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Abstract

In this project we do an algorithmic study of problems from computational geometry with countably infinite
input, especially countable sets in Rn. To do so, we use the infinite time Blum-Shub-Smale (ITBSS)
machine, which is capable to extend computations to infinite time. We present this framework, explained
with several algorithms, some results on the ITBSS Machine, and a storage system capable of encoding,
editing and extracting sequences of real numbers.

We study different geometric problems, giving algorithmic solutions to several of them. The accumu-
lation points problem in R2 is presented and solved for countable sets with finitely many accumulation
points. Also, the convex hull problem is studied. We show how to compute the closure of the convex
hull of countable bounded sets in Rn. The non-crossing perfect matching problem with infinite input is
addressed as well.
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Infinite algorithmic geometry

1. Introduction

The objective of this project is doing computational geometry with infinite input size, in particular countable
infinite subsets of Rn. In computational geometry diverse problems on point sets are studied, being convex
hull calculation a well-known example. The convex hull problem studies how to find the smallest convex
set containing a particular finite set, see Figure 1. This problem has been widely studied since the 1970s
[21] and several optimal algorithms have been discovered, see for instance [4, 5]. In this project, we present
the convex hull problem and other geometrical problems for point sets which are infinite countable.

Figure 1: Convex hull, in gray, of a finite set of points in R2.

To do computational geometry with infinite sets a framework is needed. The classical computational
models, such as Turing machines [22], Random acces machines [6] and Blum-Shub-Smale machines [15]
are not suitable to be such framework, since their computations are limited to only finitely many steps.
The model used in this project is the Infinite-Time-Blum-Shub-Smale (ITBSS) machine, an extension of
the BSS machine with the capacity to extend the computation to infinitely many steps.

In this project we study three main geometric problems: accumulation points, convex hull and match-
ings.

Accumulation points, as limit points of a set in Rn, are a proper problem of infinite input computation.
The accumulation points problem that we study is how to find the accumulation points of a set in Rn.
The main difficulty that emerges from this problem is that the accumulation points of a set do not have
to be elements in the set, otherwise an easy computation could check for each point in the set if it is an
accumulation point and give the solution. From this difficulty it is necessary to study the relative position
of the elements in the set to determine where the accumulation points are. We prove that in the ITBSS
model, the accumulation point problem can be solved for point sets with a finite number of accumulation
points.

The convex hull problem for infinite sets of points presents several difficulties. In general, it is not
possible to report all the points on the boundary of the convex hull. Consider, for example, a closed ball
in R2. To overpass this limitation we use a countable family of halfplanes, with common intersection the
solution set, as a method to report the closure of the convex hull. Since this method is limited to closed
sets, we give a partial solution to the convex hull problem showing that the ITBSS machine can solve the
convex hull problem for the closure of convex hulls of countable sets.

As the third studied geometric problem, we present diverse matching problems. A non-crossing perfect
matching between two disjoint point sets is a bijection between the two sets, such that segments which
connect paired points do not intersect, see Figure 2. We show several counterexamples to the existence of
a non-crossing perfect matching, and of related non-crossing matchings.

We end with a positive result in a non-geometric problem: stable matchings. As originally defined in
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Figure 2: Non-crossing perfect matching between two finite sets with colors red and blue respectively.

[9], the stable matching problems consists in finding a correspondence between two sets such that certain
preferences are satisfied. We present the stable matching for infinite sets as done in [3] and prove that the
stable matching problem can be solved by a ITBSS machine as long as certain conditions on the preferences
are satisfied.

Computational geometry with infinite input has certain differences with finite computational geometry.
Starting with the convex hull, the solution for finite instances of this problem is always a convex polyhedron,
not like for the infinite instances where, for example, the set of rational points, in R2, inside the open ball
with center (0, 0) and radius 1 has convex hull a disk. The accumulation points problems is in radical
difference with the finite computation since this problem does not have a finite counterpart. The non-
crossing perfect matching problem for the point sets of infinite size does not always have a solution, not
like in the finite case, where under the assumption of general position, i.e., there are no three points aligned,
the existence of a solution is guaranteed.

More differences appear when studying other problems, or when trying to adapt elementary tools from
finite computation to the infinite case. For example, finite sets of points can be sorted and a least element
can be identified. This cannot be done for most infinite sets. Consider, for example, the set of rational
points in the interval (0, 1) where no least element exists. In general, in infinite computational geometry
some properties, that are assumed in the finite case, do not hold. A minimum distance among the points of
a set does not have to exist. An input can be unbounded. An input set can have accumulation points, and
the set of accumulation points can be uncountable. For these reasons during this project several restrictions
are imposed to the input sets to guarantee that the algorithms work properly.

For these and many other reasons, the finite computational model and the infinite one are substantially
different, and are interesting as independent fields of study.

The problems commented so far are only a very small subset of all the geometric problems that can be
studied for infinite inputs. Problems such as the existence of minimal spanning tree [12], or the stucture
of Voronoi diagrams [23] have also been studied for infinite sets. With all commented before, we see that
computational geometry with infinite input size can be a fertile ground for many studies on several different
problems not only extending the finite ones but also unique questions that emerge from the infinity of the
input.

The organization of this projects can be divided in two main parts:(i) the model of computation,(ii)
the study of problems. Section 2 gives an introduction to ordinal numbers which are necessary for a full
understanding of the model. The main operations and properties of ordinals are presented, showing the well
known relation between ordinals and well-ordered sets. Section 3 presents the Blum-Shub-Smale machine
model and its generallization to the Infinite Time Blum-Shub-Smale machine [15]. This presentation shows
several examples of computations and some of their properties. It ends with a discussion of the capacity
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Infinite algorithmic geometry

of the model to work with countable sets.

Sections 4, 5, and 6 are studies on different problems from the field of computation and geometry.
Starting with accumulation points in Section 4, different algorithms are presented, with the final Algorithm
17 capable of finding the accumulation points of a countable set under reasonable conditions. Section
5 covers the problem of convex hull computation of a countable set X, i.e. finding the smallest convex
set that contains X. A partial solution to the countable case is presented under reasonable conditions
of boundedness. In Section 6 diverse matching problems are presented, giving a partial solution to the
stable matching problem, using results in [3]. To end, Section 7 is a conclusion that sums up the results
obtained and possible future work. Additionally two appendices with some auxiliar results and algorithms
are presented.
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List of symbols

N,Q,R: natural, rational and real numbers.

N>0: non-zero naturals

Ord : class of ordinals

ω: first limit ordinal

α,β, γ...: ordinals

X , Y , Z , ...: sets

a, b, c , ..., x , y , z : elements of a set

< d >: code of a real number

π(x , y): Cantor pairing function

sup X : supremum of X

inf X : infimum of X

X : closure of X

int(X ): interior of X

CH(X ): convex hull of X

d(x , y): Euclidean distance between x and y

d(x , Y ): infimum of the distances from x to points of Y

d(X , Y ): infimum of the distances from points of X to points of Y

B(x , r): open ball with center x and radius r.

B(x , r): closed ball with center x and radius r.

H(~c , d): hyperplane with normal vector ~c and containing point d

H(~c , d ,≤): lower halfspace

H(~c , d ,≥): upper halfspace

H(~c , d ,<): strictly lower halfspace

H(~c , d ,>): strictly upper halfspace

BSS: Blum-Shub-Smale

ITBSS: Infinite Time Blum-Shub-Smale
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Infinite algorithmic geometry

2. Ordinals

This text uses ordinals in the definition and proof of some results. To ensure clarity in the notation and
arguments a brief introduction to the ordinals is made. This section is based on [13] and [10].

Definition 2.1. A binary relation < on a set P is a partial order of P if:

(i) p ≮ p for any p ∈ P.

(ii) If p < q and q < r , then p < r .

(P,<) is called a partially ordered set. A partial order < of P is a linear order if moreover

(iii) p < q or p = q or q < p for all p, q ∈ P.

A linear order < of a set P is a well-order if every non-empty subset of P has a least element, i.e. an
element a such that for all p ∈ P a ≤ p (a ≤ b if and only if a = b or a < b).

Definition 2.2. An element a is an upper bound of X if x ≤ a for all x ∈ X . The supremum of X is the
least upper bound. The supremum of X is denoted sup X .

Definition 2.3. A set T is transitive if every element of T is a subset of T , that is, if x ∈ T and y ∈ x ,
then y ∈ T . An ordinal is a transitive set X such that the binary relation {(x , y) ∈ X × X | x ∈ y} is a
well-order on X . The class of all ordinals is denoted by Ord .

Remark 2.4. We use the small Greek letters α,β, γ, ... to range over ordinals. We use α < β when α ∈ β
and α ≤ β when α ∈ β or α = β.

We denote as 0 = ∅, 1 = {0}, 2 = {0, 1} and so on.

Lemma 2.5.

(i) 0 = ∅ is an ordinal.

(ii) If α is an ordinal and β ∈ α, then β is an ordinal.

(iii) If α 6= β are ordinals and α ⊆ β then α ∈ β.

(iv) If α,β are ordinals, then either α ⊆ β or β ⊆ α.

(v) If X is a non-empty set of ordinals, then
⋃

X =
⋃

z∈X z is an ordinal and
⋃

X = sup X .

Proof.

(i) Obvious.

(ii) β is a subset of a transitive and well-ordered set, that implies that it is also transitive and well-ordered.

(iii) If α ⊆ β, let γ be the least element of the set β − α. Let us prove α = γ.

γ ⊆ α: Let x ∈ γ. Since γ ∈ β, from the transitivity of β we have x ∈ β. As x < γ, the choice of γ
implies x ∈ α.
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α ⊆ γ: Let x ∈ α. If x = γ or x > γ, then γ ∈ α since α is transitive which is a contradiction with the
definition of γ.

(iv) Let γ = α ∩ β. Note that γ is an ordinal. Assume that γ is different from α and β. Since γ is a
subset of α and β, (iii) implies that it is an element of α and β. But if γ is an element of α and β
it is also an element of the intersection, then γ ∈ γ, a contradiction with ∈ being a strict order.

We deduce that α ∩ β = α or α ∩ β = β which implies α ⊆ β or β ⊆ α, in both cases we conclude
(iv).

(v) Since each element of
⋃

X is contained in an ordinal α ∈ X , it is an ordinal. Then
⋃

X is a set
of ordinals. Let α,β, γ be ordinals in

⋃
X , clearly α /∈ α and from transitivity of ordinals if α ∈ β

and β ∈ γ then α ∈ γ. Now (iii) and (iv) imply that α = β or α ∈ β or β ∈ α. Since all these
properties hold for any choice of α,β, γ, we conclude that ∈ is a linear order. Furthermore,

⋃
X is

well-ordered by ∈ because every non-empty set x has a ∈-least element, namely, an element y ∈ x
such that y ∩ x = ∅ (this is the so-called axiom of foundation in ZFC).

To see transitivity consider β ∈
⋃

X . Since β is in
⋃

X then there exists an ordinal α ∈ X such that
β ∈ α. From here, we know α ⊆

⋃
X and since α is an ordinal β ⊆ α. We conclude β ⊆

⋃
X . All

together
⋃

X is an ordinal.

To see
⋃

X = sup X first we see that it is an upper bound. Suppose α ∈ X . Then α ⊆
⋃

X .

To end we show that it is the least upper bound. Let γ be an upper bound and β ∈
⋃

X . Since
β ∈ α for some α ∈ X , from the definition of γ we have α ≤ γ which implies α ⊆ γ. Finally we
conclude β ∈ γ. Since this holds for β arbitrary we have

⋃
X ⊆ γ.

Definition 2.6. An ordinal α is a successor if there exists β such that α = β ∪{β}. If α is not a successor
ordinal, then is called a limit ordinal.

Definition 2.7. We denote the least non-zero limit ordinal ω.

The ordinals less than ω are called natural numbers. Now we present the basic operations. To do so,
we need some previous definitions and results.

Theorem 2.8. Let G be a function from sets to sets and α0 be an ordinal. Then there exists a unique
function F (β) from the ordinals to the ordinals such that for all ordinals α,β,λ such that α = β ∪ {β}
and λ =

⋃
λ:

F (0) = α0

F (α) = G (F (β))

F (λ) = sup
xi<λ

F (xi ).

This theorem, intuitively, says that given a function and a starting value we can uniquely construct a
function F over all Ord recursively, i.e., using at each step the previous values of F .

We state now the operations

Definition 2.9. (Addition). For all ordinal numbers α

(i) α + 0 = α,
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(ii) α + (β + 1) = (α + β) + 1, for all β,

(iii) α + β = sup{α + ξ | ξ < β}, for all limit ordinals β > 0.

Definition 2.10. (Multiplication). For all ordinal numbers α

(i) α · 0 = 0,

(ii) α · (β + 1) = (α · β) + α, for all β,

(iii) α · β = sup{α · ξ | ξ < β}, for all limit ordinals β > 0.

Definition 2.11. (Exponentiation). For all ordinal numbers α

(i) α0 = 1,

(ii) αβ+1 = αβ · α, for all β,

(iii) αβ = sup{αξ | ξ < β}, for all limit ordinals β > 0.

Now, these operations may look hard to compute or understand. To give a more intuitive way of
understanding the ordinals we present the following results.

Definition 2.12. Let (P,<), (Q,<′) be two linearly ordered sets. A function f : P → Q is increasing if
for all x , y ∈ P, x < y implies f (x) <′ f (y). If f is bijective, P and Q are isomorphic.

Definition 2.13. Let (W ,<) a well-ordered set and u ∈W , then W (u) = {x ∈W | x < u} is the initial
segment of W given by u.

Lemma 2.14. If (W ,<) is a well-ordered set and f : W → W is an increasing function, then f (x) ≥ x
for all x ∈W .

Proof. Suppose otherwise, then the set X = {x ∈W | f (x) < x} is non-empty, let z be the least element
of X . We have w = f (z) < z and now since w < z we also have f (w) < f (z) = w a contradiction with
z being the least element of X .

Corollary 2.15. The only automorphism, i.e. isomorphism from a set into itself, of a well-ordered set is
the identity.

Proof. Let f be an automorphism. From Lemma 2.14 f (x) ≥ x and f −1(x) ≥ x .

Corollary 2.16. If two well-ordered sets are isomorphic, the isomorphism is unique.

Proof. Let f , g be isomorphisms. It follows from Corollary 2.15 that the f −1(g(x)) = g−1(f (x)) = x
which implies f = g .

Lemma 2.17. No well-ordered set is isomorphic to an initial segment of itself.

Proof. Let (W ,<) be isomorphic to {x ∈ W | x < u} for some u ∈ W . Then the function that defines
the isomorphism satisfies f (u) < u, getting a contradiction with Lemma 2.14.
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Lemma 2.18. Let W be a well-ordered set, x ∈ W , f : W (x) → αx an isomorphism between an initial
segment and an ordinal, let y ∈ x an ordinal, and g : W (y) → g(W (y)) the restriction of f to W (y).
Then g is an isomorphism between an ordinal in αx and W (y).

Proof. The function g is an isomorphism to an initial segment of αx . To prove it, suppose otherwise.
Then, there exists z < y and β < g(z) = f (z) such that β is not in the image of g . Let u ∈ W (x) such
that f (u) = β, then u /∈W (y), as a consequence u > z and f (u) < f (z), a contradiction with f being an
isomorphism.

We deduce that the image of g is transitive and, from Lemma 2.5 (iii), we conclude that W (y) is
isomorphic to αy ∈ αx an ordinal.

Theorem 2.19. Every well-ordered set is isomorphic to a unique ordinal number.

Proof. Given a well-ordered set W , we define F (x) = α if α is isomorphic to the initial segment W (x).
To see that for all x ∈ W such αx exists suppose otherwise. Let x be the least element without αx . For
each y < x ∈W let fy be an isomorphism of W (y) with αy .

For y0 < y1 < x let us prove fy0 ⊆ fy1 . From Lemma 2.18 we have seen that the restriction gy0 of fy1
to W (y0) is an isomorphism to an ordinal β. From Corollaries 2.15 and 2.16 we conclude that β = αy0

and gy0 = fy0 .

We know that
⋃

y<x fy is an isomorphism with domain D =
⋃

y<x W (y) and image γ =
⋃

y<x αy =
supy<x αy an ordinal by Lemma 2.5 (v) .

Now if D = W (x) we reach a contradiction with the definition of x . This is the case if there exists no
greatest element under x.

Otherwise W (x) contains a maximal element z and then, we have an isomorphism fx = fy ∪ {(z , γ)}
from W (x) to γ + 1, again a contradiction with the definition of x .

The original definitions of basic operations give almost no intuition in how they behave. To have a
better understanding on how these operation work we present the following known results.

Definition 2.20. Let α,β ∈ Ord , then α ⊕ β is the unique ordinal isomorphic to the total order < on
α× {0} ∪ β × {1} defined as

(x , b) < (x ′, b′) if and only if b = 0 and b′ = 1, or b = b′ and x ∈ x ′.

Proposition 2.21. The operation ⊕ is well defined.

Proof. We show first that < is a well-order and then that such an ordinal exists.

From the definition of < clearly for any two elements a, b of α×{0}∪β×{1} we have a < b or a > b
or a = b and a ≮ a. The transitivity, i.e., a < b and b < c implies a < c , is a straightforward case analysis.
Then we only have to prove that each set has a least element. Let X be a non-empty subset. If (x , 0) ∈ X
for some x ∈ α, let y be the least element y ∈ α such that (y , 0) ∈ X , then (y , 0) is the least element in
X . Otherwise let y ∈ β least element such that (y , 1) ∈ X , then (y , 1) is the least element in X .

Now from Theorem 2.19 there exists a unique ordinal isomorphic to the well-ordered set (α × {0} ∪
β × {1},<).

Proposition 2.22. For any α,β ∈ Ord the equality α + β = α⊕ β holds.

11
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Proof. The proof is done by induction over β. For β = 0 we have α + 0 = α ⊕ 0 equal to α. Similarly,
α + 1 = α⊕ 1 also holds since the function f (γ) = (γ, 0) for γ < α and f (α) = (1, 1) is an isomorphism.
Let β = γ + 1, we know by induction hypothesis that β ⊕ γ = β + γ. Now, (α + β) + 1 = (α ⊕ β) ⊕ 1
also holds by induction hypothesis.

When β = supγ<β γ is a limit ordinal we know that for each γ there is an isomorphism fγ : α+γ → α⊕γ.
From Lemma 2.18 we know that if γ < γ′ < β then fγ ⊆ f ′γ . Then fβ =

⋃
γ∈β fγ is a function with domain⋃

γ∈β
α + γ = α + β.

Its range is ⋃
γ∈β

α× {0} ∪ (γ × {1}) = (α× {0}) ∪
⋃
γ∈β

(γ × {1})

= (α× {0}) ∪

(
⋃
γ∈β

γ)× {1}


= (α× {0}) ∪ (β × {1})
= α⊕ β.

And
⋃
γ∈β α⊕ γ is exactly α⊕ β. From construction, f is an isomorphism from α + β to α⊕ β.

Definition 2.23. Let α,β ∈ Ord>0, then α ⊗ β is the unique ordinal isomorphic to the well-order < on
α× β defined as

(γ, η) < (γ′, η′) ∈ α× β if and only if η < η′, or η = η′ and γ < γ′.

Proposition 2.24. The operation ⊗ is well defined.

Proof. From the definition of < clearly for any two elements a, b of α×β we have a < b or a > b or a = b
and a ≮ a. The transitivity, i.e., a < b and b < c implies a < c, is a straightforward case analysis. We only
have to prove that each non-empty set has a least element. Let X be a non-empty subset of α × β and
let ξ = min{η ∈ β| (γ, η) ∈ X} and θ = min{η ∈ α | (γ, η) ∈ X ∧ γ = ξ}, both elements exists because
{η ∈ β| (γ, η) ∈ X} and {η ∈ α | (γ, η) ∈ X ∧ γ = ξ} are non-empty subsets of β and α respectively.
Observe that (θ, ξ) ∈ X and for all (γ, η) ∈ X we have ξ ≤ η and θ ≤ γ. We conclude that (θ, ξ) is the
least element of X .

Now from Theorem 2.19 there exists a unique ordinal isomorphic to the well-ordered set (α×β,<).

12



Lemma 2.25. The equality α⊗ (β + 1) = (α⊗ β)⊕ α holds for any α,β ∈ Ord.

Proof. We have that α ⊗ (β + 1) is isomorphic to α × (β + 1) with total order < of Definition 2.23 and
(α ⊗ β) ⊕ α is isomorphic to ((α× β)× {0}) ∪ (α× {1}) where α × β has total order <′ of Definition
2.23 and, the whole set, total order <′′ of Definition 2.20.

Consider the function

F : α× (β + 1)→ ((α× β)× {0}) ∪ (α× {1})

F (x , y) =

{
((x , y), 0) if x ∈ α and y ∈ β,

(x , 1) if x ∈ α and y = β.

F is order preserving and bijective. It implies that both ordered sets are isomorphic and we conclude that
α⊗ (β + 1) = (α⊗ β)⊕ α.

Proposition 2.26. For any α,β ∈ Ord the equalities α⊗ β = α · β holds.

Proof. As shown in Proposition 2.24 relation < from Definition 2.23 is a well-order.

The proof is done by induction over β. For β = 1 we have α⊗ 1 = α · 1 = α. For the general case

α · (β + 1) = (α · β) + α

= (α⊗ β) + α

= (α⊗ β)⊕ α
= α⊗ (β + 1).

Where the second equality holds by induction hypothesis, the third from Proposition 2.22 and the last
from Lemma 2.25.

When β is a limit ordinal the argument is analogous to the one given for ⊕.

Corollary 2.27. The operations +, · and ⊕,⊗ are, respectively, equal.

To end we present the notion of limit which will be useful in the definition of our model of computation.

Definition 2.28. Let α ∈ Ord a limit ordinal and r : α → R a function. We say that z is the limit at α,
and write

lim
ξ→α

r(ξ) = z

if and only if for any real ε > 0 exists an ordinal γ ∈ α such that for all ordinal η ≥ γ the inequality
|r(η)− z | < ε holds. The limit of vectors is defined component-wise.

Proposition 2.29. Let g : α→ R, if f : R→ R is continuous at z, and limξ→α g(ξ) = z, then

f ( lim
ξ→α

g(ξ)) = f (z) = lim
ξ→α

f (g(ξ)).

Proof. The first equality is trivial. Let us prove f (z) = limξ→α f (g(ξ)). Let ε > 0, from continuity of f
there exists δ > 0 such that |f (y) − f (z)| < ε if |y − z | < δ. Let y = g(ξ). Then, if |g(ξ) − z | < δ we
have |f (g(ξ))− f (z)| < ε. Since limξ→α g(ξ) = z there exists γ ∈ Ord such that |g(ξ)− z | < δ if ξ ≥ γ.
We conclude that for any ε > 0 there exists γ such that |f (g(ξ))− f (z)| < ε if ξ ≥ γ.
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3. Computational model

The main goal of this text is to explore algorithms for geometric problems with input of infinite size. To
do so, an adequate model of computation must be chosen. The typical models of computation cannot
be considered since their finiteness in time and capacity make them not powerful enough. This discards
the classical Turing machines [22] and the Blum-Shub-Smale machines [1]. Among the diverse options,
the ones that hold similarities with the classical ones are their infinite extensions, namely, the Infinite
Time Turing Machine which have been presented and studied by Joel David Hamkins and Andy Lewis in
[11] and the Infinite Time Blum-Shub-Smale (ITBSS) machine presented and studied by Peter Koepke
and Benjamin Seyfferth in [15]. Both models present a natural extension of the finite computation to a
transfinite computation able to carry on much more complicated tasks. Nonetheless, both models present
some limitation in their capacity to manage infinite size inputs. The ITBSS machine model was chosen
for this project, given the relative simplicity to present the programs as a combination of IF and EDIT
commands.

In the following sections the capacity and limitations of the ITBSS machine model are shown, all with
focus in the construction of algorithms to solve the infinite extension of well known problems of finite
algorithmic geometry and some problems unique for the infinite case, in particular, the calculation of
accumulation points.

3.1 BSS machine

To explain the final model that will be used we present first the Blum-Shub-Smale (BSS) machine model,
originally presented in [1].

We start with an intuitive explanation of the BSS machine which will be later formalized.

A BSS machine needs: an indexed finite list of commands of the form IF (f , `, k), EDIT (f ) or HALT ,
a finite lists of real numbers called input (i0, ..., in−1) and a finite set of registers R = (R0, R1, ..., Rn−1).

The machine works as follows. Set the value of the registers to R = (i0, ..., in−1). Execute the command
with index 0. If the instruction is EDIT (f ) set the values of the registers R = f (R) and execute the next
command in the list. If the command is IF (f , `, k) check the condition f (R) ≤ 0, if it is satisfied, the
command with index ` is executed next, the instruction k is executed otherwise. This process is continued
until a HALT instruction is executed, after that the machine stops. This process is called “computation”.

The computation is formalised in the following definitions.

Definition 3.1. A function f : Rn → Rm is rational if it is a fraction of polynomials on each coordinate.

Definition 3.2. A command is an instruction of the form EDIT (f ), IF (g , `, k) or HALT where f : Rn → Rn

is a rational function, g : Rn → R is a rational function and `,k are natural numbers.

A BSS program is a finite list of commands, each one with a distinct natural number associated with
it, called index.

Definition 3.3. We define:

• R(t) := the value of the registers after step t.

• I (t) := the command executing after step t.

14



Now we are able to define computation.

Definition 3.4. Let P be a BSS program. The BSS machine computation by P on some input (i0, ..., in−1) ∈
Rn is defined as the sequence (Ct)t<L = (R(t), I (t))t<L with (R(t), I (t)) ∈ (Rn ×N) for all t < L, where:

• L ∈ N or L =∞.

• R(0) = (i0, .., in−1) and I (0) = 0.

• EDIT (f ) commands always have a function f with image in Rn.

• (EDIT) If t < L and I (t) = i let EDIT (f ) be the command of P with index i . Then, R(t + 1) =
f (R(t)) and I (t + 1) = i + 1.

• IF (f , `, k) commands always have a function f with image in R.

• (IF) If t < L and I (t) = i , let IF (f , `, k) be the command of P with index i . Then R(t + 1) = R(t)
and if f (R(t)) ≤ 0, then I (t + 1) = `; otherwise I (t + 1) = k .

• (HALT) If t < L and I (t) = i , let HALT be the command of P with index i. Then there exists no t ′

such that t < t ′ < L.

Definition 3.5. If an execution of P with some input does not create a computation,i.e, some division by
zero occurs or the input is not valid or the registers do not converge, we say that the computation diverges.

Remark 3.6. We assume that the denominator of the rational functions of EDIT commands do not vanish
in any evaluation during the computation. Therefore f (R(t)) is well-defined in the EDIT command.

In general, the computation of a program has the objective of extracting some particular information
(factorization of a natural number, ordered list, convex hull,...). This information is called output.

Definition 3.7. The output of a computation is the value of the register R0.

Example 3.8. Consider the simple program P that computes the absolute value with indexed commands

0) IF (R0, 1, 2)

1) EDIT (f (R) = −R)

2) HALT

The computation of P with input −5, first sets the registers R = (−5), goes to the command 0) and
checks −5 ≤ 0. Since it is satisfied it runs the command 1). The register is updated to R = (5). Finally
the HALT command 2) is executed and the process stops. As a sequence (R(t), I (t))t<L:

0: ((−5), 0)

1: ((−5), 1)

2: ((5), 2)

Program P with input x can be expressed with pseudocode, see Algorithm 1, where Return indicates
which register is the output.
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Algorithm 1: Absolut value of a real number

Input: x ∈ R
Output: |x |.

1 Set R = (x);
2 if R0 ≤ 0 then
3 R0 = −R0;

4 Return R0;

3.2 ITBSS machine

We present the Infinite time Blum-Shub-Smale (ITBSS) machine, which will be the one that carries all
computations during the rest of the text. The main reference is [15] where it was originally presented.

The ITBSS machine needs the same as a BSS machine, i.e., an indexed finite list of commands of the
form IF (f , `, k), EDIT (f ) or HALT , a finite list of real numbers called input (i0, ..., in−1) and a finite set
of registers R = (R0, R1, ..., Rn−1).

The ITBSS machine is an extension of the BSS machine, where the number of steps that can be
performed can be transfinite. The ITBSS machine works, for each finite step in the same way as a BSS
machine. The main differences appears when an infinite number of steps are performed, in this case the
value of the register is updated to a limit value. This limit value is determined by the infinitely many values
that are taken before. This limit process is formally presented in the following definition.

Definition 3.9. Let P be a BSS program. The infinite time BSS machine (ITBBS) computation by P
on some input (i0, ..., in−1) ∈ Rn is defined as the transfinite sequence (Ct)t∈θ = (R(t), I (t))t∈θ with
(R(t), I (t)) ∈ (Rn × N) for all t ∈ θ, where:

• θ ∈ Ord or θ = Ord.

• R(0) = (i0, ..., in−1) and I (0) = 0.

• EDIT (f ) commands always have a function f with image in Rn.

• (EDIT) If t < θ and I (t) = i , let EDIT (f ) be the command of P with index i . Then, R(t + 1) =
f (R(t)) and I (t + 1) = i + 1.

• IF (f , `, k) commands always have a function f with image in R.

• (IF) If t < θ and I (t) = i , let IF (f , `, k) be the command of P with index i . Then R(t + 1) = R(t)
and if f (R(t)) ≤ 0 then I (t + 1) = `; otherwise I (t + 1) = k.

• (HALT) If t < θ and I (t) = i , let HALT be the command of P with index i. Then there exists no t ′

such that t < t ′ < θ.

• If t < θ is a limit ordinal and y = lims→t R(s), then R(t) = y and I (t) = lim infs→t I (s).

• If θ < Ord, then θ = γ + 1 is a successor ordinal and I (γ) calls a HALT command.

Remark 3.10. Observe how we are accessing the limit case assuming the existence of a limit in the values
of R(s) as s tends to a limit value. This limit clearly does not have to exist, in that case the computation
fails.
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Example 3.11. Let P be the program with indexed commands

0) EDIT (R0 + R2
1 , R1

R1+1)

1) IF (R1, 2, 0)

2) HALT

and registers R = (0, 1). The execution will set R = (0, 1). The first command will be carried on updating
R = (1, 1

2). The IF instruction will send us to command 0) for any finite step. Notice how the values of
the registers will be updated to (

∑t
n=1

1
n2

, 1
n+1). The machine will update the values of the registers to

the limit values, obtaining (
∑∞

n=1
1
n2

, 0). From Definition 3.9, the next step that will be carried on will be
the lim infs→ω I (s) = 0. In this command the registers will remain unchanged. Finally the condition of the
IF command 1) will be satisfied and the computation will stop after executing the HALT command.

As a sequence, the computation is given by

(R(t), I (t)) =

((
t∑

n=1

1

n2
,

1

t + 1

)
, t mod 2

)
for t ∈ ω.

(R(ω + i), I (ω + i)) =

(
(
π2

6
, 0), i

)
for i ∈ {0, 1, 2}.

The program can be presented with pseudocode as Algorithm 2.

Algorithm 2: Computation of π2

6

Input: No input.
Output: π2

6 .
1 Set R = (0, 1);
2 R0 = R0 + R2

1 ;

3 R1 = R1
R1+1 ;

4 while R1 > 0 do
5 R0 = R0 + R2

1 ;

6 R1 = R1
R1+1 ;

7 Return R0;

Remark 3.12. Example 3.11 shows how a while loop is made. We execute a list of ordered EDIT commands
and use an IF instruction to repeat them if the condition is not satisfied.
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3.3 Some results on the ITBSS machine

Here we present some of the main results presented in [15].

Definition 3.13. Let α < θ be a limit ordinal and (Ct)t<θ an ITBSS computation by some program P.
We say that a command in the computation is carried cofinally often below α if for any β < α there exists
γ such that β ≤ γ < α and the command has been executed at time γ.

Lemma 3.14. [15] Let (Ct)t<θ be an ITBM computation by some program P and let α < θ be a limit
ordinal. Then the first command in the computation that alters the register contents after time α has not
been carried out cofinally often below α.

Proof. Suppose otherwise. Let c = EDIT (f ) a command which is called cofinally often below α. Suppose
that c has been called at some time β > α and for all α < γ < β the register content has not been
changed. Since f is locally continuous (it is a rational function) we have:

R(β + 1) = f (R(β))

= f (R(α))

= f ( lim
t→α

R(t))

= lim
t→α,I (t)=i

φ(R(t))

= lim
t→α,I (t)=i

R(t + 1)

= R(α).

A contradiction.

Theorem 3.15. [15] Let P be a program with k EDIT commands. Then, for any computation (Ct)t<θ
according to P, the register stabilize before ωk+1, i.e., the values of the registers do not change any more.

Proof. The proof is done by induction on k. If k = 0, all commands are IF or HALT instructions. That
implies that the values of the registers R do not change. As the program is executed, the IF commands
can do two things: halt the program or execute a new IF command. If the machine halts, it will be after
a finite number of steps. If it does not halt after b + 1 steps, where b is the number of IF commands, at
least one IF instruction has been visited twice which implies that the program has fallen in a loop. Assume
true for k. Let P be a program with k + 1 EDIT commands. Suppose that the register does not stabilize
before ωk+2. Let c be the first EDIT command that changes the register after ωk+2, As we have seen
in Lemma 3.14, c does not change the registers cofinally often below ωk+2. Let α be the supremum of
the times below ωk+2 that c was executed non trivially (the values of the registers changed). (Ct)α<t<θ

is the computation of P changing c for a trivial IF (0, i , i), where i is the index of c plus one, with input
R(α). By induction, the registers of this computation stabilized in ωk+1 steps. Since α + ωk+1 < ωk+2,
the original computation stabilized before ωk+2.

Since the argument used before is independent of the input, we have the following result.

Theorem 3.16. [15] Every ITBM computation halts before ωω-many steps or the execution diverges.
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3.4 Observations and basic algorithms

In this section we show several examples of simple algorithms that will be used in the following chapters.

Remark 3.17. When the value of the registers is set as R = (R0, R1, ...) the dots indicate that a finite
number of registers are added to execute secondary computations.

Computing a limit: From the definition of the computation in Definition 3.9 it is enough to update a
register R at each step t to values that tend to a limit value to obtain the desired result. This process can
be seen in the following example.

Example 3.18. How to compute π using the Leibniz formula. Since
∑∞

k=0
(−1)k
2k+1 = π

4 we can explicitly
compute the sum. See Algorithm 3 for the pseudocode.

Algorithm 3: Value of π using the Leibniz formula

Input: No input.
Output: π.

1 Set R = (1, 1,−1);
2 while R1 > 0 do

3 R0 = R0 + R2
R1+2 (store the partial sum);

4 R2 = −R2
R1

( store (−1)k);

5 R1 = R1
1+R1

(store 1
k );

6 R2 = R2R1 (store (−1)k
k );

7 R0 = 4R0;
8 Return R0;

The program is given by the list of commands

0) IF (R1, 3, 1)

1) EDIT
(

R =
(

R0 + R2
R1+2 , R1

1+R1
, R2
R1

))
2) EDIT (R = (R0, R1, R2R1))

3) IF (R1, 4, 0)

4) EDIT (R0 = 4R0)

5) HALT

At each step the different registers store the necessary information to carry the computation, in this
case

R(t) =

(
t∑

k=0

(−1)k

2k + 1
,

1

t + 1
,

(−1)t+1

t + 1

)
.

Once the computation halts the value of the first register will be the complete computation of the Leibniz
formula.
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Remark 3.19. As we slowly increase the complexity of the algorithms we see that the presentation of a
program as a list of commands increases. From now on, only the pseudocode representation will be used
to keep the programs understandable.

Example 3.18 shows the limitation of the model that needs convergence in each register. In general,
this limitation can be circumvented forcing a convergence to a constant or 0 using a denominator that
tends to infinity.

3.5 How the machine stores data

This section presents how the data can be stored inside the machine. Our objective is storing a countable
list of reals inside one register. This codification must allow us to recover each value. We will use the
Cantor pairing function to store families (ri )i∈N of real numbers inside one register of the machine. This
will be done using subsets of digits of the decimals of a real number to store infinitely many codes, each
one coding a real number.

We present the Cantor pairing function. The results are taken from [2].

Definition 3.20. The Cantor pairing function π : N× N→ N is defined as

π(x , y) =
1

2
(x + y)(x + y + 1) + y .

Proposition 3.21. The Cantor pairing function is a bijection.

Proof. To see injectivity we first prove that x + y < x ′ + y ′ implies π(x , y) < π(x ′, y ′). Given k = m + n
with k fixed, the maximum value of the function π(m, n) is π(0, k) = 1

2(k)(k + 1) + k and the minimum
value π(k , 0) = 1

2(k)(k + 1). If k ′ ≥ k + 1, then π(k ′, 0) ≥ 1
2(k + 1)(k + 1) + k + 1 > π(0, k).

Now assume that π(m, n) = π(m′, n′) then n + m = n′ + m′ by above, and hence

π(m, n)− π(m′, n′) = n − n′ = 0,

which implies n = n′ and m = m′.

To see surjectivity let z ∈ N and tk = 1
2(k)(k + 1) be the largest value not bigger than z with k ∈ N.

Let m = z − tk and n = k −m. Then π(n, m) = z .

Proposition 3.22. The inverse of the Cantor pairing function is given by

π−1(z) =

(
z − w2 + w

2
,−z +

w2 + 3w

2

)
,

where w =
⌊√

8z+1−1
2

⌋
.

The proof is omitted since it can be done by case analysis.

By definition our machine model takes finite tuples of real numbers as inputs, but we are actually
interested in countably infinite sets of real numbers as inputs. To simulate such inputs we code a family
(ri )i∈N of real numbers by a single real r in such a way that an ITBSS machine can compute the map
(r , i) 7→ ri . There are many ways to achieve this and the particular choice is a matter of no consequence
for the rest of this thesis.
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For completeness we now detail such a coding. It is based on a coding of reals r by “digit sequences”
d ∈ {0, ..., 9}N. Formally, such a sequence is a function d : N 7→ {0, ..., 9}, also written as a family (di )i∈N,
or, more informally, spelled out as d0d1d2....

Definition 3.23. We say that d ∈ {0, ... , 9}N is a digit code if and only if there is a positive natural
number n such that dn = 2 and dm ∈ {0, 1} for all m < n. The real r coded by d is

r = (−1)d0
k∑

j=1

10k−j+1dn+j +
∞∑

i=n+k+1

10n+k−idi

where k :=
∑n−1

i=1 2n−i−1di .

In other words, a code d is a bit followed by a non-empty bit-string s followed by 2, followed by a
sequence of digits.The first bit determines the sign, the sequence of digits determines the real with ”.” at
place k, where k ∈ N is the natural number with binary expansion s (allowing leading 0s).

It is clear that that every digit code d codes exactly one real. Furthermore, it is clear that every real
has a digit code, in fact, for every real r there are infinitely many digit codes d ∈ {0, ... , 9}N such that d
codes r . For example, the digit sequences

01210000...

0029999...

0000000299999...

01209999...

all code the real 1. Conversely, every d ∈ {0, ..., 9}N has a ”real code”

< d >:=
∞∑
i=0

10−(i+1)di ∈ (0, 1).

Proposition 3.24. There is an ITBSS computation of a program P with input r ∈ R that returns as output
< d > for some digit code d of r . Further there is a ITBSS computation of a program P with input < d >
for some digit code d of some real r with output r .

Remark 3.25. In Algorithm 4, when the binary expansion of R3 is done, the output is a natural number
which coincides digit to digit with the binary representation R3 as a natural number in base 2.

Proof. The proof of Proposition 3.24 is done showing an algorithm that can do each process. How to
compute < d > given r , see Algorithm 4.

Following the steps of the algorithm we see:

• Steps 1,2,3,4: It is checked if R0 is negative or not. R0 is set to its absolute value and R4 is fixed to
1 in the case R0 was negative.

• Steps 5,6,7: We have R0 = r1r2...rk .rk+1... a non-negative real . The register R1 is updated to
(R0 · 10−R3 + 2)/10 where R3 = k . After Step 7 register R3 equals 0.2r1r2...
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Algorithm 4: Code of a real

Input: x ∈ R.
Output: < d > that codes x .

1 Set R = (x , 0, 0, 0, 0, ...);
2 if R0 < 0 then
3 R4 = 1;
4 R0 = −R0

5 R2 = bR0c (Algorithm 24);
6 R3 = the number of integer-digits of R2 (Algorithm 25);

7 R1 = (R0 · 10−R3 + 2)/10;
8 R3 = binary expansion of R3 (Algorithm 26);
9 R1 = R1 + R3;

10 R3 = the number of integer-digits of R3 (Algorithm 25);

11 R1 = R1 · 10−R3−1 (Algorithm 23);
12 R1 = R1 + R4;
13 Return R1;

Algorithm 5: Real of a code

Input: < d >∈ (0, 1).
Output: Real number r coded by < d >.

1 Set R = (< d >, 0, ...);
2 while bR0c < 2 (Algorithm 24) do
3 R1 = 2 · R1;
4 if bR0c == 1 then
5 R1 = R1 + 1;
6 R0 = R0 − 1;

7 R0 = 10 · R0;

8 R0 = R0 − 2;

9 R0 = 10R1R0 (Algorithm 23);
10 Return R0;
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• Step 8: We store in R3 the binary expansion of k .

• Step 9: We add to R1 the binary expansion b1b2b3...bn of k. After this step R1 = b1b2...bn.2r1r2....

• Steps 10,11,12: We update R1 to s.0b1b2...bn2r1r2... where s = 1 if x was positive and 0 otherwise.

Now R1 is a valid code.

To compute r given < d > see Algorithm 5. Following the steps of the algorithm we see:

• Steps 2,3,4,5,6,7: The first decimal digits d0d1d2... of < d > are the binary expansion of the number
of integer digits of the real encoded. At the i-th loop the digit di of < d > is checked, if it is 0, R1

is multiplied by two and we advance to the next digit. If di = 1 then we multiply R1 by 2 and then,
we add 1 to it. As this process advances the final value of R1 will be the number of integer values
of the real encoded. In the particular case of d0d1... = 110, the first loop will set R1 = 1. At the
second loop it will be set R1 = 1 · 2 + 1 = 3. At the last loop R1 = 3 · 2 = 6. In general with this
loops we are doing the nested products

R1 = 2(2(2(d0) + d1) + d2)...

Which clearly give us the desired solution. The loop will stop once the digit 2 is found.

• Step 8,9: We know that the digits that appear after the first 2 are the digits of the real r . With step
8 we remove from R0 the digit 2. With Step 9 we adjust the magnitude of R0 to obtain the correct
value of r .

Definition 3.26. A real r codes (ri )i∈N if r =< d > for some d ∈ {0, ... , 9}N such that for all i ∈ N, d i

is a digit code of ri where d i : N 7→ {0, ... , 9}N is given by

d i
j = dπ(i ,j),

for all j ∈ N.

Clearly, every r codes at most one family (ri )i∈N.

Proposition 3.27. There is an ITBSS computation of a program P with input a real r that codes (ri )i∈N
and an index i ∈ N computes ri . Further, there is an ITBSS computation of a program P with input a real
r , that decides whether there exists a family (ri )i∈N such that r codes (ri )i∈N.

Proof. See Algorithm 6

At the first loop R3 = (π(i , 0)). Let < d >= 0.d0d1d2... At Step 4 the value R5 is updated to
10R3R0 − b10R3R0c which is exactly 0.dR3dR3+1.... When updating R4 we are adding dR3 to it at the
decimal position 1

R2
− 1, in the first loop the position is 0. After the first loop, the register R4 equals

0.dR3000.... As this process advances we are placing the next decimals on R4. This process makes
R4 = 0.dπ(i ,0)dπ(i ,1)dπ(i ,2).... In this process, the register R2 is used as an auxiliar number to keep track of
the decimal position of R2 that will be updated next.

For an algorithm to check if r codes a family it is enough to compute each d i (0), d i (1), ... for each
i ∈ N and check that the entries are 1 or 0 until a 2 is found.
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Algorithm 6: Extract one code

Input: A code < d >∈ (0, 1) that codes (ri )i∈N and i ∈ N.
Output: d i digit code of ri .

1 R = (d , i , 1, 0, 0, 0, ...);
2 while R2 > 0 do
3 R3 = π(R1, 1

R2
− 1) (position of the digit);

4 R5 = 10R3R0 − b10R3R0c (remove d0...dR3−1; Algorithms 23, 24);

5 R4 = R4 + 10
− 1

R2 b10 · R5c(update d i ; Algorithms 23, 24);

6 R2 = R2
R2+1 (next digit);

7 Return R4;

Algorithm 7: Extract one digit

Input: A positive real number r and a natural number n.
Output: Natural number of the decimal digit at position n (starting at 0).

1 Set R = (0, r , n, ...);

2 R0 = b10R2+1 · R1c − 10 · b10R2R1c (Algorithms 23, 24);
3 Return R0;

Algorithm 8: Alter a code

Input: A real number r that codes a family (ri )i∈N, a real number s and a natural number j .
Output: Real number r ′ such that r ′ codes (si )i∈N a family defined as si = ri when i 6= j and

sj = s.
1 Set R = (r , s, j , 1, 0, 0, ...);
2 R5 = code of R1 (Algorithm 4);
3 while R3 > 0 do
4 R4 = decimal digit at position π(j , 1

R3
− 1) of R0 ( Algorithm 7);

5 R0 = R0 − 10
−π(j , 1

R3
−1)−1 · R4 (Algorithm 23);

6 R0 = R0 + 10
−π(j , 1

R3
−1)−1b10 · R5c (Algorithms 23, 24);

7 R5 = 10 · R5 − b10 · R5c (Algorithm 24);

8 R3 = R3
R3+1 ;

9 Return R0;
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From the results above we have an effective way to store and recover a family (ri )i∈N. Many other
approaches are possible, an alternative codification can be found in [7].

So far, we have seen that the machine can store countable sets of real numbers inside a register. The
next natural step is creating a method to update the value of a real r that codes a sequence (ri )i∈N to
change the value of one ri without modifying the rest. To do so we present some technical algorithms.

Proposition 3.28. Let r be a real number that codes a family (ri )i∈N, s be a real number and j be a
natural number. Then, there exists an ITBSS program with input s, r , j that ouputs a real number r ′ such
that r ′ codes (si )i∈N a family defined as si = ri when i 6= j and sj = s.

Proof. See Algorithm 8. At the nth iteration of the loop, let kn = π(j , n) + 1:

• Step 4: We store in R4 the value of the decimal digit at position π(j , n) of R0.

• Step 5: We subtract from R0 the value 10−knR4 making the value of the decimal digit at position
π(j , n) equal to 0.

• Step 6: We add to R0 the value 10−knb10R5c making the π(j , n) decimal digit of R0 equal to b10R5c
which is exactly the nth decimal digit of the code of R1.

• Step 7: we update R5 to be 0.dn+1dn+2... where 0.d0d1d2... is the code of R1.

• Step 8: We update the auxiliar register R3 to the next value.

When going through the while loop for the n-th time we are placing the digit dn in the decimal position
π(j , n) of R0. We have that the sequence of digits of R0 at positions π(j , n) for all n ∈ N code s.

Since we have only changed the values of the digits at positions π(j , n) for all n ∈ N, the real r codes
the family (si )i∈N.

Note that, since we can store countable sets of real numbers inside one real, we can also iterate this
process. We can store, countably many families of real numbers inside a real.
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3.6 Inputs and technical details

This section is devoted to the technical decisions taken for a formal approach to the algorithmic problems
that will follow. It shows an organized procedure to control the information used in the algorithms.

Algorithm 9: Modify a digit

Input: A non-negative real number r , natural numbers n and p.
Output: A real number r ′ with same digits as r except the one at decimal position p which is

changed to n .
1 Set R = (r , 0, n, p);
2 R1 = digit at position n of R0 (Algorithm 7);
3 R0 = R0 + 10−p−1 · (n − R1) (Algorithm 23);
4 Return R0;

From Algorithms 6 and 8 we have a method to extract and edit values of a family (ri )i∈N coded by a
real r . We also have Algorithm 9 that allow us to change the values of each decimal digit of a non-negative
real number.

Definition 3.29. The following statements are conventions imposed to the real numbers that store se-
quences of real numbers.

a) For each real r we call ri the real number coded by the digit code formed by the ordered digits of r
on positions π(i , j) with j ∈ N.

b) If for some real code r and i ∈ N the digit with decimal position π(i , 0) is 3 then it is understood
that the real ri is not defined in the sequence.

c) (Remove holes) If an algorithm has a sequence as input, that sequence does not have undefined
values, we call such undefined values holes. If that were the case, the hole is removed creating a new
real r that codes the same sequence without undefined values. This process is done with Algorithms
6 and 8.

d) (Empty register/list) An empty register is a register with value a real number with all digits zero
except the decimals digits at positions π(i , 0) for i natural, which have digit value 3.

e) Whenever a real is added to a list coded by a real number, it is added using Algorithm 8 on the first
i such that the digit at position π(i , 0) is 3.

f) Whenever a real number ri is removed from a sequence, the values of the digits at positions π(i , j)
with j > 0 ∈ N are set to 0, and the one at position π(i , 0) is set to 3. After that, the real number
that codes it is subtituted by the one constructed as commented in c), i.e. a new code without holes.

Definition 3.30. The following statements are conventions imposed to the inputs and algorithms presented
in the following chapters.

1) A countable set X ⊆ Rn is stored in a real number r as a sequence (ri )i∈N where each ri encodes
the n coordinates of a value of X . The sequence does not have repetitions of elements.

2) A list of rectangles in R2 is stored in a real number r as a sequence (ri )i∈N where each ri codes the
defining points of a rectangle as defined in 1).
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3) Whenever an algorithm has a set X encoded in a real r inside a register, we will write the register as
X . If a register has a set X , the notation X (i) correspond to the element encoded in ri . For example,
if X is a set of points in R2, then X (0) = (x , y) is the point encoded by r0. If we need to refer to a
particular component of the point, we use X (0)(0). In this case X (0)(0) = x and X (0)(1) = y .

4) A segment L is stored in a real r having r0 and r1 encoding the coordinates of the two extremal
points, respectively. The ri with i > 1 are not defined in the sequence as in Definition 3.29 b).

5) A well-order on the naturals is encoded as a real r if the digit at decimal position π(n, m) equals 0
if and only if n < m.

6) A family of well-ordered sets (<i )i∈N is encoded in a real r if each ri encodes <i .

Definition 3.31. The following statements are conventions imposed to the operations of the algorithms.

i) The boolean logic of Yes/No is implemented with the use of 0 and 1, respectively.

ii) For two sets X , Y ⊆ Rn, when we write in pseudocode the sentence Rk = X (i) + Y (j) for some
k, i , j ∈ N, then we are expressing that the register Rk will have the real number r that encodes the
coordinates of the point in Rn that is obtained from the sum of X (i) and Y (j) as elements in Rn.

iii) Given two points x = (x1, ..., xi ) ∈ Ri and y = (y1, ..., yj) ∈ Rj . The pseudocode Rk = (x , y) means
that the register Rk will have the real r that encodes the point z = (x1, ..., xi , y1, ..., yj) ∈ Ri+j .

Example 3.32. How to compute the supremum of a countable bounded set X ⊆ R. See Algorithm 10.

Algorithm 10: Supremum of a countable bounded set

Input: A countable bounded subset X of R.
Output: supremum of X .

1 Set R = (X , 1, 0...);
2 R2 = X (0) (Definition 3.30);
3 while R1 > 0 do
4 if R2 < X ( 1

R1
) then

5 R2 = X ( 1
R1

);

6 R1 = R1
R1+1

7 Return R2;

The Algorithm 10 stores in R2 the biggest value of the first 1
R1

elements of X . As we do this process
two things can happen: the value of R2 is fixed after a finite number of steps or ω steps are done and R2

takes a limit value.

3.7 Scroll through a list

In future algorithms it is necessary to go through the elements of Nn and Qn. Here we present a method
to do it using an exhaustive function from N to Nk for any k ≥ 2.

Proposition 3.33. There exists an ITBSS program that computes π−1(n), the inverse of the Cantor pairing
function, for any n ∈ N.
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Proof. Algorithm 11 implements the inverse function used in Proposition 3.22.

Algorithm 11: Inverse of the Cantor pairing function used in Proposition 3.22

Input: A natural number n.
Output: π−1(z).

1 Set R = (n, 0, 0, 0);

2 R3 =
⌊√

8z+1−1
2

⌋
(Algorithms 24 and 27);

3 R1 = R0 −
R2
3+R3

2 ;

4 R2 = −R0 +
R2
3+3R3

2 ;
5 R0 = (R1, R2) (Definition 3.31);
6 Return R0;

Since π−1(z) is a bijection between N and N2 we can use it recursively to make a bijection from N to
Nk for any k natural greater than 1. We present that bijection in the following definition.

Definition 3.34. We define the functions Bk(z) : N→ Nk for naturals k ≥ 2 as.

Bk(z) =

{
π−1(z) if k = 2,

Bk(z) = (x1, ..., xk−2,π−1(xk−1)) if k ≥ 3,

where (x1, ..., xk−1) = Bk−1(z).

Proposition 3.35. The functions Bk are bijective for all naturals k ≥ 2.

Proof. The proof is inductive. The case k = 2 is satisfied for being the preimage of π(z), a bijective
function. Assume Bk bijective for k < n. Clearly, for all (m1, ..., mn−1) ∈ Nn−1 there exists a unique
(t1, ..., tn) ∈ Nn such that ti = mi for i ∈ {1, ..., n − 2} and π−1(mn−1) = (tn−1, tn). Since Bn is the
composition of Bn−1 and the unique correspondence stated before, it is bijective.

These functions can be easily computed using k − 1 times Algorithm 11. Additionally, we can make an
exhaustive partial function from N to Qk .

Definition 3.36. We define the partial functions Qk : N→ Qk for all naturals k ≥ 2 as

Qk(z) =

(
x1
x2

,
x3
x4

, ...,
x2k−1

x2k

)
when x2i 6= 0 for all i ∈ {1, ..., k},

where (x1, ..., x2k) = B2k(z).

Proposition 3.37. The partial functions Qk are exhaustive.

Proof. Since B2k is bijective, for any
(
x1
x2

, x3
x4

, ...,
x2k−1

x2k

)
∈ Qk there exits some z ∈ N such that B2k(z) =

(x1, ..., x2k).

These partial functions can be easily implemented and used to visit all points in Qn.
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4. Accumulation points

Now that the framework has been established, we apply it to geometric problems with infinite countable
input. We start with accumulation points. The traditional models of computation can not work with
accumulation points since for their appearance we need an infinite set of points.

Definition 4.1. A point x is an accumulation point of the set X ⊆ Rn if

∀ε > 0 ∃y ∈ X − {x} such that d(x , y) < ε,

where d(x , y) is the Euclidean distance between x and y .

Proposition 4.2. A point x is an accumulation point of a set X ⊂ Rn if and only if

inf{d(x , y) | y ∈ X − {x}} = 0.

Proof.

⇒) Assume that inf{d(x , y) | y ∈ X − {x}} = k > 0. Using the definition of accumulation point, with
0 < ε < k , we know that exists y ∈ X such that d(x , y) < k, a contradiction.

⇐) Assume that x is not an accumulation point. That implies that there exists ε > 0 such that no point
y in X satisfies d(x , y) < ε. Then it is clear that inf{d(x , y) | y ∈ X − {x}} ≥ ε.

Next, we introduce some technical results.

Theorem 4.3. (Bolzano-Weierstrass Theorem in Rn) Let {ai}i∈N be a bounded sequence of points in
the set X = [a1, b1] × · · · × [an, bn] with a1, ..., an, b1, ..., bn ∈ R. Then, there exists a subsequence that
converges to a point in X.

The proof is not complicated but technical and long. See [8].

Proposition 4.4. If an infinite set X ⊂ Rn is bounded, it has at least one accumulation point.

Proof. Let {ai}i∈N be a sequence of points of X without repetitions. From Theorem 4.3 the sequence has
a subsequence {bi}i∈N that converges. From the definition of limit, limn→∞ bn is an accumulation point
of X .

From now on, we present several definitions and concepts in R2. Most of the concepts can be easily
adapted to Rn but, since the final results will concern R2, we only define them for the planar case.

Definition 4.5. The mass center of a set {(xi , yi )}i∈N of R2 is defined as

lim
n→∞

(
n−1∑
i=0

xi
n

,
n−1∑
i=0

yi
n

)
.

Lemma 4.6. The mass center of a bounded set of R2 always exists.
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Proof. Since the set is bounded, there exists c = sup{xi} < ∞ and d = inf{xi} > −∞. From these
bounds we obtain

d = lim
n→∞

n−1∑
i=0

d

n
≤ lim

n→∞

n−1∑
i=0

xi
n
≤ lim

n→∞

n−1∑
i=0

c

n
= c .

We can assume that all coordinates are positive, otherwise we can make a translation of the points to the
first quadrant. Given that all the entries are positive, the series converge. The same argument holds for
the second coordinate of the points.

Proposition 4.7. The mass center of a bounded and countable set of points with exactly one accumulation
point is the accumulation point.

Proof. Let (x , y) be the accumulation point and (a, b) the mass center of the given set {(xi , yi )}i∈N . The
following argument applies to each coordinate of the points. Suppose that a < x . Then

lim
n→∞

n−1∑
i=0

xi
n

= a.

Let c = a+x
2 . Since the limit exists, we can express it as the sum

lim
n→∞

n−1∑
i=0

xi
n

= lim
n→∞

∑
xj≤c

xj
n

+
∑

xi>c,i<n

xi
n

 ,

where the first sum is the sum of points with x-coordinate smaller than or equal to c . This set must be
finite because otherwise the ball B(xj , c) would have infinitely many points, and Proposition 4.4 would
imply the existence of another accumulation point. The second sum is the sum of the rest of the points,
an infinite set. Since both series converge,

lim
n→∞

n−1∑
i=0

xi
n

= lim
n→∞

∑
xj≤c

xj
n

+ lim
n→∞

 ∑
xi>c,i<n

xi
n


=0 + lim

n→∞

 ∑
xi>c,i<n

xi
n


≥ lim

n→∞

 ∑
xi>c,i<n

c

n


=c,

which is a contradiction. An analogue argument works for a > x .

Algorithm 12 shows how to compute the mass center of a countable set X in R2.

Definition 4.8. We define “removing” an accumulation point x from a set X as finding a subset Y of X
such that

• x is not an accumulation point of Y .
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Algorithm 12: Mass center of a set in R2

Input: A countable set X ⊂ R2.
Output: Mass center of X .

1 Set R = (X , X (0), 1, ...);
2 while R2 > 0 do

3 R1 = R1
R2+1 +

X ( 1
R2

)R2

R2+1 (sum from 0 to n-1; It is a sum of points in R2, see Definition 3.31);

4 R2 = R2
R2+1 ;

5 Return R1;

• If z 6= x is an accumulation point of X , it is also an accumulation point of Y .

We say that Y removes x from X .

Definition 4.9. The open ball of center x and radius r , B(x , r) is defined as the set

B(x , r) = {z | d(x , z) < r}.

Given a set X with a finite number of accumulation points, Algorithm 13 shows how to remove an
accumulation point x . See Figure 3.

Figure 3: The balls B(x , 1
2n ), B(x , 1

2n+1 ) separate the neighbours of the accumulation point x into regions.

There exists a natural number n0 such that for all n > n0, the region B(c , 1
2n−1 ) \B(x , 1

2n ) contains only a
finite number of point of X .

Proposition 4.10. Algorithm 13 outputs a valid solution.

Proof. To see that this algorithm works it is enough to see that the output R5 contains all accumulation
points of X except x .

First observe that the while loop of Step 2 checks for each element of X if it lies between the two balls.
If the number of points that satisfy the condition is infinite, the value of the register R2 will converge to
0. If R2 = 0, the register R4 is updated to a new value. This process will update R4 until the balls with
radius 1

21/R2
, 1
21/R2+1 have finitely many elements in between for all natural n ≥ 1

R3
. This will eventually

happen because otherwise, we would have infinitely disjoint bounded regions with infinitely many points
inside, which would imply the existence of infinitely many accumulation points. In this process R1 is used
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Algorithm 13: Removing an accumulation point

Input: A countable set X ⊂ R2 with finitely many accumulation points, and an accumulation
point x of X .

Output: A set Y that removes x from X .
1 Set R = (X , 1, 1, 1, 1, E , ...) (E is an empty list as defined in subsection 3.6);
2 while R3 > 0 do
3 while R1 > 0 do
4 if X ( 1

R1
) ∈ B(x , 1

21/R3
) \ B(x , 1

21/R3+1 ) then

5 R2 = R2
R2+1

6 R1 = R1
R1+1

7 if R2 ≤ 0 then

8 R4 = R3
R3+1

9 R3 = R3
R3+1 ;

10 R2 = 1;
11 R1 = 1;

12 while R1 > 0 do
13 if X ( 1

R1
− 1) /∈ B(x , 1

21/R4
) then

14 E ( 1
R2
− 1) = X ( 1

R1
− 1);

15 R1 = R1
R1+1 ;

16 R2 = R2
R2+1 ;

17 else

18 R1 = R1
R1+1 ;

19 Return R5;
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to go through all points of X to check if they lie between the balls. And R3 is used to go through all values
of N to study all the possible radius of the balls.

When R4 stabilizes to a value n, the ball B = B(x , 1/2n) contains x and all points z in X such that
d(x , z) < 1/2n. From here it is clear that for all z ∈ X \ B, d(x , z) ≥ 1

2n , which implies that x is not an
accumulation point of X \ B. Steps 12 to 16 store in R5 the set X \ B. The register R1 is used to go
through all the elements of X and R2 to go through all the elements of E .

To end, all the accumulation points of X different from x are in X \ B. Suppose that z 6= x is an
accumulation point in X but it is not in X \ B. Then for all ε > 0 exists b ∈ B such that d(z , b) < ε, a
contradiction with the value of n.

Algorithm 14 shows a simple criterion, based in Proposition 4.2 to decide if a segment contains an
accumulation point of a set X .

Algorithm 14: Deciding if a segment L has an accumulation point of X

Input: A set X and a segment L with at most finite number of points in common.
Output: Yes/No answer.

1 Set R = (X , L, 1, 1, 1);
2 while R3 > 0 do
3 R4 = d(L, X ( 1

R3
− 1)) (use the point-segment distance formula of R2);

4 if 0 < R4 < R5 then
5 R5 = R4

6 R3 = R3
R3+1 ;

7 if R5 ≤ 0 then
8 Return Yes;

9 else
10 Return No;

We present now Algorithm 15. In this case we state the algorithm in words without the detailed
operations on registers, though it is possible to explicitly give the ITBSS program.

Remark 4.11. In Algorithm 15 we need that the segment and X do not have more than finitely many
points in common, otherwise an accumulation point of X could be the limit of points in L and we would
not detect it. From now on, we assume that the sets X studied have at most finitely many points aligned.

Proposition 4.12. Algorithm 15 is correct.

Proof. Since we check if L has accumulation points of X , we can assure that the sequence {si}, defined
in the algorithm, is computed, and that at least one accumulation point in L exists. By construction the
values of the sequence {si} get closer to L as i tends to infinity. Now, since

ya = lim
n→∞

(
inf
i≥n

y(si )

)
there exists an infinite subsequence {ai} in {si} such that limi→∞ y(ai ) = ya. By construction, the x-
coordinates tend to the x-coordinate of L. We conclude that limi→∞ ai ∈ L and it is an accumulation point
of X . Since this process always finds one accumulation point, removing the point found and repeating the
process will eventually complete the search.
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Algorithm 15: Finding the accumulation points of X on a segment L

Input: A set X ⊂ R2 with finitely many accumulation points , and a vertical segment L.
Output: Accumulation points of X in L.

1 Use Algorithm 14 to check if X has accumulation points on L. If the answer is negative return the
empty set. Otherwise continue.

2 Check if the extremal points of the segment are accumulation points. If an accumulation point is
found, remove it using Algorithm 13.

3 Store {ri}, a sequence containing all points with y-coordinate between the extremal values of the
segment not in L. To do this, check for each element of X if it satisfies this condition on the
y-coordinate. If it does, add it to the sequence; do not otherwise. From this set take a subset
{si} as follows: Pick the initial value s1 = r1. Then search the first ri in the sequence such that
d(L, ri ) <

1
2d(L, s1), this point is s2. Repeat until step ω. Compute

ya = lim
n→∞

(
inf
i≥n

y(si )

)
where y(s) is the y-coordinate of point s (use the method of Algorithm 10). Check if the point
on the segment with y-coordinate ya is an accumulation point. If it is, remove it to obtain a
subset Y . Check if L has an accumulation point of Y ; if it does, repeat Step 3, processing with
Y . Otherwise return all the accumulation points found.

Remark 4.13. Some remarks on the proof and the Algorithm 15.

• In this case the algorithm was a exposed in text to facilitate the comprehension.

• In the condition d(L, si ) <
1
2d(L, si−1) the 1

2 is necessary to assure that the points tend to L. Any
0 < ε < 1 could be used instead.

• The sequence {si} does not have to converge to a value. For example the sequence could be an
alternation of {( 1n , 1)}n∈N>0 and {( 1n , 2)}n∈N>0 .

• Using the inferior limit does not guarantee us that the accumulation points will be found in ascending
order, the order of appearance depends on how the sequence {si} is created. It could always choose
elements from a subsequence that tends to an accumulation point which is not the lowest, nor the
highest.
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Algorithm 16: Compute the finite number of accumulation points of a bounded set

Input: A bounded set X ⊂ R2 with finitely many accumulation points.
Output: Accumulation points of X .

1 Check for each n ∈ N if X is contained in the square [−n, n]2 until a natural m is found such that
X is contained in [−m, m]2 (Check for each point in X if it lies inside the square).

2 Check, using Algorithm 15, if the vertical sides of [−m, m]2 contain accumulation points and use
the process of Algorithm 13 to remove them.

3 Let R be the list containing only the square [−m, m]2.
4 For a generic rectangle T = [a, b]× [c , d ] in R:

• Remove T from R.

• Check if there are infinitely many points of X inside T (Method of algorithm 13). If there are,

– Check if the vertical segments from (a, c) to (a, d) and (b, c) to (b, d) have accumulation
points. If they have, remove them.

– For the rectangles T1 = [a, (a + b)/2]× [c , d ] and T2 = [(a + b)/2, b]× [c , d ], check if there
are infinitely many points inside each one. If some has, add it to R.

Take a square in R and repeat the process until R is empty.

Return the accumulation points found.

Now, we are finally able to compute the accumulation points of a given bounded set X .

Proposition 4.14. Algorithm 16 is correct.

Proof. Simply observe that if an accumulation point lies in the interior of a region, there must be in-
finitely many points inside it. At each step the vertical segments will be closer to the x-coordinate of the
accumulation point until the values converge to a line that contains the accumulation point.

With a simple trick, Algorithm 17 can be adapted to work for unbounded sets.

Algorithm 17: Compute the finite number of accumulation points of a set

Input: A set X ⊂ R2 with finitely many accumulation points.
Output: Accumulation points of X .

1 Apply Algorithm 16 to the points of X inside the square [−1, 1]2.
2 Remove the points of X inside the square [−1, 1]2 (Create a new sequence with the elements of X

outside the square).
3 Apply the complex transformation f (z) = 1

z to the points of X outside the square and apply
Algorithm 16. Once the accumulation points are found, to all the solution points different from
(0, 0), apply again the complex transformation 1

z (change each element for each complex
transformation).

4 Return the accumulation points found.

Remark 4.15. In Algorithm 17, the point (0,0) is removed because it will never be an accumulation point
after the transformation 1

z is done. Observe that the tranformation 1
z sends big module numbers to small
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module numbers, and if the point (0, 0) appears it is because the supremum of the modules tends to infinity.

Remark 4.16. Sadly, Algorithm 16 cannot be extended to a countable amount of accumulation points
because the process to remove accumulation points needs the existence of a minimum distance ε among
them. Nonetheless, if a set X has a countable amount of accumulation points and if there exists a non-zero
minimum distance among them, then Algorithm 16 can be adapted to work, by simply dividing the space
into squares of the form [a, a + 1]× [b, b + 1] with a, b ∈ Z, and applying Algorithm 16 to each square.
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5. Convex Hull

Calculation of convex hull is a very studied field in finite and infinite geometry. Here, we present some
results and algorithms for the infinite case using well known facts about them. A good reference is [17].

Definition 5.1. A set X is convex if

∀x , y ∈ X ⊆ Rn, ∀t ∈ [0, 1] tx + (1− t)y ∈ X .

Definition 5.2. The convex hull of X , CH(X ) is the intersection of all convex sets containing X .

Definition 5.3. We define an hyperplane H(~c , d) , with ~c ∈ Rn and d ∈ R as

H(~c , d) = {x ∈ Rn | x · ~c = d}.

If ~c ∈ Qn and d ∈ Q we say it is a rational hyperplane.

Definition 5.4. Given non-empty sets X1, X2 of Rn. The hyperplane H(~c , d) separates X1 and X2 if

sup
x∈X1

(x · ~c) ≤ d ≤ inf
x∈X2

(x · ~c).

If the inequality is strict, we say that H(~c , d) strongly separates X1 and X2.

Theorem 5.5. (Strong Separating Hyperplane Theorem) Let K and C be disjoint and non-empty convex
subsets of Rn. Suppose K is compact and C is closed. Then there exists an hyperplane H(~p, d) that
strongly separates K and C .

Proof. This fact is well known. A proof can be found in [16].

Here we present a result that motivates the use of closed halfspaces.

Proposition 5.6. Let C be the family of convex sets that contain X and H be the family of closed
halfspaces that contain X , then the following equality holds:⋂

c
c∈C

= CH(X ) =
⋂

h
h∈H

, (1)

where the overline denotes the closure of the set.

Proof. The first equality holds immediately by the definition of convex hull.⋂
c

c∈C
⊂
⋂

h
h∈H

: Clearly H ⊂ C and that implies

⋂
c

c∈C
⊂
⋂

h
h∈H

,

now, that implies that ⋂
c

c∈C
⊂
⋂

h
h∈H

,

but, since H is a family of closed sets the intersection is a closed set. We conclude⋂
c

c∈C
⊂
⋂

h
h∈H

=
⋂

h
h∈H

.
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⋂
h

h∈H
⊂
⋂

c
c∈C

: It is enough to prove that if x ∈ CH(X ), then for all y /∈ CH(X ) such that

d(y , CH(X )) > 0, there exists a halfspace h ∈ H such that y /∈ H. The results follows from
the hyperplane separation Theorem, see for instance [19].

5.1 Convex hull computation

Definition 5.7. Let x0, x1, ..., xn be points in Rn. We say that x0 is in the convex combination of x1, ..., xn
if there exist non-negative real numbers a1, ..., an such that a1x1 + ... + anxn = x0 and a1 + ...an = 1.

Theorem 5.8. (Carathéodory’s Fundamental Theorem) Each point in the convex hull of a set S in Rn is
in the convex combination of n + 1 or fewer points of S.

For a proof of Theorem 5.8 see [25].

Now we present Algorithm 18 that computes if a point lies inside the convex hull of a set.

Algorithm 18: Decide if x ∈ CH(X ) ⊆ Rn

Input: x a point in Rn and a countable set X ⊂ Rn.
Output: Yes/No answer.

1 For each simplex of n + 1 points x1, x2, ..., xn+1 ∈ X , check if the point x lies inside. If such
simplex is found, return Yes and return No otherwise (use the function of Definition 3.34 to go
through all (n+1)-tuples of X n+1).

Remark 5.9. In Algorithm 18, to check if a point x lies inside a simplex it is enough to do elementary
operations which can be implemented in the ITBSS machine, but details are omitted since this process is
exactly the same as in the finite model.

Proposition 5.10. The algorithm 18 is correct.

Proof. This is an easy corollary of Theorem 5.8.

Theorem 5.11. Let S be a convex set with int(S) 6= ∅. Then int(S) = S.

Proof. See [16], Corollary 3.4.13.

We present now Algorithm 19 that computes if a point lies in the closure of the convex hull of a set.

Algorithm 19: Decide if x ∈ CH(X ) ⊂ Rn with intCH(X ) 6= ∅
Input: x a point in Rn and a countable set X ⊂ Rn.
Output: Yes/No answer.

1 For each m ∈ N>0 and for each rational q ∈ Qn check if q ∈ B(x , 1
m ) ∩ CH(X ) (Use the distance

for the ball, Algorithm 18 for the convex hull and the functions in Definition 3.36 to go through
all Qn). If for all n ∈ N>0 a rational is found such that q ∈ B(x , 1

n ) ∩ CH(X ), then x ∈ CH(X )
and return Yes, return No otherwise.

Proposition 5.12. The algorithm 19 is correct.
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Proof. If x /∈ CH(X ), then there is ε > 0 such that d(x , CH(X )) > ε and for all n > 2
ε we have

B(x , 1
n ) ∩ CH(X ) = ∅.

If x ∈ CH(X ), by Theorem 5.11, there exists a sequence {an}n∈N of points in int(CH(X )) with
limn→∞ an = x . Then, for each n ∈ N>0 we have B(x , 1

n )∩ int(CH(X )) 6= ∅. Let zn be in this intersection.
Since the finite intersection of open sets is open, zn is an interior point. From that, we know that there
exists εn such that B(zn, εn) ⊆ B(x , 1

n ) ∩ int(CH(X )). From the density of rationals, see Theorem A.4,
there is a rational rn ∈ B(zn, εn). Since this argument holds for any n ∈ N>0, at each step at least one
rational must be found in B(x , 1

n ) ∩ CH(X ).

Theorem 5.13. If X , Y are topological spaces and Y is compact, then for any continuous function
f : X × Y 7→ R, the function g(x) = infy∈Y f (x , y) is well defined and continuous. The same holds for
g(x) = infy∈Y f (x , y).

The proof of this theorem uses topological arguments that are of no interest for the comprehension of
the future arguments. For a proof see [24].

We will need the following version of Theorem 5.5.

Theorem 5.14. (Strong Separating Rational Hyperplane Theorem) Let X1, X2 be two disjoint, non-empty,
convex and compact subsets of Rn. Then, there exists (~p, t) ∈ Qn×Q such that H(~p, t) strongly separates
X1 and X2.

Proof. From Theorem 5.5 we know that there exists (~p, d) ∈ Rn ×R such that H(~p, d) strongly separates
X1 and X2. Consider the functions

f (z) = sup
x∈X1

x · z ,

g(z) = inf
x∈X2

x · z ,

h(z) = g(z)− f (z).

From Theorem 5.13 these functions are continuous. This implies that for all ε > 0 there exists δ > 0 such
that |h(z)− h(p)| < ε for all z ∈ B(p, δ). If we take ε = h(p), we have for all z ∈ B(p, δ)

|h(z)− h(p)| <h(p)

−h(p) < h(z)− h(p) <h(p)

0 < h(z) <2h(p).

Since rationals are dense, there exists q ∈ B(p, δ) ∩ Qn such that 0 < h(q) = g(q) − f (q), which
implies f (q) < g(q). Again, from density of rationals, we know that there exists t ∈ (f (q), g(q))∩Q. We
conclude that the hyperplane H(~q, t) strongly separates X1 and X2.

Finally, we present an algorithm that, for X a subset of Rn with int(CH(X )) 6= ∅, computes a countable
set of closed rational halfspaces L such that ∩`∈L` = CH(X ).
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Algorithm 20: Compute closure of convex hull as a countable intersection of rational halfspaces

Input: X ⊂ Rn a countable set with int(CH(X )) 6= ∅.
Output: A family of closed rational halfspaces whose intersection is CH(X ).

1 Let L be an empty set. For each pair (~c , d) ∈ Qn ×Q, with c 6= 0, check whether

a) Qn ∩ H(~c , d ,>) ∩ CH(X ) = ∅?

b) Qn ∩ H(~c , d ,<) ∩ CH(X ) = ∅?
(This process is done by checking for each rational if it lies inside each set. Use the functions in
Definition 3.36 to do it).

We distinguish cases according to the result of a) and b).

• If Yes/No: Add H(~c , d ,≤) to L,

• If No/Yes: Add H(~c , d ,≥) to L,

• If No/No: Do not add a halfspace to L,

Return L

Remark 5.15. In Algorithm 20, the case Yes,Yes cannot happen because that would imply that CH(X ) is
contained in a hyperplane of dimension n − 1, contradiction with having non-empty interior.

Proposition 5.16. If X is a convex set with int(X ) 6= ∅, then for all x ∈ X and for all r > 0 B(x , r)∩int(X )
is non-empty.

Proof. From Theorem 5.11 all the points of X are limit points of int(X ) so, for all r there is some point
of int(X ) inside the ball B(x , r).

Proposition 5.17. The algorithm 20 outputs a valid solution.

Proof. Let H be the intersection of the halfspaces of L.

H ⊆ CH(X ): Suppose that there exists x ∈ H\CH(X ). Then by Theorem 5.14, there exists a rational
hyperplane H(~c , d) that strongly separates x and CH(X ). Suppose that CH(X ) ⊆ H(~c, d ,<). Since
CH(X ) has non-empty interior it has at least one rational in Qn ∩ (H(~c , d ,<)). We conclude that
when this halfspace is studied the answer is Yes/No and H(~c , d ,≤) is included in L. From here
we reach a contradiction with the existence of x ∈ H \ CH(X ). The case CH(X ) ⊆ H(~c , d ,>) is
analogous.

CH(X ) ⊆ H: Let x /∈ H. Then, there exists a rational halfspace H(~c , d ,≤) (the case ≥ is analogous)
in L such that x /∈ H(~c, d ,≤). If such a halfspace is added to L during the computation, the tests
a) and b) were answered Yes/No. This implies that

Qn ∩ H(~c , d ,>) ∩ CH(X ) = ∅. (2)

But now notice the following: x ∈ H(~c , d ,>), an open set. If x ∈ CH(X ) then there exists r > 0
such that B(x , r) ⊆ H(~c , d ,>) and by Proposition 5.16 this ball contains a point y of CH(X ). Now

40



again, there exists 0 < s ≤ r such that B(y , s) ⊆ B(x , r) ⊆ H(~c , d ,>) ∩ CH(X ). From density of
rationals, at least one rational point exists inside that ball. Contradiction with equality (2).
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6. Matchings

In this section we study matchings between infinite sets. It is shown how, in the infinite case, the existence
of non-crossing perfect matching is not always guaranteed. A set of points X ⊆ R2 is in general position if
it does not have three points in a common line. This represents a major difference with the finite case where
there always is a non-crossing perfect matching if the set X = R ∪ B is in general position. Additonally, a
non-geometric problem is studied, the so-called stable matching problem [9]. Under certain conditions it
is shown that a stable matching always exists. This result is from [3]. We start by defining matchings.

Definition 6.1. Given two disjoint sets R, B of R2, a function f : R → B is an (R, B)-matching if it is
injective.

Definition 6.2. Given two disjoint sets R, B of R2, we define a perfect matching as a bijection F : R → B.

Remark 6.3. A perfect matching always exists if R and B have the same cardinality.

Definition 6.4. We say that a (R, B)-matching f of R, B ⊂ Rn is non-crossing if for each pair of segments
(r , f (r)), (r ′, f (r ′)), r 6= r ′ ∈ R, their intersection is empty. We say that two segments cross, if their
intersection is non-empty.

First we show the main difference between the infinite and the finite case. The perfect non-crossing
matching does not always exist for infinite sets, as illustrated in the following examples. This may happen
even when the set X = R ∪ B is in general position. These examples also indicate that even further
restrictions on the point set, such as existence of minimum distance, or boundedness of the set do not
guarantee the existence of a non-crossing perfect matching.

Example 6.5. Consider the set X of points (x , y) ∈ R2 such that x ∈ N≥6 and y = x2, see Figure 4.
Consider the set R = {(x , y) ∈ X | x is a perfect square} and B = X \R. Let F be a bijection between B
and R. Consider the segment L that join (6, 36) with F (6, 36). Since the points lie inside a convex curve,
any segment connecting a point below L and a point above L must cross L; but there are more points of
B than points of R below L. We conclude that at least one segment intersects L in any perfect matching.

Figure 4: Countable set of points in general position without a non-crossing perfect matching. Example
6.5
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Rdown

Rup

Bdown

Bup

Figure 5: Separated sets without a non-crossing perfect matching. Example 6.7.

Definition 6.6. Two sets R, B ⊆ R2 are separable if there exists a halfspace that strongly separates them
(see Definition 5.4).

We present an example of two separable sets without non-crossing perfect matching.

Example 6.7. Consider R = {(0, 1
n ) | n ∈ N>0}∪{(0, 0)} and B = {(1, 1− 1

n ) | n ∈ N>0}∪{(0, 0)}. See
Figure 5. If a non-crossing perfect matching exists, then (0, 1) is connected to (1, 1) and (0, 0) with (1, 0).
Let (0, a) be a point in R and (1, b) its pair in the matching. The segment that joins them separates R
and B in

• Bup = {(1, y) ∈ B | y > b}, an infinite set.

• Bdown = {(1, y) ∈ B | y < b}, a finite set.

• Rup = {(0, y) ∈ R | y > a} , a finite set.

• Rdown = {(0, y) ∈ R | y < a}, an infinite set.

Now, that makes it impossible not to cross the segment that joins (0, a) and (1, b) in a perfect matching.

Example 6.8. Let R = {(0, n) | n ∈ N>0} and B = {(x , 0) | x ∈ Q>0}. Suppose that a non-crossing
perfect matching F exists. Consider the segments r and s which connect (0, 1), (0, 2) and their images
of F , respectively. Clearly, between F (0, 1) and F (0, 2), infinitely many of rationals exist, in particular
p = 1

2(F (0, 1) + F (0, 2)). The preimage of p must be of the form (0, n) with n > 2, which implies that
the segment that connects p and (0, n) must intersect s. See Figure 6.

Remark 6.9. With the sets R, B defined in Example 6.8, the function f (0, n) = (n, 0) is a non-crossing
(R, B)-matching. But no non-crossing (B, R)-matching exists. With the sets R, B defined in Example 6.5
no non-crossing (B, R)-matching exists and no non-crossing (R, B)-matching exists.

From examples 6.5, 6.7 and 6.8 we see that boundedness, separability or existence of a minimum
distance does not imply the existence of a non-crossing perfect matching. In the following subsection we
will see that having well-orderings allows stable matchings.
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p

r

s

Figure 6: Example 6.8.

6.1 Stable Marriage

The stable marriage problem consists in two finite lists B = {b1, b2, ..., bn}, G = {g1, g2, ..., gm} where
each b ∈ B has a list of preference for the elements of G . Respectively each g ∈ G has a list of prefence
for the elements of B. Formally this preference is stated as a binary relation < where a < a′ implies that
a is prefered over a′. This has been historically stated as a list of boys B and a list of girls G where the
preference indicates which boy/girl prefers to marry. Given an injection (or marriage) M : B → G , b and
g are matched if M(b) = g . A marriage is unstable if there exists a pair (b, g) ∈ B × G such that they
are not matched but b prefers g over their matched partner and g also prefers b over its matched partner.
Such a pair is called blocking pair. A marriage is stable if it is not unstable. This problem was presented
and solved by Gale and Shapley in [9].

First we formalize the definitions.

Definition 6.10. Let B, G be sets such that for each b ∈ B there exists a well-order < on G , for each
g ∈ G there exists a well-order <′ on B and let M : G → B be a matching. Let g , g ′ ∈ G with respective
orders <g ,<g ′ on B and b, b′ ∈ B with respective orders <b,<b′ on G.

• We say that g prefers b over b′ if b < b′.

• We say that g and b are matched if M(g) = b.

• We say that b and g are a blocking pair if they are not matched and prefer each other over their
matched partner of M.

We state the infinite stable marriage problem as follows, see [3].

Definition 6.11. A stable marriage problem instance is a tuple 〈B, G , {<i}bi∈B , {<j}gj∈G 〉 such that

• B = (bi )i∈N and G = (gj)j∈N are sequences.

• For each i ∈ N the ordered set (G ,<i ) is isomorphic to ω.

44



• For each j ∈ N the ordered set (B,<j) is isomorphic to ω.

Remark 6.12. Each <i ,<
j encodes the preference of each element. If bx <

j by then gj prefers bx over
by . Since (G ,<i ), (B,<j) are isomorphic to ω they are well-orders, which implies that we always have a
least element for any non-empty subset.

Definition 6.13. Let 〈B, G , {<i}bi∈B , {<j}gj∈G 〉 be a stable marriage problem instance. M : B → G (or
M : G → B) is a stable matching if there is no blocking pair (b, g) ∈ B × G .

Now we state the result presented in [3].

Theorem 6.14. ([3]) Let 〈B, G , {<i}bi∈B , {<j}gj∈G 〉 be an instance of the stable marriage problem. Then
there is a stable (R, B)-matching or a stable (B, R)-matching.

Proof. The proof is constructive. Start matching b0 with the first girl of his preference <0 (i.e., least
element of (G ,<0)). This girl exists because <i is a well-order. Note that we could as well start matching
g0 with the first boy of her preference.

At the end of step s assume we have a matching Ms = {(b0, gσ(0)), ...(bs−1, gσ(s−1)}. We consider now
the element b with least index in B that is not matched. We check for the least element g ∈ (G ,<s) such
that g is not matched or prefers b over the current matched partner. If g is not matched then we match b
and g and start step s + 1 with b′ the element with least index in B that is not matched. If g was matched
to some b′′, we update Ms removing (b′′, g) and adding (b, g). Now we do again the procedure (round)
stated before with b′′ (we are still in the same step). Notice that after a finite number of rounds we will
match some b with some unmatched g . But in each such change some of the g changes its partner to a
preferred one; this can happen only a finite number of times for each g and thus only for a finite number
of rounds in total.

It can be seen from induction that, at each step one new girl is matched and that she will remain
matched at the end of each following step (this is done in the original proof in [9]). In particular, at each
step the girls that change partner will do it only to partners that are higher in their preference. Since there
are finitely many partners with higher preference than the first one, for each girl g there exists a finite step
tg after which g does not change partner. Then we will have

M = {(bi , gτ(i)) | (bi , gτ(i)) ∈ Ms for all steps after some finite step tgτ(i)}.

Let us prove that M is a stable matching.

First we prove injectivity. It is enough to see that if g (or b) is inside some pair in M no other pair can
have g ( or b). Let (b, g) ∈ M be the pair that contains b with lowest tg . The element b will never be
considered after step tg in the procedure since b is already paired and will not be unpaired. That implies
that no (b, g ′) can be added. Then (b, g) is the only pair that contains b in M. Let (b, g) the pair that
contains g with lowest tg . After step tg no b′ will be considered such that b′ < b, which implies that
no pair (b′, g) will be added. Since in both cases the pair has the lowest tg no pair containing b or g ,
respectively, can be in M.

If some b′ ∈ B is not matched, let b be the least of all unmatched elements of B. Then there are
infinitely many steps where b was left unmatched. But if b has been left unmatched infinitely many times it
must have checked all girls in their preference and checked if they were unmatched or matched with a lower
preference b′′. That implies that all girls are matched. Then M is a (B, G )-matching or a (G , B)-matching.

Now we prove the stability of M. Suppose that (b, g) ∈ B × G is a blocking pair, i.e., contradicts the
stability of M. Then, from the argument used before, if b is not matched, it must have checked at some
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step if g was unmatched or if she preferred her current match. If the match (b, g) was in Ms after that
step, then some other b′ must have checked g and removed this matching from M indicating that b′ < b
with < the preference of g . Alternatively if b is matched with some g ′ two things can happen. If g ′ < g
with < the preference of b, then (b, g) is not a blocking pair. And if g < g ′, then g must have been
checked before g ′. Since it is not matched with b it must be matched with a b′ such that b′ < b, with <
being the preference of g . In conclusion, M is a stable matching.

Remark 6.15. Note that not all the elements of B must be matched to obtain a solution. The solution is
not always a perfect stable matching.

From this result we can extract an algorithm to compute stable matchings. The following Algorithm
21 will be used as a sub-routine.

Algorithm 21: Well order

Input: A well-order < and two natural numbers n, m
Output: Yes/No to the question n < m

1 Set R = (<, n, m, 0, ...)
2 R3 = decimal digit of < at position π(n, m) (Algorithm 7);
3 if R3 ≤ 0 then
4 Return Yes;

5 else
6 Return No;

Corollary 6.16. Let I = 〈B, G , {<i}bi∈B , {<j}gj∈G 〉 be an instance of the stable marriage problem. Then
there is an ITBSS computation that finds a stable matching of I.

Proof. The proofs follows from Algorithm 22. This algorithm will reproduce the procedure of the proof of
Theorem 6.14 identifying B and G with N. The output will be a positive real number with the decimal
digit at position π(n, m) 1 if n and m are matched, and 0 otherwise.

Remark 6.17. In Algorithm 22, the value b should be used carefully to avoid a divergence in the register.
To do so use the trick of storing 1

b+1 , instead. This has been eliminated from the code to make it more
understandable.

Remark 6.18. A stronger result is presented in [3] where a stable matching exists when the ordered sets
(G ,<i ), (B,<j) are isomorphic to some ordinal, not necessarily ω. Hence, using a similar algorithm as the
one given in the proof of Theorem 6.14 it could be possible to extend Corollary 6.16 under some reasonable
conditions. This limitation should guarantee that the limitations shown in Theorem 3.16 are not broken.
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Algorithm 22: Infinite Stable Marriage Algorithm

Input: Two real numbers that code the families (<i )i∈N and (<j)i∈N (Definition 3.30 6))
Output: A (B, G ) or (G , B)-matching

1 Set b = 0 (we identify B and G with N);
2 Set GM = 0 (the decimal digit n is 1 if gn is matched);
3 Set BM = 0 (the decimal digit n is 1 if bn is matched);
4 Set M = 0 (the decimal digit π(n, m) = 1 if bn and gm are matched);

5 Search the least element g ∈ (G ,<b) that is not matched or prefers b over their actual partner b′

(i.e. b <g b′; use Algorithm 21).;
6 if g was not matched then
7 Set the decimal digit π(b, g) of M equal to 1;
8 Set the decimal digit b of BM equal to 1;
9 Set the decimal digit g of BM equal to 1;

10 Set b to the first decimal position in GM with digit 0. (Next unmatched b; see Remark 6.17).;

11 else
12 Set the decimal digit π(b, g) of M equal to 1;
13 Set the decimal digit π(b′, g) of M equal to 0;
14 Set the decimal digit b of BM equal to 1;
15 Set the decimal digit g of BM equal to 1;
16 Set b = b′ (see Remark 6.17);

17 if GM 6= 0.1111... and BM 6= 0.1111... then
18 Go to Step 5;

19 else
20 Return M;
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7. Conclusions

This project had two main objectives: (i) present a framework to explore the capacity of study and
solvability of problems with infinite input and (ii) present algorithms inside that framework that can solve
some problems. This study has focused on classical geometrical problems and the new questions that
emerge from the infiniteness of the input.

In Section 2 an introduction to ordinal numbers and their basic operations has been made. This allows
the understanding of infinite ordered sets which are fundamental for an effective algorithmic approach.

In Section 3 we have presented the structure of the whole framework. A presentation of the ITBSS
machines has been done presenting definitions of program and computation. Several approachable examples
of computation were shown. Some known properties of the model have been presented. Finally, a discussion
on the capacity of the machine was made, showing codification and decodification algorithms.

Section 4 studied a proper problem of infinite inputs, the accumulation points problem. We have
analysed accumulation points, presenting the mass center of a countable set and how it relates to the
accumulation points. This study concluded with the presentation and proof of new algorithms to find and
identify accumulation points on the real plane. These results are limited to finite sets of accumulation
points, an interesting questions could be how to approach more general sets of accumulation points, or
how to decide if the number of accumulation points is finite.

Section 5 studied the classical problem of convex hull computation of a set of points. Several known
properties were stated, rational hyperplanes were presented and with the combination of diverse new
algorithms a final program to compute closure of convex hulls was presented.

Section 6, which focuses on matching problems, showed some differences between the finite and infinite
instance of some matching problems. It ends with the presentation of a result in [3] proving the capacity
to make a stable matching under reasonable conditions on the input.

The nature of this project leaves many open questions. The extension of many other geometric problems
to the infinite model could represent an interesting topic in several future projects. The study of Voronoi
diagrams in sets with accumulation points, linear programming, and many more. Another interesting
question is how to further adapt the model to handle the inputs.

The main questions that emerge from the topics studied in this thesis are about generalizations of the
search of accumulation points, a promising method is using subdivisions of the space and progressively
refine them. The use of subdivision also presents an interesting question in how to handle the information
created by algorithms. In the particular case of convex hull, the use of rational hyperplanes allowed us
to store them inside only one register using the methods presented in Section 3. The matching problem
presents many questions. When does a non-crossing perfect matching exist? And a (B, R)-matching? All
questions represent an interesting continuation of this project.

Another interesting line of research would be to study the complexity classes of these algorithms. There
are two main options. The number of steps, which is upper bounded by Theorem 3.16, could be a natural
extension to the classical classes. On the other hand, an interesting approach would be the one derived
from analytic set theory. In the Descriptive set theory there exists a hierarchy of sets, which classifies the
sets depending in how ”complicated” they are. This approach can be seen in [3] (Corollary 2.3). For more
information [14] and [18] are good references.

All together we have presented a different framework to confront countable infinite input problems and
several results concerning the different topics studied.
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A. Density of rationals

A good understanding of Rn and Qn is assumed from the reader, nonetheless, since the density of rationals
is used in several proofs, this section states some basic properties derived from the Arquimedean property.
The main reference is [20].

Definition A.1 ([20]). (The Archimedean property) For any real x > 0 exists n ∈ N>0 such that

0 <
1

n
< x .

Proposition A.2 ([20]). For any real a, the interval (a, a + 1] contain an integer.

Proof. Assume a > 0 and let S = {n ∈ N | n > a}, the Archimedean property implies that there is t ∈ N
such that 1

t < 1
a which implies t > a. Then S is non-empty. Now consider the minimum element m

of S . If m > a + 1, then m − 1 > a and m − 1 ∈ S which contradicts minimality of m. We conclude
a < m ≤ a + 1.

The rationals Q, seen as a subset of reals R, are dense in the following sense.

Proposition A.3 ([20]). (Density of rationals in R) For any a, b ∈ R with a < b there is a rational q such
that a < q < b.

Proof. The Archimedean property applied to b − a > 0 implies the existence of n ∈ N such that

0 <
1

n
< b − a

which implies na + 1 < nb . From Proposition A.2 there exists an integer m in (na, na + 1]. All together

na < m ≤ na + 1 < nb

which proves that m
n , rational, lies between a and b.

Theorem A.4. (Density of rationals in Rn) For any a ∈ Rn and r ∈ R>0 the open ball B(a, r) contains a
rational q ∈ Qn.

Proof. The proof is inductive. Case n = 1: it corresponds to Proposition A.3. Assume the statement
holds for n − 1. Let B = B(a, r) be a ball in Rn. The points inside the ball are points in Rn−1 × R. The
projection,

π1 : Rn−1 × R→ Rn−1

(x , y)→ x

is an open function, i.e., sends open sets to open sets.

Let B1 6= ∅ be the image π1(B). Since B1 is open, there exists r1 > 0 such that B(π1(a), r1) ⊂ B1.
From induction hypothesis, there exists a rational point q1 ∈ Qn−1B(π1(a), r1). Let P = π−11 (q1) ∩ B. P
is an open set because π1 is continuous. We consider now the projection

π2 : Rn−1 × R→ R
(x , y)→ y
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Let P2 = π2(P). From being an open function P2 is an open set. Using the case n = 1 we know that
there exists a rational element in P2, call it q2. Now let P2 = π−12 (q2) ∩ P. Since the projection functions
do not alter the values of the entries, all the elements in P2 are in Qn. Now P2 is non-empty because q2

was chosen from the set π2(P).
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B. Auxiliar algorithms

Many algorithms are used in different proofs during the text. For completeness, several are shown here.

Remark B.1. When the value of the registers is set as R = (R0, R1, ...) the dots indicate that a finite
number of registers are added to execute secondary computations.

Algorithm 23: Exponentiation

Input: (x , z) ∈ R× Z \ {(0, 0)}.
Output: xz .

1 Set R = (x , z , 1, 1);
2 if R1 < 0 then
3 R2 = −1;
4 R1 = −R1;

5 while R1 > 0 do
6 R3 = R0 · R3;
7 R1 = R1 − 1;

8 if R2 < 0 then
9 Return 1

R3
;

10 else
11 Return R3;

Algorithm 24: Floor function

Input: x ∈ R.
Output: bxc.

1 Set R = (x , 0, 1);
2 if R0 < 0 then
3 R2 = −1;
4 R0 = −R0

5 while R1 < R0 do
6 R1 = R1 + 1

7 if R1 == R0 then
8 Return R1 · R2

9 else if R2 < 0 then
10 Return −R1

11 else
12 Return R1 − 1
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Algorithm 25: Number of integer-digits of a number

Input: x ∈ R.
Output: n ∈ N number of integer-digits of x .

1 Set R = (x , 1, 0);
2 if R0 < 0 then
3 R0 = −R0

4 while R0 ≥ R1 do
5 R1 = 10R1;
6 R2 = R2 + 1

7 Return R2

Algorithm 26: Binary expansion of a natural number as a natural number

Input: x ∈ N.
Output: n ∈ N number with the same digits as the binary expansion of x .

1 Set R = (x , 0, 0, 0, ...);
2 while R0 > 0 do

3 R3 = bR0
2 c (algorithm 24);

4 if R3 6= R0
2 (odd?) then

5 R1 = R1+1
10 ;

6 R0 = R0−1
2 ;

7 else

8 R0 = R0
2 ;

9 R1 = R1
10 ;

10 R2 = R2 + 1

11 R2 = 10R2R1 (algorithm 23);
12 Return R2;

Remark B.2. Algorithm 26 is the algorithm “Divide by two” that uses R0 as a stack.

Algorithm 27: Square root of a non-negative real number

Input: r non-negative real number.
Output:

√
r

1 Set R = r , 0, 1;
2 if R0 == 0 then
3 Return R0;

4 R1 = r
2 ;

5 while R2 > 0 do

6 R1 = 1
2

(
R1 + R0

R1

)
;

7 R2 = R2
R2+1 ;

8 Return R1;

Remark B.3. Algorithm 27 is the Babylonian method to compute square roots.
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