304 research outputs found

    Privacy preserving linkage and sharing of sensitive data

    Get PDF
    2018 Summer.Includes bibliographical references.Sensitive data, such as personal and business information, is collected by many service providers nowadays. This data is considered as a rich source of information for research purposes that could benet individuals, researchers and service providers. However, because of the sensitivity of such data, privacy concerns, legislations, and con ict of interests, data holders are reluctant to share their data with others. Data holders typically lter out or obliterate privacy related sensitive information from their data before sharing it, which limits the utility of this data and aects the accuracy of research. Such practice will protect individuals' privacy; however it prevents researchers from linking records belonging to the same individual across dierent sources. This is commonly referred to as record linkage problem by the healthcare industry. In this dissertation, our main focus is on designing and implementing ecient privacy preserving methods that will encourage sensitive information sources to share their data with researchers without compromising the privacy of the clients or aecting the quality of the research data. The proposed solution should be scalable and ecient for real-world deploy- ments and provide good privacy assurance. While this problem has been investigated before, most of the proposed solutions were either considered as partial solutions, not accurate, or impractical, and therefore subject to further improvements. We have identied several issues and limitations in the state of the art solutions and provided a number of contributions that improve upon existing solutions. Our rst contribution is the design of privacy preserving record linkage protocol using semi-trusted third party. The protocol allows a set of data publishers (data holders) who compete with each other, to share sensitive information with subscribers (researchers) while preserving the privacy of their clients and without sharing encryption keys. Our second contribution is the design and implementation of a probabilistic privacy preserving record linkage protocol, that accommodates discrepancies and errors in the data such as typos. This work builds upon the previous work by linking the records that are similar, where the similarity range is formally dened. Our third contribution is a protocol that performs information integration and sharing without third party services. We use garbled circuits secure computation to design and build a system to perform the record linkages between two parties without sharing their data. Our design uses Bloom lters as inputs to the garbled circuits and performs a probabilistic record linkage using the Dice coecient similarity measure. As garbled circuits are known for their expensive computations, we propose new approaches that reduce the computation overhead needed, to achieve a given level of privacy. We built a scalable record linkage system using garbled circuits, that could be deployed in a distributed computation environment like the cloud, and evaluated its security and performance. One of the performance issues for linking large datasets is the amount of secure computation to compare every pair of records across the linked datasets to nd all possible record matches. To reduce the amount of computations a method, known as blocking, is used to lter out as much as possible of the record pairs that will not match, and limit the comparison to a subset of the record pairs (called can- didate pairs) that possibly match. Most of the current blocking methods either require the parties to share blocking keys (called blocks identiers), extracted from the domain of some record attributes (termed blocking variables), or share reference data points to group their records around these points using some similarity measures. Though these methods reduce the computation substantially, they leak too much information about the records within each block. Toward this end, we proposed a novel privacy preserving approximate blocking scheme that allows parties to generate the list of candidate pairs with high accuracy, while protecting the privacy of the records in each block. Our scheme is congurable such that the level of performance and accuracy could be achieved according to the required level of privacy. We analyzed the accuracy and privacy of our scheme, implemented a prototype of the scheme, and experimentally evaluated its accuracy and performance against dierent levels of privacy

    Counteracting Bloom Filter Encoding Techniques for Private Record Linkage

    Get PDF
    Record Linkage is a process of combining records representing same entity spread across multiple and different data sources, primarily for data analytics. Traditionally, this could be performed with comparing personal identifiers present in data (e.g., given name, surname, social security number etc.). However, sharing information across databases maintained by disparate organizations leads to exchange of personal information pertaining to an individual. In practice, various statutory regulations and policies prohibit the disclosure of such identifiers. Private record linkage (PRL) techniques have been implemented to execute record linkage without disclosing any information about other dissimilar records. Various techniques have been proposed to implement PRL, including cryptographically secure multi-party computational protocols. However, these protocols have been debated over the scalability factors as they are computationally extensive by nature. Bloom filter encoding (BFE) for private record linkage has become a topic of recent interest in the medical informatics community due to their versatility and ability to match records approximately in a manner that is (ostensibly) privacy-preserving. It also has the advantage of computing matches directly in plaintext space making them much faster than their secure mutli-party computation counterparts. The trouble with BFEs lies in their security guarantees: by their very nature BFEs leak information to assist in the matching process. Despite this known shortcoming, BFEs continue to be studied in the context of new heuristically designed countermeasures to address known attacks. A new class of set-intersection attack is proposed in this thesis which re-examines the security of BFEs by conducting experiments, demonstrating an inverse relationship between security and accuracy. With real-world deployment of BFEs in the health information sector approaching, the results from this work will generate renewed discussion around the security of BFEs as well as motivate research into new, more efficient multi-party protocols for private approximate matching

    A Scalable Blocking Framework for Multidatabase Privacy-preserving Record Linkage

    No full text
    Today many application domains, such as national statistics, healthcare, business analytic, fraud detection, and national security, require data to be integrated from multiple databases. Record linkage (RL) is a process used in data integration which links multiple databases to identify matching records that belong to the same entity. RL enriches the usefulness of data by removing duplicates, errors, and inconsistencies which improves the effectiveness of decision making in data analytic applications. Often, organisations are not willing or authorised to share the sensitive information in their databases with any other party due to privacy and confidentiality regulations. The linkage of databases of different organisations is an emerging research area known as privacy-preserving record linkage (PPRL). PPRL facilitates the linkage of databases by ensuring the privacy of the entities in these databases. In multidatabase (MD) context, PPRL is significantly challenged by the intrinsic exponential growth in the number of potential record pair comparisons. Such linkage often requires significant time and computational resources to produce the resulting matching sets of records. Due to increased risk of collusion, preserving the privacy of the data is more problematic with an increase of number of parties involved in the linkage process. Blocking is commonly used to scale the linkage of large databases. The aim of blocking is to remove those record pairs that correspond to non-matches (refer to different entities). Many techniques have been proposed for RL and PPRL for blocking two databases. However, many of these techniques are not suitable for blocking multiple databases. This creates a need to develop blocking technique for the multidatabase linkage context as real-world applications increasingly require more than two databases. This thesis is the first to conduct extensive research on blocking for multidatabase privacy-preserved record linkage (MD-PPRL). We consider several research problems in blocking of MD-PPRL. First, we start with a broad background literature on PPRL. This allow us to identify the main research gaps that need to be investigated in MD-PPRL. Second, we introduce a blocking framework for MD-PPRL which provides more flexibility and control to database owners in the block generation process. Third, we propose different techniques that are used in our framework for (1) blocking of multiple databases, (2) identifying blocks that need to be compared across subgroups of these databases, and (3) filtering redundant record pair comparisons by the efficient scheduling of block comparisons to improve the scalability of MD-PPRL. Each of these techniques covers an important aspect of blocking in real-world MD-PPRL applications. Finally, this thesis reports on an extensive evaluation of the combined application of these methods with real datasets, which illustrates that they outperform existing approaches in term of scalability, accuracy, and privacy

    Scalable and approximate privacy-preserving record linkage

    No full text
    Record linkage, the task of linking multiple databases with the aim to identify records that refer to the same entity, is occurring increasingly in many application areas. Generally, unique entity identifiers are not available in all the databases to be linked. Therefore, record linkage requires the use of personal identifying attributes, such as names and addresses, to identify matching records that need to be reconciled to the same entity. Often, it is not permissible to exchange personal identifying data across different organizations due to privacy and confidentiality concerns or regulations. This has led to the novel research area of privacy-preserving record linkage (PPRL). PPRL addresses the problem of how to link different databases to identify records that correspond to the same real-world entities, without revealing the identities of these entities or any private or confidential information to any party involved in the process, or to any external party, such as a researcher. The three key challenges that a PPRL solution in a real-world context needs to address are (1) scalability to largedatabases by efficiently conducting linkage; (2) achieving high quality of linkage through the use of approximate (string) matching and effective classification of the compared record pairs into matches (i.e. pairs of records that refer to the same entity) and non-matches (i.e. pairs of records that refer to different entities); and (3) provision of sufficient privacy guarantees such that the interested parties only learn the actual values of certain attributes of the records that were classified as matches, and the process is secure with regard to any internal or external adversary. In this thesis, we present extensive research in PPRL, where we have addressed several gaps and problems identified in existing PPRL approaches. First, we begin the thesis with a review of the literature and we propose a taxonomy of PPRL to characterize existing techniques. This allows us to identify gaps and research directions. In the remainder of the thesis, we address several of the identified shortcomings. One main shortcoming we address is a framework for empirical and comparative evaluation of different PPRL solutions, which has not been studied in the literature so far. Second, we propose several novel algorithms for scalable and approximate PPRL by addressing the three main challenges of PPRL. We propose efficient private blocking techniques, for both three-party and two-party scenarios, based on sorted neighborhood clustering to address the scalability challenge. Following, we propose two efficient two-party techniques for private matching and classification to address the linkage quality challenge in terms of approximate matching and effective classification. Privacy is addressed in these approaches using efficient data perturbation techniques including k-anonymous mapping, reference values, and Bloom filters. Finally, the thesis reports on an extensive comparative evaluation of our proposed solutions with several other state-of-the-art techniques on real-world datasets, which shows that our solutions outperform others in terms of all three key challenges

    Secure and Efficient Comparisons between Untrusted Parties

    Get PDF
    A vast number of online services is based on users contributing their personal information. Examples are manifold, including social networks, electronic commerce, sharing websites, lodging platforms, and genealogy. In all cases user privacy depends on a collective trust upon all involved intermediaries, like service providers, operators, administrators or even help desk staff. A single adversarial party in the whole chain of trust voids user privacy. Even more, the number of intermediaries is ever growing. Thus, user privacy must be preserved at every time and stage, independent of the intrinsic goals any involved party. Furthermore, next to these new services, traditional offline analytic systems are replaced by online services run in large data centers. Centralized processing of electronic medical records, genomic data or other health-related information is anticipated due to advances in medical research, better analytic results based on large amounts of medical information and lowered costs. In these scenarios privacy is of utmost concern due to the large amount of personal information contained within the centralized data. We focus on the challenge of privacy-preserving processing on genomic data, specifically comparing genomic sequences. The problem that arises is how to efficiently compare private sequences of two parties while preserving confidentiality of the compared data. It follows that the privacy of the data owner must be preserved, which means that as little information as possible must be leaked to any party participating in the comparison. Leakage can happen at several points during a comparison. The secured inputs for the comparing party might leak some information about the original input, or the output might leak information about the inputs. In the latter case, results of several comparisons can be combined to infer information about the confidential input of the party under observation. Genomic sequences serve as a use-case, but the proposed solutions are more general and can be applied to the generic field of privacy-preserving comparison of sequences. The solution should be efficient such that performing a comparison yields runtimes linear in the length of the input sequences and thus producing acceptable costs for a typical use-case. To tackle the problem of efficient, privacy-preserving sequence comparisons, we propose a framework consisting of three main parts. a) The basic protocol presents an efficient sequence comparison algorithm, which transforms a sequence into a set representation, allowing to approximate distance measures over input sequences using distance measures over sets. The sets are then represented by an efficient data structure - the Bloom filter -, which allows evaluation of certain set operations without storing the actual elements of the possibly large set. This representation yields low distortion for comparing similar sequences. Operations upon the set representation are carried out using efficient, partially homomorphic cryptographic systems for data confidentiality of the inputs. The output can be adjusted to either return the actual approximated distance or the result of an in-range check of the approximated distance. b) Building upon this efficient basic protocol we introduce the first mechanism to reduce the success of inference attacks by detecting and rejecting similar queries in a privacy-preserving way. This is achieved by generating generalized commitments for inputs. This generalization is done by treating inputs as messages received from a noise channel, upon which error-correction from coding theory is applied. This way similar inputs are defined as inputs having a hamming distance of their generalized inputs below a certain predefined threshold. We present a protocol to perform a zero-knowledge proof to assess if the generalized input is indeed a generalization of the actual input. Furthermore, we generalize a very efficient inference attack on privacy-preserving sequence comparison protocols and use it to evaluate our inference-control mechanism. c) The third part of the framework lightens the computational load of the client taking part in the comparison protocol by presenting a compression mechanism for partially homomorphic cryptographic schemes. It reduces the transmission and storage overhead induced by the semantically secure homomorphic encryption schemes, as well as encryption latency. The compression is achieved by constructing an asymmetric stream cipher such that the generated ciphertext can be converted into a ciphertext of an associated homomorphic encryption scheme without revealing any information about the plaintext. This is the first compression scheme available for partially homomorphic encryption schemes. Compression of ciphertexts of fully homomorphic encryption schemes are several orders of magnitude slower at the conversion from the transmission ciphertext to the homomorphically encrypted ciphertext. Indeed our compression scheme achieves optimal conversion performance. It further allows to generate keystreams offline and thus supports offloading to trusted devices. This way transmission-, storage- and power-efficiency is improved. We give security proofs for all relevant parts of the proposed protocols and algorithms to evaluate their security. A performance evaluation of the core components demonstrates the practicability of our proposed solutions including a theoretical analysis and practical experiments to show the accuracy as well as efficiency of approximations and probabilistic algorithms. Several variations and configurations to detect similar inputs are studied during an in-depth discussion of the inference-control mechanism. A human mitochondrial genome database is used for the practical evaluation to compare genomic sequences and detect similar inputs as described by the use-case. In summary we show that it is indeed possible to construct an efficient and privacy-preserving (genomic) sequences comparison, while being able to control the amount of information that leaves the comparison. To the best of our knowledge we also contribute to the field by proposing the first efficient privacy-preserving inference detection and control mechanism, as well as the first ciphertext compression system for partially homomorphic cryptographic systems

    Security Infrastructure Technology for Integrated Utilization of Big Data

    Get PDF
    This open access book describes the technologies needed to construct a secure big data infrastructure that connects data owners, analytical institutions, and user institutions in a circle of trust. It begins by discussing the most relevant technical issues involved in creating safe and privacy-preserving big data distribution platforms, and especially focuses on cryptographic primitives and privacy-preserving techniques, which are essential prerequisites. The book also covers elliptic curve cryptosystems, which offer compact public key cryptosystems; and LWE-based cryptosystems, which are a type of post-quantum cryptosystem. Since big data distribution platforms require appropriate data handling, the book also describes a privacy-preserving data integration protocol and privacy-preserving classification protocol for secure computation. Furthermore, it introduces an anonymization technique and privacy risk evaluation technique. This book also describes the latest related findings in both the living safety and medical fields. In the living safety field, to prevent injuries occurring in everyday life, it is necessary to analyze injury data, find problems, and implement suitable measures. But most cases don’t include enough information for injury prevention because the necessary data is spread across multiple organizations, and data integration is difficult from a security standpoint. This book introduces a system for solving this problem by applying a method for integrating distributed data securely and introduces applications concerning childhood injury at home and school injury. In the medical field, privacy protection and patient consent management are crucial for all research. The book describes a medical test bed for the secure collection and analysis of electronic medical records distributed among various medical institutions. The system promotes big-data analysis of medical data with a cloud infrastructure and includes various security measures developed in our project to avoid privacy violations

    Efficient, Dependable Storage of Human Genome Sequencing Data

    Get PDF
    A compreensão do genoma humano impacta várias áreas da vida. Os dados oriundos do genoma humano são enormes pois existem milhões de amostras a espera de serem sequenciadas e cada genoma humano sequenciado pode ocupar centenas de gigabytes de espaço de armazenamento. Os genomas humanos são críticos porque são extremamente valiosos para a investigação e porque podem fornecer informações delicadas sobre o estado de saúde dos indivíduos, identificar os seus dadores ou até mesmo revelar informações sobre os parentes destes. O tamanho e a criticidade destes genomas, para além da quantidade de dados produzidos por instituições médicas e de ciências da vida, exigem que os sistemas informáticos sejam escaláveis, ao mesmo tempo que sejam seguros, confiáveis, auditáveis e com custos acessíveis. As infraestruturas de armazenamento existentes são tão caras que não nos permitem ignorar a eficiência de custos no armazenamento de genomas humanos, assim como em geral estas não possuem o conhecimento e os mecanismos adequados para proteger a privacidade dos dadores de amostras biológicas. Esta tese propõe um sistema de armazenamento de genomas humanos eficiente, seguro e auditável para instituições médicas e de ciências da vida. Ele aprimora os ecossistemas de armazenamento tradicionais com técnicas de privacidade, redução do tamanho dos dados e auditabilidade a fim de permitir o uso eficiente e confiável de infraestruturas públicas de computação em nuvem para armazenar genomas humanos. As contribuições desta tese incluem (1) um estudo sobre a sensibilidade à privacidade dos genomas humanos; (2) um método para detetar sistematicamente as porções dos genomas que são sensíveis à privacidade; (3) algoritmos de redução do tamanho de dados, especializados para dados de genomas sequenciados; (4) um esquema de auditoria independente para armazenamento disperso e seguro de dados; e (5) um fluxo de armazenamento completo que obtém garantias razoáveis de proteção, segurança e confiabilidade a custos modestos (por exemplo, menos de 1/Genoma/Ano),integrandoosmecanismospropostosaconfigurac\co~esdearmazenamentoapropriadasTheunderstandingofhumangenomeimpactsseveralareasofhumanlife.Datafromhumangenomesismassivebecausetherearemillionsofsamplestobesequenced,andeachsequencedhumangenomemaysizehundredsofgigabytes.Humangenomesarecriticalbecausetheyareextremelyvaluabletoresearchandmayprovidehintsonindividuals’healthstatus,identifytheirdonors,orrevealinformationaboutdonors’relatives.Theirsizeandcriticality,plustheamountofdatabeingproducedbymedicalandlife−sciencesinstitutions,requiresystemstoscalewhilebeingsecure,dependable,auditable,andaffordable.Currentstorageinfrastructuresaretooexpensivetoignorecostefficiencyinstoringhumangenomes,andtheylacktheproperknowledgeandmechanismstoprotecttheprivacyofsampledonors.Thisthesisproposesanefficientstoragesystemforhumangenomesthatmedicalandlifesciencesinstitutionsmaytrustandafford.Itenhancestraditionalstorageecosystemswithprivacy−aware,data−reduction,andauditabilitytechniquestoenabletheefficient,dependableuseofmulti−tenantinfrastructurestostorehumangenomes.Contributionsfromthisthesisinclude(1)astudyontheprivacy−sensitivityofhumangenomes;(2)todetectgenomes’privacy−sensitiveportionssystematically;(3)specialiseddatareductionalgorithmsforsequencingdata;(4)anindependentauditabilityschemeforsecuredispersedstorage;and(5)acompletestoragepipelinethatobtainsreasonableprivacyprotection,security,anddependabilityguaranteesatmodestcosts(e.g.,lessthan1/Genoma/Ano), integrando os mecanismos propostos a configurações de armazenamento apropriadasThe understanding of human genome impacts several areas of human life. Data from human genomes is massive because there are millions of samples to be sequenced, and each sequenced human genome may size hundreds of gigabytes. Human genomes are critical because they are extremely valuable to research and may provide hints on individuals’ health status, identify their donors, or reveal information about donors’ relatives. Their size and criticality, plus the amount of data being produced by medical and life-sciences institutions, require systems to scale while being secure, dependable, auditable, and affordable. Current storage infrastructures are too expensive to ignore cost efficiency in storing human genomes, and they lack the proper knowledge and mechanisms to protect the privacy of sample donors. This thesis proposes an efficient storage system for human genomes that medical and lifesciences institutions may trust and afford. It enhances traditional storage ecosystems with privacy-aware, data-reduction, and auditability techniques to enable the efficient, dependable use of multi-tenant infrastructures to store human genomes. Contributions from this thesis include (1) a study on the privacy-sensitivity of human genomes; (2) to detect genomes’ privacy-sensitive portions systematically; (3) specialised data reduction algorithms for sequencing data; (4) an independent auditability scheme for secure dispersed storage; and (5) a complete storage pipeline that obtains reasonable privacy protection, security, and dependability guarantees at modest costs (e.g., less than 1/Genome/Year) by integrating the proposed mechanisms with appropriate storage configurations

    Privacy preserving algorithms for newly emergent computing environments

    Get PDF
    Privacy preserving data usage ensures appropriate usage of data without compromising sensitive information. Data privacy is a primary requirement since customers' data is an asset to any organization and it contains customers' private information. Data seclusion cannot be a solution to keep data private. Data sharing as well as keeping data private is important for different purposes, e.g., company welfare, research, business etc. A broad range of industries where data privacy is mandatory includes healthcare, aviation industry, education system, federal law enforcement, etc.In this thesis dissertation we focus on data privacy schemes in emerging fields of computer science, namely, health informatics, data mining, distributed cloud, biometrics, and mobile payments. Linking and mining medical records across different medical service providers are important to the enhancement of health care quality. Under HIPAA regulation keeping medical records private is important. In real-world health care databases, records may well contain errors. Linking the error-prone data and preserving data privacy at the same time is very difficult. We introduce a privacy preserving Error-Tolerant Linking Algorithm to enable medical records linkage for error-prone medical records. Mining frequent sequential patterns such as, patient path, treatment pattern, etc., across multiple medical sites helps to improve health care quality and research. We propose a privacy preserving sequential pattern mining scheme across multiple medical sites. In a distributed cloud environment resources are provided by users who are geographically distributed over a large area. Since resources are provided by regular users, data privacy and security are main concerns. We propose a privacy preserving data storage mechanism among different users in a distributed cloud. Managing secret key for encryption is difficult in a distributed cloud. To protect secret key in a distributed cloud we propose a multilevel threshold secret sharing mechanism. Biometric authentication ensures user identity by means of user's biometric traits. Any individual's biometrics should be protected since biometrics are unique and can be stolen or misused by an adversary. We present a secure and privacy preserving biometric authentication scheme using watermarking technique. Mobile payments have become popular with the extensive use of mobile devices. Mobile applications for payments needs to be very secure to perform transactions and at the same time needs to be efficient. We design and develop a mobile application for secure mobile payments. To secure mobile payments we focus on user's biometric authentication as well as secure bank transaction. We propose a novel privacy preserving biometric authentication algorithm for secure mobile payments
    • …
    corecore