76,332 research outputs found

    SOM-VAE: Interpretable Discrete Representation Learning on Time Series

    Full text link
    High-dimensional time series are common in many domains. Since human cognition is not optimized to work well in high-dimensional spaces, these areas could benefit from interpretable low-dimensional representations. However, most representation learning algorithms for time series data are difficult to interpret. This is due to non-intuitive mappings from data features to salient properties of the representation and non-smoothness over time. To address this problem, we propose a new representation learning framework building on ideas from interpretable discrete dimensionality reduction and deep generative modeling. This framework allows us to learn discrete representations of time series, which give rise to smooth and interpretable embeddings with superior clustering performance. We introduce a new way to overcome the non-differentiability in discrete representation learning and present a gradient-based version of the traditional self-organizing map algorithm that is more performant than the original. Furthermore, to allow for a probabilistic interpretation of our method, we integrate a Markov model in the representation space. This model uncovers the temporal transition structure, improves clustering performance even further and provides additional explanatory insights as well as a natural representation of uncertainty. We evaluate our model in terms of clustering performance and interpretability on static (Fashion-)MNIST data, a time series of linearly interpolated (Fashion-)MNIST images, a chaotic Lorenz attractor system with two macro states, as well as on a challenging real world medical time series application on the eICU data set. Our learned representations compare favorably with competitor methods and facilitate downstream tasks on the real world data.Comment: Accepted for publication at the Seventh International Conference on Learning Representations (ICLR 2019

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1

    Verbal Learning and Memory After Cochlear Implantation in Postlingually Deaf Adults: Some New Findings with the CVLT-II

    Get PDF
    OBJECTIVES: Despite the importance of verbal learning and memory in speech and language processing, this domain of cognitive functioning has been virtually ignored in clinical studies of hearing loss and cochlear implants in both adults and children. In this article, we report the results of two studies that used a newly developed visually based version of the California Verbal Learning Test-Second Edition (CVLT-II), a well-known normed neuropsychological measure of verbal learning and memory. DESIGN: The first study established the validity and feasibility of a computer-controlled visual version of the CVLT-II, which eliminates the effects of audibility of spoken stimuli, in groups of young normal-hearing and older normal-hearing (ONH) adults. A second study was then carried out using the visual CVLT-II format with a group of older postlingually deaf experienced cochlear implant (ECI) users (N = 25) and a group of ONH controls (N = 25) who were matched to ECI users for age, socioeconomic status, and nonverbal IQ. In addition to the visual CVLT-II, subjects provided data on demographics, hearing history, nonverbal IQ, reading fluency, vocabulary, and short-term memory span for visually presented digits. ECI participants were also tested for speech recognition in quiet. RESULTS: The ECI and ONH groups did not differ on most measures of verbal learning and memory obtained with the visual CVLT-II, but deficits were identified in ECI participants that were related to recency recall, the buildup of proactive interference, and retrieval-induced forgetting. Within the ECI group, nonverbal fluid IQ, reading fluency, and resistance to the buildup of proactive interference from the CVLT-II consistently predicted better speech recognition outcomes. CONCLUSIONS: Results from this study suggest that several underlying foundational neurocognitive abilities are related to core speech perception outcomes after implantation in older adults. Implications of these findings for explaining individual differences and variability and predicting speech recognition outcomes after implantation are discussed
    corecore