks .

Demertzis, K., Tsiknas, K., Takezis, D., Skianis, C., Iliadis, L., 2021. Darknet traffic big-

data analysis and network management for real-time automating of the mali-
cious intent detection process by a weight agnostic neural networks framework.

https://arxiv.org/abs/2102.08411 .
DeVries, T., Taylor, G. W., 2017. Improved regularization of convolutional neural net-

works with cutout. https://arxiv.org/abs/1708.04552 .
Dingledine, R., Mathewson, N., Syverson, P., 2004. Tor: the second-generation onion

router. In: 13th USENIX Security Symposium (USENIX Security 04) . https://

www.usenix.org/conference/13th- usenix- security- symposium/tor- second-
generation- onion- router .

Gil, G.D., Lashkari, A.H., Mamun, M., Ghorbani, A .A ., 2016. Characterization of en-
crypted and VPN traffic using time-related features. In: 2nd International Con-

ference on Information Systems Security and Privacy, pp. 407–414 .
Hu, Y., Zou, F., Li, L., Yi, P., 2020. Traffic classification of user behaviors in Tor, I2P,

ZeroNet, Freenet. In: 2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications, pp. 418–424 .

Iliadis, L.A., Kaifas, T., 2021. Darknet traffic classification using machine learning

techniques. In: 2021 10th International Conference on Modern Circuits and Sys-
tems Technologies (MOCAST), pp. 1–4 .

imblearn, 2022. imblearn 0.0. https://pypi.org/project/imblearn/ .
Lashkari, A. H., 2018. CICFlowmeter-v4.0 (formerly known as iscxflowmeter) is a

network traffic bi-flow generator and analyser for anomaly detection. https:
//github.com/ISCX/CICFlowMeter .

Lashkari, A.H., Draper-Gil, G., Mamun, M.S.I., Ghorbani, A .A ., 2017. Characterization

of Tor traffic using time based features. In: 3rd International Conference on In-
formation System Security and Privacy, pp. 253–262 .

Lashkari, A.H., Kaur, G., Rahali, A., 2020. Didarknet: a contemporary approach to de-
tect and characterize the darknet traffic using deep image learning. In: Proceed-

ings of 10th International Conference on Communication and Network Security,
pp. 1–13 .

Li, J., Chang, H.-C., Stamp, M., 2021. Free-text keystroke dynamics for user authenti-

cation. https://arxiv.org/abs/2107.07009 .
Misra, S., Li, H., 2020. Noninvasive fracture characterization based on the classifica-

tion of sonic wave travel times. In: Misra, S., Li, H., He, J. (Eds.), Machine Learn-
ing for Subsurface Characterization. Elsevier, pp. 243–287 .

Mudavathu, K.D.B., Rao, M.V.P.C.S., Ramana, K.V., 2018. Auxiliary conditional gener-
ative adversarial networks for image data set augmentation. In: 2018 3rd Inter-

national Conference on Inventive Computation Technologies, pp. 263–269 .

Nagaraju, R., Stamp, M., 2021. Auxiliary-classifier GAN for malware analysis.
Odena, A., Olah, C., Shlens, J., 2017. Conditional image synthesis with auxiliary clas-

sifier GANs. In: Proceedings of the 34th International Conference on Machine
Learning. In: ICML, Vol. 70, pp. 2642–2651 .

Santurkar, S., Tsipras, D., Ilyas, A., Madry, A., 2018. How does batch normalization
help optimization? In: Proceedings of the 32nd International Conference on

Neural Information Processing Systems, pp. 24 88–24 98 .

Sarkar, D., Vinod, P., Yerima, S.Y., 2020. Detection of Tor traffic using deep learning.
In: Proceedings of IEEE/ACS 17th International Conference on Computer Systems

and Applications, pp. 1–8 .
Sarwar, M.B., Hanif, M.K., Talib, R., Younas, M., Sarwar, M.U., 2021. Darkdetect: dark-

net traffic detection and categorization using modified convolution-long short-
-term memory. IEEE Access 9, 113705–113713 .

Scikit-learn: Machine Learning in Python, 2022. Scikit-learn : machine learning

in Python. https://scikit-learn.org/stable/index.html .
sklearn.ensemble.Random ForestClassifier, 2022. sklearn.ensemble.Random

ForestClassifier . https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomFore

stClassifier.html .
Stamp, M., 2022. Introduction to Machine Learning with Applications in Information

Security, 2nd ed. Chapman and Hall/CRC, Boca Raton, FL .
Synced, 2017. Tree boosting with XGBoost — why does XGBoost win “ev-

ery” machine learning competition? https://syncedreview.com/2017/10/22/

tree- boosting- with- xgboost- why- does- xgboost- win- every- machine- learning- co
mpetition/ .

Tor Project History, 2006. Tor project history. https://www.torproject.org/about/
history/ .

Venkateswaran, R., 2001. Virtual private networks. IEEE Potentials 20 (1), 11–15 .

15

http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0001
https://www.gwern.net/DNM-archives
https://cs231n.github.io/convolutional-networks
https://arxiv.org/abs/2102.08411
https://arxiv.org/abs/1708.04552
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0005
https://pypi.org/project/imblearn/
https://github.com/ISCX/CICFlowMeter
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0007
https://arxiv.org/abs/2107.07009
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0013
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0014
https://syncedreview.com/2017/10/22/tree-boosting-with-xgboost-why-does-xgboost-win-every-machine-learning-competition/
https://www.torproject.org/about/history/
http://refhub.elsevier.com/S0167-4048(23)00008-1/sbref0015

N. Rust-Nguyen, S. Sharma and M. Stamp Computers & Security 127 (2023) 103098

Nhien Rust-Nguyen received her master’s in computer science in May 2022.
Her research interests are in applications of machine learning and deep

learning.

Shruti Sharma will received her master’s in data science in December 2022.

Her research interests are in applications of machine learning and deep
learning.

Mark Stamp is a professor of computer science at San Jose State University. His
primary research focus is on problems at the interface between information se-

curity and machine learning. He has published more than 150 research articles
and textbooks in information security (Information Security: Principles and Prac-

tice, 3rd edition, Wiley, September 2021) and machine learning (Introduction to
Machine Learning with Applications in Information Security, 2nd edition, Chapman

and Hall/CRC, May 2022).

16

	Darknet traffic classification and adversarial attacks using machine learning
	Recommended Citation

	Darknet traffic classification and adversarial attacks using machine learning
	1 Introduction
	2 Background
	2.1 The onion router
	2.2 Virtual private networks
	2.3 Related work

	3 Methodology
	3.1 Dataset
	3.2 Preprocessing
	3.2.1 Data balancing
	3.2.2 Data representation
	3.2.3 Data augmentation experiment

	3.3 Evaluation metrics

	4 Implementation
	4.1 Overview of classification techniques
	4.1.1 Boosting techniques
	4.1.2 -Nearest Neighbors
	4.1.3 Multilayer perceptron
	4.1.4 Support vector machines
	4.1.5 Random forest
	4.1.6 Convolutional neural networks
	4.1.7 Auxiliary-classifier generative adversarial network

	4.2 Adversarial attacks
	4.2.1 An obfuscation example

	5 Results and discussion
	5.1 Data representation experiments
	5.2 Cutout experiments
	5.3 SMOTE Experiments
	5.4 Adversarial attack experiments

	6 Conclusion and future work
	Author contribution
	Declaration of Competing Interest
	References

