180,304 research outputs found

    Algorithmic geometry with infinite time computation

    Get PDF
    In this project we do an algorithmic study of problems from computational geometry with countably infinite input, especially countable sets in R^n. To do so, we use the infinite time Blum-Shub-Smale (ITBSS) machine, which is capable to extend computations to infinite time. We present this framework, explained with several algorithms, some results on the ITBSS Machine, and a storage system capable of encoding, editing and extracting sequences of real numbers. We study different geometric problems, giving algorithmic solutions to several of them. The accumulation points problem in R^2 is presented and solved for countable sets with finitely many accumulation points. Also, the convex hull problem is studied. We show how to compute the closure of the convex hull of countable bounded sets in R^n. The non-crossing perfect matching problem with infinite input is addressed as well

    Subquadratic Encodings for Point Configurations

    Get PDF
    For many algorithms dealing with sets of points in the plane, the only relevant information carried by the input is the combinatorial configuration of the points: the orientation of each triple of points in the set (clockwise, counterclockwise, or collinear). This information is called the order type of the point set. In the dual, realizable order types and abstract order types are combinatorial analogues of line arrangements and pseudoline arrangements. Too often in the literature we analyze algorithms in the real-RAM model for simplicity, putting aside the fact that computers as we know them cannot handle arbitrary real numbers without some sort of encoding. Encoding an order type by the integer coordinates of a realizing point set is known to yield doubly exponential coordinates in some cases. Other known encodings can achieve quadratic space or fast orientation queries, but not both. In this contribution, we give a compact encoding for abstract order types that allows efficient query of the orientation of any triple: the encoding uses O(n^2) bits and an orientation query takes O(log n) time in the word-RAM model with word size w >= log n. This encoding is space-optimal for abstract order types. We show how to shorten the encoding to O(n^2 {(log log n)}^2 / log n) bits for realizable order types, giving the first subquadratic encoding for those order types with fast orientation queries. We further refine our encoding to attain O(log n/log log n) query time at the expense of a negligibly larger space requirement. In the realizable case, we show that all those encodings can be computed efficiently. Finally, we generalize our results to the encoding of point configurations in higher dimension

    Constructing Binary Huffman Tree

    Get PDF
    This research was presented during the 2013 International Conference on Foundations of Computer Science FCS’13 in Las Vegas, USA.Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.Hiroyuki Okazaki - This work was supported by JSPS KAKENHI 21240001.Yasunari Shidama - This work was supported by JSPS KAKENHI 22300285.Okazaki Hiroyuki - Shinshu University Nagano, JapanFuta Yuichi - Japan Advanced Institute of Science and Technology Ishikawa, JapanShidama Yasunari - Shinshu University Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397-402, 1991.Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Formalized Mathematics, 5(1):9-13, 1996.Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E, 1952.Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Hiroyuki Okazaki and Yasunari Shidama. Probability on finite set and real-valued random variables. Formalized Mathematics, 17(2):129-136, 2009. doi:10.2478/v10037-009-0014-x.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases

    Full text link
    This article studies the expressive power of finite automata recognizing sets of real numbers encoded in positional notation. We consider Muller automata as well as the restricted class of weak deterministic automata, used as symbolic set representations in actual applications. In previous work, it has been established that the sets of numbers that are recognizable by weak deterministic automata in two bases that do not share the same set of prime factors are exactly those that are definable in the first order additive theory of real and integer numbers. This result extends Cobham's theorem, which characterizes the sets of integer numbers that are recognizable by finite automata in multiple bases. In this article, we first generalize this result to multiplicatively independent bases, which brings it closer to the original statement of Cobham's theorem. Then, we study the sets of reals recognizable by Muller automata in two bases. We show with a counterexample that, in this setting, Cobham's theorem does not generalize to multiplicatively independent bases. Finally, we prove that the sets of reals that are recognizable by Muller automata in two bases that do not share the same set of prime factors are exactly those definable in the first order additive theory of real and integer numbers. These sets are thus also recognizable by weak deterministic automata. This result leads to a precise characterization of the sets of real numbers that are recognizable in multiple bases, and provides a theoretical justification to the use of weak automata as symbolic representations of sets.Comment: 17 page

    A Quasi-Linear Time Algorithm Deciding Whether Weak B\"uchi Automata Reading Vectors of Reals Recognize Saturated Languages

    Full text link
    This work considers weak deterministic B\"uchi automata reading encodings of non-negative dd-vectors of reals in a fixed base. A saturated language is a language which contains all encoding of elements belonging to a set of dd-vectors of reals. A Real Vector Automaton is an automaton which recognizes a saturated language. It is explained how to decide in quasi-linear time whether a minimal weak deterministic B\"uchi automaton is a Real Vector Automaton. The problem is solved both for the two standard encodings of vectors of numbers: the sequential encoding and the parallel encoding. This algorithm runs in linear time for minimal weak B\"uchi automata accepting set of reals. Finally, the same problem is also solved for parallel encoding of automata reading vectors of relative reals
    corecore