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Abstract

A vast number of online services is based on users contributing their personal infor-
mation. Examples are manifold, including social networks, electronic commerce,
sharing websites, lodging platforms, and genealogy. In all cases user privacy de-
pends on a collective trust upon all involved intermediaries, like service providers,
operators, administrators or even help desk staff. A single adversarial party in the
whole chain of trust voids user privacy. Even more, the number of intermediaries
is ever growing. Thus, user privacy must be preserved at every time and stage,
independent of the intrinsic goals any involved party. Furthermore, next to these
new services, traditional offline analytic systems are replaced by online services run
in large data centers. Centralized processing of electronic medical records, genomic
data or other health-related information is anticipated due to advances in medical
research, better analytic results based on large amounts of medical information
and lowered costs. In these scenarios privacy is of utmost concern due to the large
amount of personal information contained within the centralized data.

We focus on the challenge of privacy-preserving processing on genomic data,
specifically comparing genomic sequences. The problem that arises is how to ef-
ficiently compare private sequences of two parties while preserving confidentiality
of the compared data. It follows that the privacy of the data owner must be pre-
served, which means that as little information as possible must be leaked to any
party participating in the comparison. Leakage can happen at several points during
a comparison. The secured inputs for the comparing party might leak some infor-
mation about the original input, or the output might leak information about the
inputs. In the latter case, results of several comparisons can be combined to infer
information about the confidential input of the party under observation. Genomic
sequences serve as a use-case, but the proposed solutions are more general and
can be applied to the generic field of privacy-preserving comparison of sequences.
The solution should be efficient such that performing a comparison yields runtimes
linear in the length of the input sequences and thus producing acceptable costs for
a typical use-case. To tackle the problem of efficient, privacy-preserving sequence
comparisons, we propose a framework consisting of three main parts.

a) The basic protocol presents an efficient sequence comparison algorithm, which
transforms a sequence into a set representation, allowing to approximate distance
measures over input sequences using distance measures over sets. The sets are



then represented by an efficient data structure — the Bloom filter —, which allows
evaluation of certain set operations without storing the actual elements of the
possibly large set. This representation yields low distortion for comparing similar
sequences. Operations upon the set representation are carried out using efficient,
partially homomorphic cryptographic systems for data confidentiality of the inputs.
The output can be adjusted to either return the actual approximated distance or
the result of an in-range check of the approximated distance.

b) Building upon this efficient basic protocol we introduce the first mechanism to
reduce the success of inference attacks by detecting and rejecting similar queries in
a privacy-preserving way. This is achieved by generating generalized commitments
for inputs. This generalization is done by treating inputs as messages received
from a noise channel, upon which error-correction from coding theory is applied.
This way similar inputs are defined as inputs having a hamming distance of their
generalized inputs below a certain predefined threshold. We present a protocol
to perform a zero-knowledge proof to assess if the generalized input is indeed a
generalization of the actual input. Furthermore, we generalize a very efficient
inference attack on privacy-preserving sequence comparison protocols and use it
to evaluate our inference-control mechanism.

c) The third part of the framework lightens the computational load of the client
taking part in the comparison protocol by presenting a compression mechanism
for partially homomorphic cryptographic schemes. It reduces the transmission
and storage overhead induced by the semantically secure homomorphic encryption
schemes, as well as encryption latency. The compression is achieved by construct-
ing an asymmetric stream cipher such that the generated ciphertext can be con-
verted into a ciphertext of an associated homomorphic encryption scheme without
revealing any information about the plaintext. This is the first compression scheme
available for partially homomorphic encryption schemes. Compression of cipher-
texts of fully homomorphic encryption schemes are several orders of magnitude
slower at the conversion from the transmission ciphertext to the homomorphically
encrypted ciphertext. Indeed our compression scheme achieves optimal conversion
performance. It further allows to generate keystreams offline and thus supports of-
floading to trusted devices. This way transmission-, storage- and power-efficiency
is improved.

We give security proofs for all relevant parts of the proposed protocols and algo-
rithms to evaluate their security. A performance evaluation of the core components
demonstrates the practicability of our proposed solutions including a theoretical
analysis and practical experiments to show the accuracy as well as efficiency of ap-
proximations and probabilistic algorithms. Several variations and configurations
to detect similar inputs are studied during an in-depth discussion of the infer-
ence-control mechanism. A human mitochondrial genome database is used for the



practical evaluation to compare genomic sequences and detect similar inputs as
described by the use-case.

In summary we show that it is indeed possible to construct an efficient and pri-
vacy-preserving (genomic) sequences comparison, while being able to control the
amount of information that leaves the comparison. To the best of our knowledge we
also contribute to the field by proposing the first efficient privacy-preserving infer-
ence detection and control mechanism, as well as the first ciphertext compression
system for partially homomorphic cryptographic systems.
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1. Introduction

We are living in the age of information and more specifically just entered the “big
data” era. The amount of data produced every year grows at a high pace. Two
average days in August 2010 produced around five exabytes (1018 bytes) of data
worldwide, which is roughly the same amount generated from the dawn of men
through 2003 [Kir10]. This amounts to about a zettabyte (ZB) (= 1021 bytes) of
generated data for 2010. At the end of 2015, the annual global IP traffic should also
reach the zettabyte barrier [Bar11]. The exponential growth in data transmission
today is mainly driven by user generated content, Video on Demand (VoD) and
increasing numbers of mobile devices, sensors and Machine-to-Machine (M2M)
communication, which all can be — thanks to technological progress and Moore’s
law — produced at lower costs and higher quality than ever before. The same
technological advancements of course also drive research areas, like astronomy,
physics or genomics. Beginning with a report in 2001 [Lan01], issues, challenges
and solutions to the rapid data growth are often discussed under the “big data”
term.

The digital universe is growing rapidly and this trend is expected to continue.
In 2012 the digital universe comprised 2.8ZB (4ZB in 2013) and is projected to
cover 40ZB at the end of 2020 as estimated by Gantz and Reinsel [GR12]. They
came to the conclusion that 23% of the information within the digital universe
could be useful, but only 0.5% are actually analyzed.

Hand in hand with the technological challenges on how to transfer, process and
store such large and ever growing amounts of data, goes the task of ensuring
privacy of the affected users. While users can more or less directly influence what
Personally Identifiable Information (PII) within user generated content is shared
online, the same control is less obvious — if not impossible — for areas such as
eHealth, recommender systems or governmental data processing. The fraction of
the digital universe that needs to be protected via security or privacy measures is
expected to grow, however, nearly half of the respective data is unprotected [GR12].
Current issues with massively centralized data storage are regularly covered in news
reports. Data breaches and leaks possibly affect hundreds of millions of people
around the world each year [Ide15]. Over the last 10 years, the “Identity Theft
Resource Center” recorded 6079 breaches exposing in total more than 862 million
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Figure 1.1.: Number of data breaches from 2005 till June 2016 together with the
accumulated amount of exposed records for all breaches. Source: Iden-
tity Theft Resource Center [Ide15]

records. Figure 1.1 shows the number of breaches and the number of exposed
records per year from 2005 to June 2016.

The gigantic magnitude of affected users represents the need to find solutions to
security and privacy problems on multiple domains. Legislation must find ways to
adopt to the fast changing conditions due to technological advancements and more
importantly deal with data and organizations spread across different countries.
Society at large has to gain competence in securely using the new technology,
judge possible implications of digital actions and understand that the sense of
anonymity might be elusive. Researchers and engineers must find ways to protect,
preserve and enhance privacy, anonymity and in general security for all users and
build systems that make transparent use of cryptography or similar techniques to
protect sensitive information by default.

Therefore specific systems that are efficient, effective and privacy-preserving are
highly anticipated to enable confidential data exploration and utilization while giv-
ing provable privacy guarantees. One elementary part of such constructions is the
ability to store and provide information as necessary. This can be accomplished
using databases, web services or specific transfer protocols. However, any of these
techniques may — and for larger collections of data must — provide ways of filter-
ing, searching and comparing entries for the required or most relevant information
quickly.
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As long as a query towards such a system, as well as the stored data does not
contain any PII or is by any other means confidential, it might be processed without
any privacy preservation, using very efficient techniques for filtering, comparison
and search. However, once the confidentiality of either must be preserved, similar
efficiency for the same functionality is much harder to achieve. Many different
solutions can be found in the relevant literature to perform different kind of searches
and comparisons for various security/privacy goals and attacker models. Therefore
we will describe a possible use case which fits the overall problem scenario, sketch
open questions and elaborate on sensible properties for a desired solution.

1.1. Setting

The central theme, which will always reoccur throughout this thesis is DNA-se-
quencing and it therefore serves as a use case to motivate and align objectives
and desirable properties to. The reason for looking at genomics comes from the
immense technological improvements that happened over the last decade. In par-
ticular the introduction of high-throughput sequencing combined with the quest
for sequencing a whole human genome for less than $ 1000 drove sequencing costs
down so far, that a lot of sequenced genomic data was collected and is available
through several online databases. Figure 1.2 shows the cost development for se-
quencing a single human genome over the last 14 years in relation to what Moore’s
law predicted. The “1000 Genomes Project” sequenced 1092 genomes and made
them available [Abe+12]. Genomics England, a company owned by the Depart-
ment of Health in Great Britain is coordinating the “100.000 Genomes Project”,
which should have 10.000 genomes sequenced in a pilot phase at the end of 2015
and should be finished in 2017. The costs for this huge sequencing project are
estimated at around £ 300million [Rab14].

An ultimate goal derived from the extracted knowledge of thousands of genomes
is the establishment of personalized medicine. Personalized medicine describes in-
dividual treatment for every patient depending on the genomic predispositions and
current condition to select the correct drug and dosage for an optimized treatment
plan. Of course personalized medicine does not only depend on the availability of
a large number of sequenced genomes, but also on radical changes on how drugs
get approved to be safe and provide real health benefits. The current approval
process conducts empirical measurements of different dosages over larger groups,
which cannot be applied anymore, due to the individual drug selection and dosage.

At some point, patients might carry their sequenced genome, health record and
related information around on a smart card-like device. Doctors and emergency
physicians can then query this information to check whether a patient received

3



1. Introduction

Sequencing Cost per Genome

Year

S
eq
u
en

ci
n
g
C
o
st

($
)

2001 2003 2005 2007 2009 2011 2013 2015 2017

1K

10K

100K

1M

10M

100M

Moore’s law

Actual costs

Figure 1.2.: Evolution of genome sequencing cost from 2001 till 2015 in contrast
to the prediction made by Moore’s law. Source: Wetterstrand [Wet15]

some specific inoculation, having allergies, needs specific medication or has genetic
predispositions, which point to some intolerance prohibiting the use of certain
drugs. As all of the mentioned data contains a lot of personal information, it is in
the interest of the patient to protect this information carefully.

Privacy protection is also required by law in many countries. As such Germany
states in the Bundesdatenschutzgesetz (BDSG)1 that collection, processing and use
of private information should be restricted to a minimum. In particular, data can
only be used for the specific purpose it was collected for and should be anonymized
as far as possible (§3a BDSG). A person can of course always give his informed
consent to have private data used for further purposes. As long as the data subject
(person) was informed about the purpose of the collection, processing and use, its
consent instantly resolves privacy issues from the standpoint of jurisdiction (§4a
BDSG). However, if a data subject doesn’t want to give consent to a disclosure,
but still wants to use a service that requires private information, specific privacy-
preserving mechanisms are necessary to utilize the personal data for provision of
service.

Following the personalized medicine example, a patient might want to let the
doctor learn necessary information for medical decisions, but nothing more about

1The Bundesdatenschutzgesetz (BDSG) is the German Federal Data Protection Act (FDPA).
We refer to the Federal Data Protection Act in the version promulgated on 14 January 2003
(Federal Law Gazette I p. 66), as most recently amended by Article 1 of the Act of 25
February 2015 (Federal Law Gazette I p. 162)
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his genomic data. The patient could disclose genetic information, but may rather
wish to be treated properly without the necessity to entrust another party with
private information. Furthermore, disclosed data may of course still contain PII
and therefore fall under prevailing law.

We describe the setting in which we perform our research and argue why the
corresponding choices were made. The desired overall functionality of the system
is to allow an efficient comparison of two private elements, each hold by a different
party. Each party of course does not enjoy complete trust from the respective
other. Privacy-preserving techniques are used to preserve confidentiality of all
private inputs. Only the final result is given to the initiating party. The result
might be an approximation of a distance measure. A more formal description is
given in the following paragraph. For ease of presentation the initiating party is
called “user”, while the other party is termed “server”.

Given a user a, holding a text string sa ∈ A∗ over alphabet A and a (database)
server b, holding a text string sb ∈ A∗, the task is to calculate the distance of
both strings regarding some metric d:A∗×A∗ → R over text strings and return an
approximation of d(sa, sb) while respecting the privacy of a and b. The Levenshtein
distance [Lev66] — also known as edit distance — might serve as the mentioned
metric d. However, it can be any other metric and indeed also over a different
domain. The limitation on possible metric spaces (D, d) is the existence of an
embedding with low distortion such that f :D → {0, 1}m maps elements from D to
binary strings of identical length m and the target distance metric is the Hamming
distance dH , as described in Section 1.5. This requirement can be relaxed slightly
as low distortion embeddings from several domains into the Hamming distance
binary string metric space ({0, 1}m, dH) are known.

Du and Atallah [DA01] separates four models for query-privacy as depicted in
Figure 1.3. The can be characterized as follows:

(a) Private Information Matching (PIM) describes the model in which Alice has
a confidential string and wants to privately query Bob’s private database.
Neither Alice nor Bob should learn more than necessary.

(b) Private Information Matching from Public Database (PIMPD) can be seen
as a relaxation of PIM, as Bob’s database is public and therefore the reply
may leak additional information.

(c) Secure Storage Outsourcing (SSO) presents the secure outsourcing scenario.
It allows Alice to use a less-trusted external party with potentially more
resources to perform confidential tasks for her.
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Figure 1.3.: Models for private queries. Source: Du and Atallah [DA01]

(d) Secure Storage and Computing Outsourcing (SSCO) is similar to PIM, it
just includes a third party in between Alice and Bob, which is handling the
requests. Such multi-party schemes often require non-collusion between any
pairs.

The approach described in this dissertation fits best into the PIM model (a).

Thesis Outline The next section (1.2) will therefore describe the detailed require-
ments, why they are reasonable and what these requirements imply. It follows a
discussion of open research questions (Section 1.3), which are then further ex-
plained together with a brief outline of the main contributions of this thesis in
Section 1.4. Section 1.5 introduces important concepts that are necessary for a
better understanding of the following chapters. Finally, Section 1.6 contrasts the
topics and concepts that are considered within this thesis against related problems
that are out of the scope of this work.

1.2. Requirements

Following the issues presented over the previous pages, a list of requirements can
be extracted that an appropriate system must fulfill. These requirements are listed
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and briefly introduced below. It follows a more detailed discussion for the chosen
requirements including their justification.

Privacy-preserving for all parties
Confidentiality for input data

Efficiency for long strings
Comparing long sequences efficiently, preparing comparisons of genomic se-
quences

Approximate matching for similar strings
Return distance approximation or match similar strings within a certain
distance

Non-interactive protocol
Minimize interactivity of protocol to support asynchronous communication
and to allow unreliable mobile network connections

Two-party
Minimize involved parties to reduce overall attack vectors and also risk of
collusion

Resource-constraint mobile clients
Distribute the mobile client work load and shift it towards the server, without
overloading the server

Size-hiding
Leaked information about the size of the client input should be rather low

Inference control
Detect and reject queries that belong to an inference attack

These requirements will be used to assess the relevant literature, guide own
constructions and drive the relevant evaluation parts. The following sections will
describe requirements in more detail and motivate their use.
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1.2.1. Privacy-Preservation

A reason for using a privacy-preserving protocol in general was already given at
the beginning of the chapter. If the goal is to evaluate a certain function F over
private input x, y, z from different parties (or from a single party via outsourcing)
it is sufficient for appropriate parties to learn F (x, y, z) and nothing else. It is
especially not necessary for a party to learn anything else than the result of F and
its own input. No intermediate results should therefore be leaked. Appropriate
parties are those inputting own private data. It is in their best interest to protect
this data.

So in a two-party, distance evaluation protocol, as it is described in Chapter 4,
a client should learn nothing but the result of F — the actual (approximated)
distance. The server should learn nothing about the client query, even after suc-
cessive queries. So both parties can express and enforce their security and privacy
requirements, which is called multilateral security [Ran00].

Privacy preservation is not the only goal, as otherwise parties would not even
engage in a joint/secure computation. It follows that privacy must somehow be
balanced with other goals, which are mainly functionality and performance in our
case. Furthermore, privacy is a protection goal next to others like authenticity and
availability. For these goals meaningful attackers must be defined against which
the proposed solution should be secure. The attacker description will be discussed
in Section 1.5.1.

1.2.2. Efficiency for Long Inputs

We especially want to support efficient comparisons of long strings or sequences.
“Long” in this case refers to strings with more than 104 subsequent characters from
the alphabet for a single string. Fulfilling this requirement allows privacy-preserv-
ing comparison of long sequences, as it can be found in the genome matching use
case, where strings of such length — somewhere between 104 and 109 characters,
depending on the actual task — must be compared against each other.

The overall comparison efficiency should be high, which means that the com-
pute time should scale linearly with the length of the longest input. We embed the
string distance function into the Hamming space and use the Hamming distance as
an approximation. The length of the bit vectors representing the strings is linear
in the length of the longest string. Calculating the Hamming distance through
secure computation has complexity O(n) with n being the length of the bit vec-
tors. This follows from the fact that the bit vectors must be XOR’ed element-wise.
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As such the efficiency is optimal for a protocol that calculates the exact Ham-
ming distance and leaks no information to the executing party. A scheme cannot
calculate the exact Hamming distance securely in sub-linear time. Furthermore,
constants should be rather low to get to an overall practical solution. If a more
space efficient embedding is used, which would transform strings into sub-linear
length bit strings, then our protocol directly profits from these changes.

1.2.3. Approximate Matching

The problem setting of approximate string matching is chosen, as it naturally ap-
plies to many cases in which strings are to be compared or searched that might
contain some sort of error. Examples of such errors include typographical errors
or spelling mistakes, noise from communication channels and genomic sequencing
errors. Thus an approximate matching algorithm can be used to identify such er-
rors or find most similar elements. For the latter case the problem of approximate
matching is closely related to the nearest-neighbor search, which specifies the prob-
lem of efficiently selecting the most similar elements to a given query regarding
some distance metric.

Two different uses for approximate matching can be found in the literature.

1. Deciding whether two or more inputs are pair-wise close to each other, i.e.
their distances are below some threshold. The only answer will be a binary
decision about being close or not.

2. Calculating or estimating a distance between inputs and returning this (ap-
proximated) distance.

In the first case the matching algorithm should return a binary answer and as
such an approximate match is found if the distance between the query and the
compared element is within a given threshold range. The second case implies that
the algorithm returns a distance or similarity value of some sort describing how
close the compared elements are.

This thesis uses and supports both notions, which will be detailed and separated
again by the presented protocols in Chapter 4. In general, if some similarity
measure is generated, it can either be given to the client directly or used for
in-range testing. The result of this test is the desired binary answer, which is
used as output to the client. However, as required by privacy preservation (see
Section 1.2.1), neither the actual resulting distance, nor the result of the in-range
testing must be leaked to the server. Also following the privacy requirement: In
case the actual distance is unnecessary for the client to learn and a lower entropy
answer would be enough, the in-range check should be chosen.
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The choice of distance or similarity measure is not fixed and relies upon the used
methods, the overall comparison protocol and available embeddings between rele-
vant metric spaces. Equally, selecting the correct notion of approximate matching
must be decided upon the actual use case.

1.2.4. Non-Interactive Protocol

When two or more participants communicate via some protocol, they exchange
messages in a mostly predefined way. An interactive protocol in our case then
means that a party A receives input from another party, which depends on a
previous input from A. Furthermore, the previous input must belong to the same
protocol execution and the party A must output something depending on its recent
input. Following this understanding, information in an non-interactive protocol
would pass each party only once, except if the party is a sink for the mentioned
information.

Relevance follows from the resource-constraint and possibly mobile clients (see
Section 1.2.6) and their possibly rather unreliable communication channel. The
influence of interactivity on the overall runtime and latency potentially increases
with the number of interaction rounds. Network interruptions are also less critical
in the non-interactive protocol setting due to the infrequent and possibly shorter
communication times.

Furthermore, a non-interactive protocol can easily be performed via asymmetric
communication, such that no two parties must be online at the same time. In the
two party case, as described in this thesis, this would imply posting a comparison
request somewhere so the other party can later on fetch it and initiate the compar-
ison. The result would again be posted for the requester to be collected. The same
asymmetric communication can of course be used for interactive protocols, but
each additional interaction round potentially introduces delays due to the latency
in posting and fetching messages. A non-interactive protocol is therefore better
suited for asymmetric communication than a highly interactive one.

1.2.5. Two-Party

We will focus on a two-party setting and more specifically a client-server scenario
in which a client has an input string upon which a distance metric should be
approximated. We could integrate more parties with pairwise exclusive knowledge
and thus privacy requirements into the protocol, but this would either increases
the necessary trust in parties to not take part in collusion attacks, or require
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strengthened protocols withstanding such attacks. Both drawbacks are not desired,
so unless it is noted otherwise, we will be working in the two-party setting.

The two-party setup is a natural fit, as we could have a patient on the one side as
a user, possibly using a low-power and bandwidth-constrained device like a smart
card, and the physician with a larger genomic database represented by the server.
The server actually stores genomes or snippets of them, which are characteristic
for a certain predisposition and thus act as representatives for that class. The
task would be to find the most similar entries in the database to learn possible
predispositions, or to match classes of problematic genomic mutations.

1.2.6. Resource-Constraint Clients

Under the assumption that a client initiating a comparison might be a resource-
constrained device, e.g. a mobile client, it is necessary for such devices to have algo-
rithms that use as few resources as possible in order to reduce power consumption
and minimize memory usage. The overall goal then of course is to maximize their
battery life. Furthermore, due to limited available resources, such devices might
not even be able to handle asymmetric cryptographic operations (within practical
runtimes) and thus be able to participate in such a secure computation at all.
Examples for computation times of asymmetric and specifically homomorphic op-
erations on smart cards can be found in the relevant literature, e.g. from Bichsel
et al. [Bic+09]. This requirement also includes the workload distribution between
the client and server. However, even under these restrictions we want such a thin
client to participate in the overall protocol and input its private data securely.

1.2.7. Size-Hiding

The requirement of hiding the size of the input extends the privacy requirement
and is mentioned as an explicit requirement and construction goal, as many related
work proposals are not addressing this issue, even though they preserve privacy in
general. In particular, it helps in cases when an outsider or a participating party
might be able to infer sensitive information from the length of another input. An
example: If the input to the system is either “yes” or “no” and the pre-processing
steps (including encryption) do not hide the size or in this case length of the input,
then an adversary can easily distinguish ciphertexts and break the confidentiality
— even in case the underlying cryptographic scheme is semantically secure. As we
will be working with operations over sets and set sizes carry valuable information,
we thus also require that the proposed scheme has a size-hiding property.
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1.2.8. Inference Control

Any protocol must return information or have an output of some sort. This might
be either in form of a direct result or an intermediate result for further operations.
The same is of course also true for privacy-preserving protocols. Considering the
privacy-preserving evaluation of a distance metric between two parties, each having
a sensitive input, one of the participants can infer knowledge about the other
party’s input by repeatedly asking for distance calculations of slightly different
inputs. An adversary could for example perform an adaptive attack in which he
checks the distance result from the previous queries and adopts his next input to
reduce the actual distance between his own input and the other party’s. Once
he reaches a distance of zero, he learned the confidential input from the other
party. Such a greedy algorithm can uncover a private input very fast (with very
few steps). The actual number of steps of course depends on the metric used, the
inputs and the amount of information that is returned by the privacy-preserving
protocol.

Secure computation schemes therefore only guarantee that private inputs from
other parties are kept confidential during execution and without learning the result.
Protection from inference attacks upon the output cannot be achieved this way.
To circumvent this, anonymization schemes like differential privacy [Dwo08] were
developed to restrict the information that is contained in the (published) results.
Several issues exists when dealing with countermeasures against inference attacks,
as will be described in Chapter 5, however, we still want to be able to influence the
success rate of inference attacks, while results should still carry enough information
to be usable.

1.3. Open Research Questions

The relevant literature on describing comparison schemes is rich. They are based
on different methods to achieve privacy-preservation, allow different functionality,
are secure against different adversaries or deliberately choose low security levels
to be as efficient as possible. Chapter 2 will group them into classes of similar
methodology and reviews the properties of these classes with respect to the above
stated requirements. However, even though there is a wide range of work on
comparison schemes and we picked the ones most fitting our requirements, there
are still unanswered questions, which will form the basis of all further research
conducted and presented throughout the rest of the thesis. It starts with rather
generic questions, which lead to the foundation used within further, more specific
research.
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1 How can an efficient, privacy-preserving, approximate comparison scheme be
constructed?

2 How can an ongoing inference attack be detected and limited, given en-
crypted requests?

3 How can a client reduce cryptographic overheads and transmission band-
width?

A description for the single parts of the privacy-preserving comparison system
is given to outline the thesis and introduce the contributions.

1.3.1. Efficient Approximate String Matching

As introduced above, the overall comparison system is a composition of several dif-
ferent schemes, each having a specific focus. We start by describing an efficient and
effective protocol for secure approximation of a metric over the input of two par-
ties. Chapter 4 will propose this core comparison scheme, instantiated to compare
character sequences. When two parties, each holding a string, want to approximate
a string similarity of their sequences efficiently, they must choose an appropriate
measure. The Levenshtein distance is therefore used as an example for the neces-
sary norm to be approximated. We present an embedding to first map long strings
to sets using character grams, then map the built sets to set representations in
the form of binary strings. Upon these, set operations estimate the symmetric
difference and together with a final cardinality estimation approximate the initial
metric over strings. We show that the approximation is highly correlated to the
original metric and that the scheme is privacy-preserving for an Honest-But-Curi-
ous (HBC) querier and a malicious server. The scheme is implemented, evaluated
and tested using the Human Mitochondrial Genome Database (mtDB).

1.3.2. Inference Control for Confidential Queries and Answers

Every privacy-preserving protocol must output some information in the end, oth-
erwise it would have no use. An attacker can leverage this information to gain
knowledge about the confidential input of another participating party. One can
describe a game in which the attacker crafts input to the protocol in a way to gen-
erate high entropy results for him. Winning the game means reconstructing the
secret hold by the other party. This game and applied technique is very similar to
the board game “Mastermind” (depicted in Figure 1.4), which served also for an
efficient attack on genome sequence comparison protocols [Goo09].

13



1. Introduction

Figure 1.4.: A game of Mastermind. Source: ZeroOne [Zer05]

By design, such inference attacks make use of rather close queries to learn de-
tailed information about specific parts of the input. We hereby describe a novel
technique to detect such close queries against a privacy-preserving protocol. The
proposed construction can directly be used against Mastermind-like attacks, which
draw conclusions by submitting many very close queries and evaluate the returned
results. Due to the close-query property of such attacks, closeness detection is used
for the inference control algorithm to detect and drop too similar requests. We fur-
ther generalize the Mastermind attack to also work with incomplete and rejected
protocol invocations — as they might happen with inference control mechanisms in
place. We show that due to the constructions used in the core similarity matching
protocol from Chapter 4, the algorithm can effectively separate Mastermind-like
attacks from genuine close queries. Furthermore, incorporation of specialized Zero
Knowledge Proofs (ZKPs) allows us to prove the protocol to be secure in the
malicious-prover, honest-verifier setting.

1.3.3. Secure Computation for Thin and Mobile Clients

As the ideas towards personalized medicine suggested energy-constrained small,
smart devices to carry confidential information, this information must be utilized
somehow. It cannot simply be handed over to other devices for remote computa-
tion, due to being highly private information. Further, computation will also not
be carried out directly on these constrained devices, as they might be too weak
to perform complex tasks. Therefore, computation might be outsourced to more
capable, possibly centralized compute nodes while keeping the overall work load of
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the client side rather light. This asymmetric requirement on computational power
will be worked on in Chapter 6. Another constraint that comes with small and
mobile devices is their network connection in terms of throughput, stability and
availability. As all of these properties will be of rather low quality — compared
to a wired network connection — it is important to keep the bandwidth overhead
introduced by the privacy-preserving protocol as low as possible.

The latter point is mainly problematic due to fact that asymmetric encryption
systems and most homomorphic encryption systems in general come with a high
expansion factor when comparing plaintext to ciphertext sizes. This problem can
be circumvented by using symmetric cryptography to encrypt data coming from
the smart device. The natural question that arises is: How to translate the sym-
metrically encrypted plaintext into a homomorphically encrypted plaintext on the
server side? Recent proposals suggested to encrypt the symmetrically encrypted
data homomorphically and run the symmetric decryption algorithm using the ho-
momorphically encrypted symmetric key within the homomorphic encryption sys-
tem. This allows for small transmissions, but due to the necessary use of a Fully
Homomorphic Encryption (FHE) or Leveled Homomorphic Encryption (LHE) sys-
tem for the scheme transition, it enforces a huge computational overhead on the
server side, completely defeating the communication benefits achieved in the first
place.

To solve this problem, a novel use of PRNGs and Partly Homomorphic En-
cryption (PHE) systems is presented, achieving very low transmission overhead
together with dramatically minimizing the computational overhead on the server
side compared to all previously proposed scheme conversion solutions. The system
is further analyzed regarding its security, performance and generalization of the
core idea. A variant is described in which the symmetric keystream computation
is outsourced to a trusted and more powerful device, like a smartphone, laptop
or desktop PC. This variant also achieves a significant decrease in computational
overhead on the client side, which is desired for the asymmetric distribution of
computational capabilities.

1.4. Contributions

This dissertation contributs to the research area in various ways. The following
contributions describe general achievements, while detailed contributions in specific
domains are described in the relevant chapter.

1. An efficient privacy-preserving approximate string matching scheme, which
estimates the Levenshtein distance between two confidential strings belong-
ing to different parties with low distortion for small distances. The initiator
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learns the approximate distance or that the approximate distance is within
a predefined range, while the other party learns nothing. The scheme is
shown to be secure in the HBC setting. The detailed description follows in
Chapter 4, while the core results are published in [BK13].

2. A protocol for privacy-preserving similar input detection. A binary output
describes if a private input is closer than a certain threshold to all previous
inputs or not. This 1Bit information is used to detect and control inference
attacks, which can otherwise be used to efficiently infer knowledge about the
confidential information hold by one of the participants. A detailed analysis
demonstrates its applicability. This is to the best of our knowledge the first
scheme that tries to detect and mitigate inference attacks while working only
with encrypted data. Chapter 5 gives the details of the protocol extensions,
with core findings being published in [KBS14].

3. A scheme for homomorphic ciphertext compression, which combines the ef-
ficiency of symmetric encryption and the functionality of homomorphic en-
cryption. A novel way to construct a symmetric stream cipher based on the
homomorphic decryption function is presented, which leads to a highly ef-
ficient transition scheme. Thus, encrypted data sent from the client to the
server, can be transformed from data encrypted under a symmetric stream
cipher into the same data being encrypted under a homomorphic crypto-
graphic system. The server can then perform ordinary secure computation
upon it. Overall this enables a resource and bandwidth-constrained device,
like a mobile phone, wireless sensor node or smart card to securely outsource
computation with low encryption and transmission overhead. Again, to the
best of our knowledge we are the first to describe such an efficient scheme,
with a transition function that is several orders of magnitude faster than
comparable proposals. The detailed scheme is described in Chapter 6, while
results are published in [Bec15].

1.5. Preliminaries

Constructing a comparison scheme requires the definition of an appropriate similar-
ity measure by which elements are compared. Finding a good metric (or a function
using different metrics) that resembles the desired similarity measure may by itself
be a non-trivial task. However, it is assumed that this step is already done and the
measures to be approximated by the comparison scheme are known and specified.
We will introduce definitions for metric, metric space, closeness and embeddings,
as these are basic primitives, which are necessary for the construction of a system
that compares elements.
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As denoted in Section 1.5.2, we use the terms distance, similarity and closeness
interchangeably throughout the document. A metric however is clearly defined
as a function d:D × D → R over a set D that satisfies the following axioms for
x, y, z ∈ D:

1. d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y,

2. d(x, y) = d(y, x)

3. d(x, y) + d(y, z) ≥ d(x, z)

The combination (D, d) is called a metric space. The function d defines the
distance between elements in D. On the other hand, a similarity function s:D ×
D → R should specify the amount of similarity between elements in D. As a
common definition or necessary axioms for a similarity function do not exist and
typical similarity functions are some kind of inversion of the associated distance,
we state that a similarity function can be constructed from any given metric by
s(x, y) = 1

1+d(x,y) .

Upon a metric d the distance between an element x ∈ D and a set A ⊆ D is
defined as the infimum d(x,A) = infa∈A d(x, a). The element x is called close to
set A if d(x,A) = 0.

The final comparison scheme receives a query q, compares it to an element y
and outputs a binary result of whether an approximation of a distance d(q, y) is
close to a certain value or not. If we take the previous definition of closeness,
the comparison scheme would only return true for elements q, y that are identical.
However, the scheme should perform fuzzy matching to reveal also highly similar
elements that are not identical d(q, y) ≤ t, having an approximated distance score
equal to or below some threshold t. We therefore require two elements a, b ∈ D to
have a distance d(a, b) ≤ t to be similar.

Metric spaces can be compared and sometimes translated from one to another.
For comparing two metric spaces (A, d) and (A′, d′), a function f :A→ A′ is used to
map elements from A to A′. This map is called an embedding. If this map preserves
the distance, that is d(x, y) = d′(f(x), f(y)) ∀x, y ∈ A, it is called isometric. If
such a function exists for a metric space (A, d) towards the metric space (Rk, dp),
with some k and dp being the lp-distance and thus d(x, y) = dp(f(x), f(y)) =
‖f(x)− f(y)‖p x, y ∈ A, then d is called an lp-metric.

If isometric embeddings cannot be found for two metric spaces, most often a
map is used that results in similar distance functions d and d′. The similarity
between the distance functions can be evaluated by calculating maximum factors
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for stretching and shrinking the distance values d(x, y). The maximum shrink
factor, or contraction is given by

max
x,y∈A

d(x, y)

d′(f(x), f(y))
,

whereas the maximum stretch factor, or expansion is given by

max
x,y∈A

d′(f(x), f(y))

d(x, y)
.

The distortion of f is the product of the contraction and the expansion. Em-
beddings will be used later on in Section 4.2 to translate between character strings
distances, set similarity measures and binary string distances.

1.5.1. Adversary model

Within the previous sections comments regarding the strength of the adversary
were made, without ever actually defining possible attackers. It was left open to
describe meaningful adversaries, against whom the comparison scheme should be
secure. Defining such attackers involves many parameters, which influence the
overall abilities and strength of an attacker. The following list describes some of
the dimensions that should be thought about together with some examples or a
brief description.

Role
Examples are: Vendor, Developer, Administrator, User, Outsider

Area of physical control
What is physically accessible by the adversary?

Follows the role restrictions
Distinction in Honest-But-Curious (HBC), Covert, Malicious.

Time, Money
Most often treated as a factor on estimating practical security.

Computational power
Unlimit computational power implies an information-theoretic adversary.

Knowledge
The adversary could have knowledge that is not publicly known.
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Active vs. Passive
Does the attacker participate and actually send information?

Adaptive vs. Non-Adaptive
Distinguishes attackers that adapt their strategy based on previous results.

Time, money and computational power influence each other, as the computa-
tional power changes according to the amount of money and time that is available.
If there are no restrictions on the computational power, we call the attacker an
information-theoretic attacker and computational-complexity-restricted otherwise.
To increase the strength of a cryptographic system against this property, higher
entropy or longer keys are used. Similarly the area of physical control is influenced
by the role an adversary has.

The following sections will discuss the typically distinction used on the self-
restriction of adversaries for cryptographic protocols. These are modeled most
often using the HBC and malicious model. Another rather new model in between
those two is the covert adversary.

Honest-But-Curious (HBC) Model

From the efficiency requirement in Section 1.2.2 directly follows an obvious candi-
date for the attacker model. We are therefore mainly considering an computational
complexity restricted attacker within the HBC model. Such attackers are assumed
to have certain limits in what they can do. They want to learn as much as possible
by observing all information they can get during the participation and execution
of a protocol. So first of all they are allowed to:

• Evaluate arbitrary deterministic polynomial time (PTIME) algorithms.
• Look at the inner state of all algorithms run by himself.
• Use all input to and from himself.

Next to these granted rights, there are also limits. He is assumed to comply with:

• Follow the given protocols.
• Run algorithms correctly.
• Use correct inputs.
• Return correct answers.
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HBC adversaries are also allowed to take a complete transcript of the whole
protocol execution for later analysis, however, they are especially assumed to not
disclose or share secret information. Collusion is therefore explicitly excluded —
which is not relevant as we will design a two party scheme, following our require-
ments (see Section 1.2). Furthermore, we follow the definitions of a semi-honest
and malicious model from Goldreich [Gol04].

If we would allow an attacker to solve problems from a complexity class above
PTIME, theoretical proofs for secure protocols and algorithms assuming PTIME
attackers would not hold anymore. This is a realistic assumption, as an attacker
not bound to PTIME algorithms, for example being able to evaluate arbitrary
deterministic exponential time (EXPTIME) functions, can solve all problems in
EXPTIME and trivially also in non-deterministic polynomial time (NP), easily
— which is assumed to be hard for many security proofs.

Further, if we would consider an computationally unbounded attacker, only in-
formation-theoretically secure cryptosystems and therefore just private key cryp-
tography, like the one-time pad for confidentiality and the information-theoretically
secure Message Authentication Code (MAC) for authentication and integrity could
be used. Public key cryptography would not provide any security against such an
attacker.

Malicious Model

If a protocol participant is unlikely to follow the HBC model due to strong own
interests in gaining information, privileges or other advantages, the overall protocol
construction must account for and withstand the expected behavior. If a party is
expected to be HBC in general, but might deviate at a few, specific or critical
points in the protocol, these places can be protected using a few efficient ZKPs
to verify correct behavior of the addressed party. We use this technique in the
inference attack detection framework in Chapter 5.

Lifting the attacker in general from the HBC into the malicious model would
require protocols secure against malicious attackers. Such attackers might devi-
ate arbitrarily from the protocol, sending false, forged or no answers at all. The
necessary level of security can be reached by generic extensions that apply zero-
knowledge proofs to constructions secure in the HBC model. As a result security
in the malicious model [KK08] is achieved. In case secure computations based on
Yao’s garbled circuits [Yao86] is implemented and must be extended to be secure
in the malicious model, cut-and-choose based methods can be employed [Lin13].
However, both extensions, ZKPs and cut-and-choose techniques imply large over-
heads in communication and computation, driving secure solutions far away from
the previous requirement of having a highly efficient and practical system. We
therefore keep the HBC and PTIME computational-complexity attacker model
and possibly apply efficient ZKPs at necessary places.

20



1.5. Preliminaries

Covert Model

Aumann and Lindell [AL09] introduce the notion of an covert adversary. The
strength of this adversary lies between the well known HBC and malicious at-
tacker models. The intention of the adversary itself is to cheat but only when the
probability of being caught is below some threshold ε. In this sense they define a
simulation-based security notion for covert adversaries with ε-deterrent. The guar-
antee is not about absolute privacy — a party can cheat and learn some private
information, but will be caught cheating with probability ε.

This model is often applied to secure computation protocols and more specifically
Secure Multi-Party Computation (SMPC). It follows the idea of cut-and-choose
protocols in which a certain function is evaluated more than once and randomly
checked for proper evaluation. However, Aumann and Lindell [AL09] described
attacks against cut-and-choose, which were fixed and lead to an improved con-
struction.

1.5.2. Wording

To ease understanding of the following chapters a convention on the use of certain
expressions follows. Terms which we use interchangeably throughout this docu-
ment are presented and sketched. They will be differentiated at necessary places
and differentiation will be made explicit.

privacy-preserving, privacy-friendly, privacy-enhancing, secure
With respect to a protocol these adjectives refer to an effort made by the
protocol or underlying algorithms to protect sensitive information of at least
one participant.

sensitive, confidential, private
Input or output data may be classified by such terms and implies that the
respective party has an interest in protecting the contained information.

cryptographic system, cryptographic scheme, cipher, encryption system
A system, scheme, protocol or algorithm that mainly uses cryptography to
achieve certain properties like confidentiality or authenticity.

cryptographically secure, computationally secure, indistinguishable
Cryptographic primitives are often designed to withstand adversaries with
limited capabilities. The restriction in their power is typically described by
allowing them to evaluate arbitrary deterministic polynomial time (PTIME)
algorithms. Cryptographic primitives are called computationally secure if
the probability of such an adversary in differentiating their output from a
random variable following the same distribution is bounded by a value ε.
The output is then called computationally indistinguishable.
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distance, similarity, closeness
A measure describing how close or similar two elements are, while distance
not necessarily describes a distance metric (see Section 1.5).

close, similar
Two or more elements with a distance below or similarity above some thresh-
old.

(bit) vector, array, bit string
Two or more bits with a specific order can be placed in a vector, array or
concatenated into a string interchangeably.

(character) string, character sequence
Similar to the bit string described above a character string is a concatenation
of character symbols from some alphabet.

party, participant
One of several attendees belonging to a protocol (see Chapter 4).

client, user
Party that initiates a comparison, assumed to be computationally weaker
than the server (see Chapter 4 and 6).

server, service provider, cloud
Party that offers elements to compare with (see Chapter 4).

attacker, adversary
An external or internal algorithm, person or group interested at gaining more
information than allowed (see Section 1.5.1).

honest-but-curious, semi-honest, observing
The attacker model used for most parts of the document (see Section 1.5.1).

query, request
Data sent from the client to the server.

result, answer
Data sent back from the server to the client.
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1.6. Out of Scope

As the focus of this work lies upon construction and evaluation of methods for
efficient and privacy-preserving element comparisons with not fully trusted parties,
there are many closely or loosely connected topics to all the requirements and
desired attributes. A few of these touching areas are mentioned below and refer
to interesting topics, which are explicitly not studied. Solutions and proposals in
these fields are taken as given, are mentioned to be used at appropriate places
and inserted transparently as building blocks whenever needed. As such these
fields will also not be discussed in general within the related work in Chapter 2 or
over the following protocol construction chapters. If necessary, proposed solutions
might deviate slightly on the exclusion of the following topics, but whenever this
might be the case, it is clearly stated and made explicit.

Network One of the main overall goals is to enable two parties to jointly process
data. Therefore a necessary requirement for those two parties is of course to be
able to communicate with each other. We do not care about the technology used
to setup and maintain the communication channel, but just say that all involved
parties can just send whatever message they want and it will arrive and be used
by the appropriate receiver. However, as described within the design goals in
Section 1.2, the network must not be usable at all times, which implies the need
to perform offline computation and try to minimize the overall interaction within
the selected and designed protocols. Furthermore, as the throughput is limited
and might actually be rather low — considering resource-constraint devices that
probably communicate via technologies like Bluetooth, NFC or use similar low-
power communication channels — we must take care in reducing or preventing
unnecessary transmission overheads.

Communication Right on top of that generic network infrastructure reside proto-
cols and libraries allowing end-to-end communication, provide structures for data
serialization, use standards to ease deployment, enable transparent connectivity to
other systems, as well as provide confidentiality, integrity and authenticity on the
(lower) layers of the Open Systems Interconnection (OSI) model.

Key Management The use of cryptographic primitives, e.g. as mentioned to pro-
vide link and end-to-end confidentiality, requires the exchange of keying material.
This exchange, the choice of Key Derivation Functions (KDFs) and the actual use
of appropriate algorithms to achieve the necessary properties is also transparent.
As such, it doesn’t matter how the keys were exchanged, where they are stored
and how they are used, as long as it fits the higher layer usage and is not defined
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otherwise at the appropriate sections. We just assume this important part of the
overall construction to just work the way we want it. This includes that pub-
lic keys are surely belonging to the appropriate parties and possibly out-of-band
communication happens to achieve the desired goals.

Storage Likewise it is assumed that sufficient but finite memory, computational
power and communication bandwidth is available when needed. Further the per-
manent storage-only scenario can be made secure in terms of confidentiality and
integrity by usage of appropriate techniques. Several tools at different hierarchy
levels, services and devices — e.g. disk, partition, file system, file, service — are
available for this purpose23456.

Anonymity Protecting the identity of participating parties is not part of this line
of work. Accordingly, techniques focusing on anonymization, pseudonymization,
unlinkability or accountability are not discussed. If the proposed schemes should
be used within a context that requires such properties, most probably existing
techniques for identity protection can be attached to and thus extend the proposed
protocols without much interference.

Malicious Adversary In general, as defined in the overall design goals in Sec-
tion 1.2, the aim is to build practical solutions, which are therefore efficient with
respect to time and space requirements. This goal is supported by a proper choice
of the adversary model. The often used and in Section 1.5.1 specified HBC ad-
versary model is the basis for the following constructions. In case it is unlikely
that the adversary behaves within the HBC bounds and his actions are also not
trivially encountered by the construction itself, it may be necessary to switch to a
stronger adversary model. However, in case such a transition from the HBC model
to the malicious model is necessary, it is explicitly stated and explained.

2EncFS: https://vgough.github.io/encfs/ (last accessed: 2015-03-09)
3dm-crypt: https://code.google.com/p/cryptsetup/wiki/DMCrypt (last accessed: 2015-03-
09)

4SpiderOak: https://spideroak.com/ (last accessed: 2015-03-09)
5Boxcryptor: https://www.boxcryptor.com/ (last accessed: 2015-03-09)
6GnuPG: https://www.gnupg.org/ (last accessed: 2015-03-09)
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2. Related Work

The research field of privacy-preserving comparisons and private searches was quite
active over the last years, with many publications addressing very specific require-
ments. Applications can be found in various domains like record-linkage [HF11;
BS10; VCV12], genomics [De 14; JKS08; Ayd+13; Wan+09a] and generic database
search [WC09; Cas+14; Ibr+13]. This is a separation of related contributions into
use-cases. However, we are more interested in the core functionality that these
schemes solve and the extended properties following the constructions. There are
two main classes that we distinguish. The first one is concerned with offering a
privacy-preserving comparison of elements, while the second class describes secure
search schemes to search a remote database in a privacy-preserving way. For the
rest of this chapter, our main separation of related contributions follows these
two classes. Consequently, we first review schemes to calculate or approximate
a distance between two elements, held by different parties. This includes string
matching algorithms [BS10; RS10; BK13] or in general data matching [Sca+07;
CT12].

The task to perform a secure search by constructing a secure index over a data
set for efficient, privacy-preserving document selection [Cas+13; Cas+14] is of
interest in many related publications and important contributions to this field
are reviewed. In particular, index generation and querying can be done by the
same party, which spawns the problem of outsourcing own data and the associated
index to an untrusted third party. In the other case, when index generation and
searching is performed by different parties, other assumptions must be made which
typically result in different methods being used. As both topics — metric and index
evaluation — are closely related to each other and also to the constructions within
upcoming chapters, a review of the relevant related work for each of these topics
will follow.

In Section 2.1 we will review and structure literature related to privacy-preserv-
ing metric evaluation, which touches several related fields like string matching, set
similarity estimation and privacy-preserving record linkage. Section 2.2 will then
look into literature related to secure index evaluation and private search.
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2.1. Privacy-Preserving Metric Evaluation

Many different metrics were turned into privacy-preserving equivalents or approx-
imations. These schemes themselves often use basic measures like intersection
and union cardinality over sets, upon which well known similarity measures like
Jaccard similarity coefficient [SKS09] and Sørensen-Dice index [VCV12] are con-
structed. Next to evaluating set similarity measures, many applications, especially
in the document search and genomics domain, require the assessment of simi-
larity between strings. In simple cases such a measure could be the Hamming
distance for strings of equal length, or Levenshtein distance, while more complex
scenarios could require optimal local or global alignments using Smith-Waterman
or the Needleman-Wunsch algorithm. Some of these can by itself be efficiently
approximated using set similarity based techniques. Another important domain
for metric spaces is the n-dimensional space of points, which we group together
with measures for n-dimensional vectors. All the typical distances like Manhattan,
Euclidean, Chebyshev and their generalization, the Minkowski distance belong to
this category. The Minkowski distance is also called lp-distance, as it is derived
form the lp-norm given by

‖x‖p =

(
k∑
i=1

|xi|p
)1/p

for x ∈ Rk, 1 ≤ p ≤ ∞;

Visualizations for p = 1, 2,∞ and n = 2 are shown as unit balls in Figure 2.1. In
case n ≥ 2 a point can be interpreted as a vector and between two vectors the
cosine similarity is also often used [BMS07].

lp-norm

p = 1
p = 2
p = ∞

Figure 2.1.: Plot of unit balls for typical lp-norms

There are of course further function domains for which metric spaces exist,
examples of measures are given in parantheses:

• Numerical (Manhattan, Euclidean, Canberra, Cosine)
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• Polynomials (Tree or vector measures can be applied)
• Matrices

• Boolean (Hamming)
• Sets (Jaccard, Dice)
• Strings (Edit Distance)

• Distance (Damerau-Levenshtein)
• Matching (Smith-Waterman, Needleman-Wunsch)

• Graphs (Shortest path)
• Trees (Tree Edit Distance)
• Bipartite (Hopcroft-Karp)

• Statistical (f-divergence, Kolmogorov-Smirnov statistic, Kullback-Leibler di-
vergence, Wasserstein metric)
• Distributions (Energy distance, Signal-To-Noise ratio)
• Dependence (Distance correlation)

• Images (Distance transform, Color distance)
• Software (Cohesion, Coupling, DSQI [Pun09])

• Testing (Code coverage)
• Complexity (Cyclomatic complexity)

There are many metrics that can be used to build a comparison scheme and it
is not possible to focus on all of them. As the overall use case is to compare two
private inputs, might it be documents or genomic sequences, further considerations
therefore focus on set and string similarity measures and their privacy-preserving
counterparts. However, the presented techniques within this document can also be
applied to build privacy-preserving protocols for other similarity measures, under
the premise that a fitting embedding can be found with a low distortion and
expansion, as described in Section 1.5.

2.1.1. Set Similarity

As the evaluation or even estimation of set similarities serves for many applica-
tions from biology [Jac01] over computer science [Niw+13] to psychology [Mel+09].
Privacy requirements in all these areas lead to investigations into the private set
operation research field. Evfimievski, Gehrke, and Srikant [EGS03] were one of
the first to propose a secure protocol for calculating the intersection of two sets
between two parties. Such privacy-preserving equivalences of set operations are
used as basic building blocks for more complex privacy-preserving systems.

Agrawal and Srikant [AS00] describe how to perform privacy-preserving data
mining using set operations, while Cristofaro and Tsudik [CT10] describe usage
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examples for a government agency that wants to checking new employees against
a criminal record database, Homeland security might be interested in checking
a passenger list from a foreign airline against a terrorist database, national law
enforcement bodies might want to compare their lists of criminal suspects, or tax
authorities might want to learn if suspected tax evaders have accounts on certain
foreign banks.

Next to the usage within national agencies, several personalized services exist,
which apply profile matching between users. These scenarios include dating sites
that match attributes or behavior [Zoo14], deciding whom to share a taxi [WEE14]
or a ride with [Sid15]. The information given to such services is mostly regarded
as private. Private set operations can in these instances also be a part of the
solution to offer equivalent services without having the operator as trusted party
gathering all the confidential information. Zhang, Li, and Liu [ZLL13] present
such a privacy-preserving protocol to match different user profiles in the context
of a social network.

One example for a set similarity measure itself is the Jaccard index [SKS09;
BCG11], but many others exist. Jaccard is however often used and also estimated
using different privacy-preserving techniques. Singh, Krishna, and Saxena [SKS09]
use a semi-honest third party, while Blundo, Cristofaro, and Gasti [BCG11] use
Private Set Intersection Cardinality (PSI-CA) techniques to securely estimate the
Jaccard index.

To calculate or estimate the similarity of sets, primitive set operations are used
and must therefore be supported by the cryptographic primitives involved. Con-
structions allowing these operations to be performed in a privacy-preserving way
are termed Private Set Intersection (PSI) or Private Set Union (PSU).

A combination of set operations on four spheres or sets is depicted in Figure 2.2
for illustration.

Private set similarity systems may use and thus build upon protocols for efficient
— linear time complexity in the largest set size — PSI-CA, which works just like
PSI protocols, with the limitation of outputting only the final set cardinality. These
PSI and PSI-CA [FNP04; KS05; CZ09; SS09] protocols can itself be used as basic
privacy-preserving similarity measures. Variations supporting set union [CGT11]
are similarly available. Further deviations include PSI with data transfer, which
associates arbitrary data — e.g. the medical record of a patient — with each
set element and finally transfers this data for the elements in the intersection.
Authorized-PSI needs client input to be signed by a mutually trusted third party
(Certificate Authority (CA)) and in combination PSI-CA can be used to decide
whether or not to engage in the actual PSI protocol. The latter variations can be
used to limit inference attacks on remote private sets.
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Figure 2.2.: Euler diagram of four circles arranged as shown, each circle represent-
ing a set. This is not a Venn diagram, as the sole intersection between
the blue and yellow set, as well as between the red and green one is
missing. Source: [Mar12]

Some schemes are build to be collusion resistant in the multi-user setting, strength-
ening the typical Honest-But-Curious (HBC) security model when more than one
user is involved [Ker12].

Several methods for constructing PSI schemes are used in the relevant literature.
The following list describes some of them.

• Blind signatures [Cha83]
• Cristofaro and Tsudik [CT10] present PSI schemes and variations like
PSI with data transfer, authenticated PSI and variants secure in the
malicious model are described.

• Unpredictable Function (UPF)
• Jarecki and Liu [JL10] use UPFs to build an adaptive PSI in the Random
Oracle Model (ROM). This scheme allows the intersection to be calcu-
lated interactively, querying for a single entry element at a time and
being able to adapt the next query depending on previous results. This
is closely related to adaptive attackers and adaptive Oblivious Tran-
fer (OT). They further allow dummy elements in the sets and queries.
The overall scheme is secure against malicious adversaries.

• Oblivious Pseudo-Random Function (OPRF) [Fre+05]
• Freedman et al. [Fre+05] use OT, Oblivious Polynomial Evaluation
(OPE), techniques from single-server Private Information Retrieval (PIR)
and symmetrically PIR to build OPRFs and upon these a private key-
word search scheme. This search scheme is taken as a special case of set
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intersection X
⋂
Y , where one set X consists of the actually searched

keyword and thus has cardinality |X| = 1. A set intersection protocol
is then constructed by applying the keyword search scheme for every
element in X.
• Hazay and Lindell [HL08] describe a generic PSI protocol secure against
malicious and covert adversaries. Covert adversaries lie between HBC
and malicious ones, as they try to cheat, but also try to not be detected.
They will rather not cheat than being detected. See Section 1.5.1.

• Oblivious Polynomial Evaluation (OPE) [NP99]
• Freedman, Nissim, and Pinkas [FNP04] propose schemes for two-party
set intersection private matching secure in the HBC and malicious
ROM. Variations allow the computation of the intersection cardinal-
ity, other functions of the intersection, approximation of the final set
size, fuzzy matching and an extension to multi-set intersection.
• Hazay and Nissim [HN10] extend the work of [FNP04] to the malicious
attacker model, also a variation secure in the standard model — opposed
to the often used ROM — is described. Together with these security
gains follows a large overhead through using many invocations of Zero
Knowledge Proofs (ZKPs) and OTs.
• Kissner and Song [KS05] also describe PSI secure in the standard model
against malicious attackers, however through the use of generic, not spe-
cialized ZKPs, overheads are quite large. They also additionally achieve
mutual PSI and allow more than two parties or sets to be operated on.
Further operations can easily be combined to generate only the desired
final result.
• Dachman-Soled et al. [Dac+09] improve upon [KS05] in replacing the
generic ZKPs with Shamir’s secret sharing techniques to gain efficiency.

On top of set similarity measures together with their privacy-preserving equiv-
alents, privacy-preserving data analyses schemes can be constructed [Dom08].

Locality-Sensitive Hashing

A more efficient and also less private way of matching elements is to use Locality-
Sensitive Hashing (LSH). These hash algorithms describe a technique to map sim-
ilar elements to identical values, allowing plaintext identity checks to quickly esti-
mate the similarity of sets. Elements from two sets are hashed into bins, if there is
a large overlap in the used and unused bins for both sets, then the sets are declared
similar. The properties of the herein described hash functions are contradictory to
the definition of cryptographic hash functions. Figure 2.3 depicts this difference.
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Cryptographic Hash

Locality-Sensitive Hash

Figure 2.3.: Visualization of hashing elements into bins using a cryptographic hash
and a locality-sensitive hash. The multicolored circles are elements
from the domain of the hash function, while the blue rectangles with
rounded corners are elements from the co-domain of the hash function.
Elements drawn closely together are more similar than those drawn
farther away from each other.

LSH as introduced by Indyk and Motwani [IM98] describes a set of techniques
for generating hashes given a certain input. Cryptographic hash functions should
exhibit the avalanche effect property, which states that upon inversion of a single
input bit, on average 50% of the output bits are also inverted. Further, the strict
avalanche criterion even requires that each output bit has a probability of 0.5 to be
changed upon the inversion of any single input bit. This desired property helps in
achieving the concept of diffusion, as stated by Shannon [Sha49]. These are, next
to the traditional goals of cryptographic hash functions (pre-image, second pre-
image and collision resistance) important properties to approximate the concept
of a random function, e.g. as used in the Random Oracle Model (ROM). Such a
random function approximation requires that an adversary also learns no useful
information about the input given the resulting hash.

LSH functions are grouped into families, which are bound to a certain metric
space. Such a family F for a metric space (A, d) provides functions, i.e. f , such
that close values x, y ∈ A map to the same hash value with high probability
P [f(x) = f(y)] ≥ p. Indyk and Motwani [IM98] initially define LSH schemes.
Given a distance measure d:S × S → R (not necessarily a distance metric), let
B(q, r) = {p : d(q, p) ≤ r} p, q ∈ S, r ∈ R be a ball of elements around and
thus similar to q by the distance measure d. Similarity is defined as the distance d
being lower or equal to r. The ball B(q, r) therefore includes all elements around
q within distance r. A family H = {h:S → U} is called (r1, r2, p1, p2)-sensitive for
d if for any q, p, p′ ∈ S

if p ∈ B(q, r1) then PH[h(q) = h(p)] ≥ p1,

if p′ /∈ B(q, r2) then PH[h(q) = h(p)] ≤ p2.
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For a family to be interesting the inequalities r1 < r2 and p1 > p2 must be satisfied.

AND & OR Constructions Several independently chosen hash functions h1, h2,
. . . , hm ∈ H from the same (r1, r2, p1, p2)-sensitive family can be combined to
form a new family H′. Two generic ways to build hash functions in H′ are often
used [LRU14]. The AND-construction specifies that for a fixed number of m
independently chosen hash functions from H, as defined above, a function h′ ∈ H′
evaluates to the same value for two different elements h′(p) = h′(q) if and only
if hi(p) = hi(q) ∀i ∈ [1,m] all hash functions from H also evaluate to the same
value. The generated familyH′ is (r1, r2, p

m
1 , p

m
2 )-sensitive. Intuitively then anOR-

construction is defined as taking independently a fixed number of n hash functions
from the family H to build a family H′′, in which a function h′′ ∈ H′′ evaluates to
the same value h′′(p) = h′′(q) if hi(p) = hi(q)∃i ∈ [1, n]. The generated family H′′
is (r1, r2, 1−(1−p1)n, 1−(1−p2)n)-sensitive. This way also combinations of AND-
and OR-constructions can be build to amplify an LSH family in its sensitivity.

MinHash [Bro97] and variants are regularly used to estimate the Jaccard simi-
larity. Leskovec, Rajaraman, and Ullman [LRU14] give LSH constructions for the
Hamming distance, for the cosine distance using random hyperplanes and for the
Euclidean distance.

Such LSH instantiations can still be used as input to set intersection and union
protocols. LSH also preserves some level of privacy, which was evaluated for dif-
ferent LSH parameters by Aghasaryan et al. [Agh+14].

There is also quite some research using similarity measures in the traditional
way, that is, upon privacy-preserving building blocks to infer some sort of similar-
ity [SBR09]. This area is not explored further, as the main interest is in evaluating
or estimating a similarity measure effectively, efficiently and privately, without
trading privacy guarantees against necessary trust in additional parties.

2.1.2. String Matching

String matching specializes privacy-preserving metric evaluation by explicitly re-
stricting the metric domain to strings over a certain alphabet A.

Applications applying string matching one way or another are rich and can be
found everywhere:

• Search: Search for or within a document using a term (web search, file search,
searching an index)
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• Compare: Find duplicates given a set of words or documents (matching
database entries, finding plagiarism)
• Test : Extract properties about the string source (Check for characteristic
sub-strings for classification)
• Construct : Building larger sequences using string overlaps (genome sequenc-
ing and overlapping readouts)

Research into string matching algorithms is defined by a long list of proposed
algorithms over many years and for many different problems. String matching
itself is closely related to the distance between strings, which can be measured by
a large variety of means, ranging from generic and simple solutions like the Ham-
ming distance [Ham50] to more powerful algorithms like Smith-Waterman [SW81]
solving local sequence alignment problems. A survey about current developments
can be found in [LH10].

As several tasks, for example checking whether a user profile is within a remote
database, do not require the exact distance between two strings, data items or
other entities, the notion of approximate matching was introduced to define levels
of similarity, which in the most extreme way only output a single bit of information:
if the input strings are similar or not. Due to these properties this class is called
approximate string matching algorithms, which is not to be confused with the
approximate string matching of [HD80], where the term “approximate” referred to
the property of two strings being close in distance.

Two of the applications for string comparison algorithms which are often used for
motivation are calculating the distance of genome or protein sequences in the life
sciences and checking if a person is present in a remote database. As these topics
by design deal with very personal information, which must not be given to third
parties, the necessity to build privacy-preserving matching algorithms arose. As
these were not sufficient to protect privacy due to information leakage given by the
exact distance results, just obtained in a privacy-preserving manner, combinations
of the above mentioned approximation and the privacy-preserving computational
steps were developed. A survey of recently published algorithms together with
benchmark results can be found in [BS10].

Estimating or evaluating the similarity between strings in a privacy-preserving
way can be done with many different techniques. We will now investigate selected
literature for relevant constructions. As such we will first review constructions
based upon a Trusted Third Party (TTP), the next section then describes proposals
that map strings to sets and estimate string similarity using privacy-preserving set
similarity measures. Following this, we will introduce proposals based on the secure
evaluation of the original distance or similarity measure and finally comes a section
which presents schemes with further enhanced functionality based on the oblivious
evaluation of a finite state machine.
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Trusted Third Party (TTP)

To solve the privacy issues and fulfill derived requirements, one can introduce a
party that is fully trusted by all participants, which input data. Such a TTP would
receive all required (sensitive) information, evaluate the desired functionality and
return correct results to the appropriate parties. A contract between the TTP
and inputting participants legally binds the TTP not to misuse the information.
Further the actions of the TTP could to some degree be monitored and controlled.
However, all participants must still trust the TTP not to misuse the data, as this
is still technically possible.

The risk and required trust in the TTP can be reduced by reducing the TTP
calculations to the absolutely necessary minimum. As much as possible would be
computed locally. The transferred data must then also be reduced to the absolutely
necessary information that the TTP needs to carry out the desired task. Further
more, data and computations can be split across several TTPs, which are unlikely
to collude.

String matching using a TTP was, for example, proposed by Schnell, Bachteler,
and Reiher [SBR09] and Durham et al. [Dur+12]. Their constructions are highly
efficient when compared to other privacy-preserving string matching solutions and
can evaluate complex functionality more easily than using cryptographic primi-
tives. This leads to solutions which support approximate matching, use only a
minimum of interactivity between the parties and can even be size-hiding in the
input. Further, clients inputting data experience a very low overhead do to ab-
sence of cryptography for input confidentiality. A short evaluation regarding our
requirements is depicted in Figure 2.4. The check mark (3) symbolizes that a
requirement is fulfilled, equivalently an X (7) shows that it is not fulfilled and a
combination of both (3/7) stands for partial fulfillment.

Priv. Effi. Appr. Non-Interac. Two-Party Thin Client Hide Size Infer.
3/7 3 3 3 7 3 3 7

Figure 2.4.: Fulfillment of requirements by selected Trusted Third Party sys-
tems. [SBR09; Dur+12]

Many use cases require higher privacy guarantees than can be given in the TTP
scenario, also a TTP setup is not fitting our desired two-party construction. In-
ference control would be feasible to be performed by the TTP, is however not
discussed for such schemes in the literature.
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Set similarity

As presented in Section 2.1.1, string matching can be performed upon private set
operations. Normally strings are converted into sets and these sets are compared
with privacy-preserving set similarity measures.

One of the protocols introduced by Schnell, Bachteler, and Reiher [SBR09] uses
Bloom filters to represent strings and transforms the notion of distances between
strings into distances between similar Bloom filters. We will also use Bloom fil-
ters as set representation for our strings and build the matching protocol upon
them. However, we use a two-party technique for comparing the Bloom filters and
therefore do not need a trusted third party for comparing the strings. Further-
more, our protocol can be size-hiding, by choosing appropriate Bloom filter sizes,
that are not proportional to the string length. Bloom filters by itself were also
subject to further privacy enhancements by inserting random bits, injecting fake
elements [KVC12], using keyed hashes [BC04], interleaving several elements within
a single Bloom filter [SBR11] or composing several Bloom filters [Dur+14].

However, relying on the obfuscation property of Bloom filters as sole privacy
protection may not deliver desired privacy guarantees. To judge the possible pri-
vacy gains by using Bloom filters, Bianchi, Bracciale, and Loreti [BBL12] analyzed
the privacy achieved using normal Bloom filters. Further, Kuzu et al. [Kuz+11]
showed that Bloom filter encodings with typically used parameters — encoding
Surnames, usage of 15 hash functions and a Bloom filter length of 500 bit — can
lead to large data leakage (11% of the data was discovered) The collected data was
processed and represented as a constraint satisfaction problem (CSP), which was
solved by their CSP solver. Niedermeyer et al. [Nie+14] used similar parameters
for the filter, but a different technique based on frequencies of certain substring
lengths. They discover 12% of the encoded data. Kuzu et al. [Kuz+12] proposed
to use CSP for multiple identifiers, but did not find successful frequency attacks
using their solver. Kroll and Steinmetzer [KS15] developed an automated tool for
discovering forenames, surnames and place of birth.

Priv. Effi. Appr. Non-Interac. Two-Party Thin Client Hide Size Infer.
3 3 7 7 3 3/7 3/7 7

Figure 2.5.: Fulfillment of requirements by generic Secure Multi-Party Computa-
tion Private Set Intersection systems. [HEK12]

Alternatively, techniques from Private Set Intersection (PSI) could be used.
Huang, Evans, and Katz [HEK12] use garbled circuits to implement PSI algo-
rithms and compare them to algorithms using homomorphic encryption and other
specialized PSI designs, its properties are given in Figure 2.5. Due to the use of
garbled circuits, the client has a rather large setup overhead and the protocol is
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interactive. The most problematic part however is that the protocol reveals the
actual intersection, that is the elements which are in both sets. Inference attacks
are fueled when more information than necessary is revealed.

Priv. Effi. Appr. Non-Interac. Two-Party Thin Client Hide Size Infer.
3 3 3/7 3 3 3 7 7

Figure 2.6.: Fulfillment of requirements by selected custom Private Set Intersection
Cardinality systems. [CGT11; CT10; Bal+11]

As revealing the content of the intersection is not appropriate for a privacy-
preserving protocol that measures string distances, protocol variations with less
information in the output are to be found. Based on these security concerns,
protocols for Private Set Intersection Cardinality (PSI-CA) were developed [CT10].
As the name suggests, these protocols also perform PSI, but they only output the
cardinality of the result, not the intersection itself. Yet, these solutions still reveal
the actual cardinality, whereas it might be desirable to only reveal whether there
is a match within a certain range. Figure 2.6 shows how these systems match
our design requirements. Further [Bal+11] presents a more efficient solution, but
which only matches exact strings, whereas we compare approximate strings.

Many different proposals to implement PSI or PSI-CA can be found in literature,
as was roughly sketched in Section 2.1.1. Another influence comes from the actual
data that is to be matched. If the set elements contain high entropy and are
drawn from a large domain, very simple techniques like cryptographic hashing and
comparing hashes might be sufficient as shown by Nagy et al. [Nag+13], while
other schemes for rather small domains map a set to a polynomial and perform
set intersection via operations on them [FNP04; KS05]. The polynomials must
have a degree linear in the size of the domain, with polynomial addition being an
equivalent to calculating the set intersection as shown by Kissner and Song [KS05].
However, the required multiplications of the polynomial representations are rather
expensive with a quadratic computational complexity in the size of the domain.

Secure Dynamic Programming (SDP)

All solutions presented above only estimate the actual string similarity measure
using a low distortion embedding from the string similarity metric space into the
set similarity metric space. While results are quite good, given the efficiency and
privacy achieved, results are never known to be correct. For highly accurate and
correct results, the original similarity functions must be reassembled closely by the
privacy-preserving protocol.
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Using generic techniques to achieve input-privacy in multi-party computation,
that is Secure Multi-Party Computation (SMPC) — e.g. through the use of gar-
bled-circuits or homomorphic encryption — any functionality can be evaluated
securely. However evaluating complex algorithms this way introduces large over-
heads. Nevertheless, protocols to securely compute dynamic programming algo-
rithms, that is the Levenshtein distance, Smith-Waterman or Needleman-Wunsch
were presented [JKS08; AKD03; RS10]. Figure 2.7 depicts how the properties of
evaluating the original dynamic programming algorithm through secure computa-
tion matches the requirements given in Section 1.2.

Priv. Effi. Appr. Non-Interac. Two-Party Thin Client Hide Size Infer.
3 7 3 7 3 7 7 7

Figure 2.7.: Fulfillment of requirements by selected exact Secure Dynamic Pro-
gramming systems. [JKS08; AKD03; RS10]

Oblivious Finite State Machine (OFSM)

Troncoso-Pastoriza, Katzenbeisser, and Celik [TKC07] presented a protocol that
obliviously evaluates a Finite State Machine (FSM) between two parties. The
client builds the FSM such that it accepts a string up to a certain edit distance
away from its own input and then jointly executes the FSM together with the
server. The server obliviously inputs a single character at a time. After the whole
server input is used, the FSM is checked if it reached an end state. This allows rich
functionality, exact and still privacy-preserving results with some sort of inference
control. The efficiency of this solution however is far from acceptable. Figure 2.8
matches the proposal to our requirements.

Priv. Effi. Appr. Non-Interac. Two-Party Thin Client Hide Size Infer.
3 7 3 7 3 7 3 3/7

Figure 2.8.: Fulfillment of requirements by selected exact Oblivious Finite State
Machine system. [TKC07]

String Matching Summary

Different basic building blocks were presented to construct privacy-preserving string
matching systems. Relevant literature using these building blocks was reviewed
and the respecting properties were matched against our requirements. Table 2.1
combines all previously seen figures for fulfillment of our requirements. Further-
more, Oblivious RAM (ORAM) is added wich perfectly hides access patterns but
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Scheme Priv. Effi. Appr. Non-Int. 2-Party Thin Size Infer.
TTP [SBR09; Dur+12] 3/7 3 3 3 7 3 3 7
PSI [HEK12] 3 3 7 7 3 3/7 3/7 7
PSI-CA [CGT11; CT10; Bal+11] 3 3 3/7 3 3 3 7 7
SDP [JKS08; AKD03; RS10] 3 7 3 7 3 7 7 7
OFSM [TKC07] 3 7 3 7 3 7 3 3/7

ORAM [Gol87] 3 7 3 7 3 7 3 3

Our 4,5,6 [BK13; KBS14; Bec15] 3 3 3 3 3 3 3 3

Table 2.1.: Fulfillment of requirements by selected privacy-preserving string match-
ing protocols.

comes at a very high cost. The overall scheme presented in this thesis is also
depicted in the last row.

Further related is literature on outsourcing string comparisons. Two parties
have private input and want a third party to evaluate a function over it. This is a
typical use case for two or more similar clients and is often used in the Cloud
Computing scenario. Next to generic outsourced algebraic operations [BA08;
Kha05; Wan+11] also the special case of outsourcing string comparisons or set
operations [AL05; Bla+12a; Ker12] is studied widely. Outsourcing specifically the
matching of genomes is considered by Chen et al. [Che+12], who split the task in
coarse- and fine-granular matching, with the coarse and computationally intense
matching being outsourced to public Cloud compute providers, while the detailed
matching for selected parts is done on a private, trusted Cloud. The discussed
scenario is read mapping, which is the matching of a private genome against a
publicly available reference genome. Kantarcioglu et al. [Kan+08] presented how
simple queries can be performed on outsourced genomic data.

2.1.3. Numerical distances

As posed in list 2.1, next to the similarity between sets or strings, many other
distance measures exist. Other important, often used and for our purposes closely
related measures are those termed “numerical” in the aforementioned list. This
groups together distances between points, polynomials and similar mathematical
structures.

The problem of calculating the Manhattan and Euclidean distance for Private
Similarity Search (PSS) was considered by Du and Atallah [DA01] and Laur and
Lipmaa [LL04]. They build protocols for private similarity search systems — very
similar to the problem in this thesis — in which a querier Alice and a database
owner Bob interact with each other. Alice inputs a vector for which Bob should
find the closest vector in his database using the l1- or l2-distance. The proposals
use a TTP to restrain from employing much less efficient secure computation that
could be based on generic secret sharing or customized protocols.
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2.2. Searchable Encryption

We will now leave the area of one-to-one comparisons of elements, but rather look
at secure indexes, which are compared to single queries for finding elements that are
similar. The use case most often is outsourcing of own data and later performing
a search over it. However, this area is still closely related to our overall topic.

In cases when usage of remote storage is unavoidable (may it be due to limited
local resources) and the storage provider does not enjoy the users unconditional
trust, outsourced data must be protected. Most importantly the main protection
goals of confidentiality and integrity of stored data must be ensured by the use of
appropriate cryptographic primitives. These requirements normally translate into
encrypting and appending authentication codes onto the data. However, for any
kind of utilization, data must be retrieved and decrypted. While there are now
generic Fully Homomorphic Encryption (FHE) schemes to operate even arbitrarily
upon encrypted data [Gen09], they are very computationally, communicationally
and memory-intense. Furthermore, these generic secure computation schemes offer
potentially richer functionality than necessary. One kind of rather simple but often
used functionality is search.

A typical use case might look like this: User A wants to outsource storage of own
data to an external, not fully trusted party. The user still wants to perform some
kind of search over an previously generated index without downloading the whole
index and performing the search operation locally. The quest for constructing such
a secure and efficient index scheme was first solved by Song, Wagner, and Perrig
[SWP00]. Du and Atallah [DA01] classify four models in which different settings
for searching over a database or document collection require the query to be kept
private.

These models are depicted in Figure 2.9, where Bob can always be called the
server S. Model (a) Private Information Matching (PIM) denotes the two party
setting, in which Bob (denoted by S) has his own private database, which should
be searched by Alice (denoted by A). It is required to keep the database as well as
the query private, so the trapdoor, as well as the resulting answer to Alice must
leak as few information as possible. In case Bob does not serve a private, but
a public database — depicted as (b) Private Information Matching from Public
Database (PIMPD) model — the whole setting transforms slightly, as replies may
leak additional information about the public database, while query privacy must
still be preserved. Both models share the property, that the server S most probably
knows the content of the database and thus, if trapdoors are matched directly and
not through some Secure Computation (SC) scheme, learns information about the
query more easily.
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Figure 2.9.: Models for privately querying a remote database. Source: Du and
Atallah [DA01]

Contrary to the first two models, where there are two parties providing input to
the search scheme, model (c) Secure Storage Outsourcing (SSO) has only Alice as
database and search query provider. The server S only serves as a HBC external
storage and compute provider that enables outsourcing of storage. The last model
(d) Secure Storage and Computing Outsourcing (SSCO) even introduces a third
user C, which queries the outsourced database of A on Server S. The SSO model
is typically considered for Symmetric Searchable Encryption (SSE) schemes, as
described in further detail in Section 2.2.1, whereas the SSCO model fits the Public
key Encryption with Keyword Search (PEKS) schemes, described in Section 2.2.2.

A trapdoor or token, constructed from a query, is typically used to perform
the search on the server side. Searchable encryption is most often used as secure
(reverse-) index, which maps a word w to a set of documents, often called document
collection D, which are tagged with the word w. Upon evaluation of a queried
word, most schemes return the set of document indexes D(w), which contain or
are tagged with the word w. The client can then decrypt and use the retrieved
indexes on its own discretion.

Such secure indexes find different applications. An often used motivation is
to perform a search over encrypted data outsourced in the Cloud Computing
paradigm while storing and querying confidential information like government
documents, hospital records, personal emails, sensitive business data or audit
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logs [Goh04]. Search schemes can therefore be found in many variations, some
key contributions came from Dan Boneh et al. [Dan+04], Chang and Mitzen-
macher [CM05], and Song, Wagner, and Perrig [SWP00]. Next to the solutions for
search over private data are also proposals for private accumulated hashing [BM93;
Nyb93] as solved in [Goh04] and subset or range queries [BW07; Goh04].

The first Searchable Encryption (SE) constructions used security definitions
known from symmetric, deterministic encryption systems, notably indistinguisha-
bility of ciphertext from truly random data [SWP00]. It was then shown that
the encrypted index is indeed computationally indistinguishable to random data.
However, an adversary can and will in practice not restrict itself at looking at the
encrypted index, but also use the supplied trapdoors to learn information about
queries and the index. These ciphertext-only (or index-only) attacks were therefore
not strong enough to withstand adversaries which took search queries and results
into account.

Goh [Goh04] defines semantic security against adaptive chosen keyword attack
(IND-CKA)using a game-based security definition and providing semantic secu-
rity in the SE model. The game is played as follows. The challenger C gives the
adversary A two documents V0, V1 of equal length but possibly different numbers
of contained words. C selects a bit b uniform at random and gives A the encrypted
index for Vb. The challenge for A is to decide from which document V0 or V1 the
index was created. If deciding this problem is hard, then it must also be hard for
any (key-) word used inside the index. Chang and Mitzenmacher [CM05] propose
an even stronger simulation-based definition that is called (IND2-CKA) by Goh
[Goh04]. It reduces the assumptions over Semantic Security Against Adaptive
Chosen Keyword Attack (IND-CKA), as it additionally allows the documents V0

and V1 to have unequal length. Curtmola et al. [Cur+06] show that all previous
schemes and security definitions only included non-adaptive adversaries. That is,
attackers, who do not include results from previous queries as knowledge to in-
fluence future queries. Further, all previous schemes are just secure against an
adaptive adversary, when all queries for the system are made at once. Indistin-
guishability using simulation-based definitions for the adaptive setting are given.

Searchable encryption schemes are typically described by a quadruple of polyno-
mial time functions (Keygen,Trapdoor,BuildIndex,SearchIndex). The following
definition from Curtmola et al. [Cur+06] describes their intention and usage.

• Keygen(1k) is a probabilistic key generation algorithm that is run by the user
to setup the scheme. It takes a security parameter k and returns a secret
key K such that the length of K is polynomially bound in k.
• Trapdoor(K,w) is run by the user to generate a trapdoor for a given word.
It takes a secret key K and a word w as inputs, and returns a trapdoor Tw.
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• BuildIndex(K,D) is a (possibly probabilistic) algorithm run by the user to
generate indexes. It takes a secret key K and a document collection, of size
polynomially bounded in k, as inputs and returns an index I such that the
length of I is polynomially bounded in k.
• SearchIndex(I, Tw) is run by the server S in order to search for the docu-
ments in D that contain word w. It takes an index I for a collection D and
a trapdoor Tw for word w as inputs and returns D(w), the set of identifiers
of documents containing w.

The proposed SE schemes can offer additional functionality or further desired
properties next to actually querying a secure index. The most prominent properties
are listed below and are briefly introduced.

• Private-key setting: User encrypts and outsources own data to external party.
Can achieve sub-linear search time in the index-size, which implies loosing
semantic security. See Section 2.2.1.
• Public-key setting: Third party encrypts data and stores it on a searchable
server. Different users can search and retrieve data. Typically build on
homomorphic encryption or functional encryption schemes. Can achieve se-
mantic security for the query under adaptive chosen-keyword attack and has
optimum time complexity sub-linear in the index size. See Section 2.2.2.
• Keyword search: There is a predefined set of keywords on index construction
time, which can be searched for. These schemes do not naturally support
search over different hierarchical levels, e.g. if the system should allow key-
word search over a natural language text and the keywords used to build the
index are words within the language, then it is not trivial to search for a
morpheme, phrase, clause or sentence. If the keywords used to construct the
index are 3-grams, then a search for 2-grams is in the same way not trivially
possible. All schemes use keywords one way or another, as they all rely on a
secure index and this index typically stores 〈Keyword,DocumentID〉 pairs.
• Fuzzy keyword search: Supports matching for word deviations, which are
similar to a keyword under some certain similarity measure. [Wan+14; Li+10;
BC14; Liu+11; Ibr+13]
• Dynamic/Updatable: Supports efficient updating of the secure index, more
efficient than reconstructing the whole index for every change on the index or
data set [Cas+14; SPS14; NPG14; KP13; KPR12]. These updates may leak
information about the updated keywords [KPR12; NPG14], require the client
and server to store additional data [Cas+14] or schemes may have an index
size in the order of number of documents times number of keywords [KP13].
• Multi-keyword : Supports search for multiple keywords at once, which should
be more efficient and concealing than performing multiple single keyword
searches and returning all results to the searching party for evaluation of oper-
ators. Can be split regarding supported logical operators conjunctive [Ker11;
GSW04; BW07; WWP08], disjunctive, arbitrary boolean queries [Cas+13]
or even regular expressions [Wei13; Sal+14].
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• Ranked : Supports ranking of results. Results are equipped with a similarity
score against the query and can therefore be ranked according to the used
similarity measure. [Cao+14; Cao+11]
• Multi-Key/Multi-User/Delegation: Allow several different users, having dif-
ferent keys to search the same data (secure index). Can be implemented
using a leveled homomorphic cryptosystem and attribute-based encryption.
Offers the additional functions AddUser,RevokeUser to the basic set of SE
functions. [Cur+06; EOM14]
• Malicious Server : Using universal arguments [BG02] and memory check-
ing [Blu+91] a SE scheme can be made secure in the malicious server model.
[Wei13]
• Adaptive Security : A system secure under the adaptive, simulation-based se-
curity model given by Curtmola et al. [Cur+06]. [NPG14; Cur+06; Cas+13;
Liu+14]
• Probabilistic: The search system returns false-positives or misses true-posi-
tives with low probability. [Goh04]

A natural follow-up step after performing a search, would be to either request
and retrieve the indexed documents di, or to select these documents for further
remote processing. Both steps can reveal the securely obtained indexes. Therefore
a PIR scheme can be used to retrieve the document set without leaking informa-
tion about the actual indexes. With regards to selection for further processing, a
FHE or Leveled Homomorphic Encryption (LHE) system can be used to evaluate
the filter function over the database, with input from the client (the homomor-
phically encrypted indexes) and from the server (the actual documents within the
database).

What follows is a detailed review of the literature for private and public key SE
schemes.

2.2.1. Private Key

Using a private key based scheme for constructing the index and trapdoors maps
well to the SSO model presented in [DA01] and Figure 2.9. So typically a client A
wants to outsource storage of his confidential data to a third party B.

Song, Wagner, and Perrig [SWP00] gave one of the first solutions to the search-
able secure storage outsourcing problem. The idea to build the secure index is
to convert all data into text-only documents, encrypt every word Wi deterministi-
cally using a Pseudo-Random Permutation (PRP) — a block cipher — and further
xor’ing ⊕ every block cipher encrypted word E(Wi) using a random seed Si fol-
lowed by a stream generated from the Pseudo-Random Number Generator (PRNG)
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Fki(Si), Ci = E(Wi)⊕ (Si|Fki(Si)). ki is generated fromWi using a keyed Pseudo-
Random Function (PRF) and | denotes concatenation. The index is a composition
of all Ci.

This specific structure supports matching of a trapdoor E(W ′i ). The search
then works as follows: The client A has a word Wi he wants to search for in
the document. From this he generates the trapdoor X = E(Wi) as well as the
stream cipher key ki and sends 〈X, ki〉 to the third party B. B goes over all
double-encrypted words in the index and generates (S′i|Fki(Si)′) = Ci⊕E(Wi). At
last he generates Fki(S

′
i) and checks if Fki(S

′
i) = Fki(Si)

′. In case the generated
stream matches the found one, the search for the token E(Wi) was positive and can
return the document and position where the hit occurred. The used techniques fall
under the hash-table paradigm, where (key-) words are deterministically mapped
to random values and can be found using an appropriate lookup.

The Song, Wagner, and Perrig [SWP00] scheme supports only exact matches,
leaks search and therefore access patterns. A search for multiple keywords at once
leaks the same amount of information to the server as searching for all keywords
individually. A malicious server is not supported, as well as ranked results or
multiple users under different keys. However, dynamic updates can be introduced
easily. The search time or computational complexity O(n) is linear in the size of
the index n. The index was proven to not leak information (other than number
and length of documents) as long as it is not queried.

Goh [Goh04] constructs a more efficient scheme, which computational complexity
is only linear in the number of documents m indexed O(m). This is due to a
per document Bloom filter (see Section 3.4), which by itself can be checked in
constant time O(1). All keywords for a document are added to the corresponding
Bloom filter. All keywords are salted using a secret master key and the document
identifier. All Bloom filters are chosen to have the same size, giving space for
enough keywords on the largest document. After keyword insertion, random 1s are
inserted into all Bloom filters, so that all Bloom filter contain the same amount
of inserted keywords and cannot be differentiated by their weights. The search
works straight forward. The server receives the key-salted hashes for the keyword,
that are hashed again by the server using the document IDs as salt. The final
hashes are used as indices to the Bloom filters to check if the respective keyword
was inserted into the corresponding document. The scheme is proven IND-CKA
secure given their introduced definition of IND-CKA.

Curtmola et al. [Cur+06] describes two efficient SSE constructions, set within
the two security classes defined by themselves. Their first scheme “SSE-1” is secure
in the non-adaptive setting, whereas their enhanced scheme “SSE-2”, which requires
higher communication costs and server storage, is also secure in the adaptive at-
tacker model. These schemes are constructed using an array R which contains
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entries to linked lists, where each list represents the set of documents linked to
a single keyword in the searchable encryption scheme. Next to this array a hash
table is used, which contains information to locate the corresponding position for
a queried keyword in the array R and to decrypt the linked list that is attached
at the array position. The decrypted list gives all the document IDs which link to
documents containing the keyword w.

Liu et al. [Liu+14] describe and mount a practical attack on search queries in
the searchable symmetric encryption setting. As query encryption is deterministic,
query frequencies for a keyword can be recorded. This frequency information is
matched with auxiliary frequency information about search queries, for example
using Google Trends1, Google n-grams [LMA12] or resources for specific domains,
like word frequencies over PubMed2. After collecting keyword frequencies, the
trapdoors could be linked to the corresponding keywords with high probability.
Based on this Liu et al. [Liu+14] propose the straight forwards enhancement of
querying several keywords at random together with the proper keyword, further the
index can be grouped and a random query is sent to each index group to blur the
keyword frequencies even more. The resulting scheme is attributed group-based.
They show that such randomized requests decreases the accuracy of the proposed
attacks significantly. It could be possible to also mount the described attacks
on indeterministic encryption schemes as they are used in the public key setting
described in Section 2.2.2. The idea is that identical queries will generate the
same results or access patterns and in such a way also allow to acquire frequency
information about the keywords used for the indeterministic trapdoors.

2.2.2. Public Key

Public key searchable encryption — PEKS [Dan+04] — schemes are typically
placed in a three party setting, where user A constructs an index and outsources
it to a less trusted store and compute server B, while a third party C can issue
queries against the secure index using the public key of A to generate trapdoors.
Such schemes can be proven secure under definitions like semantic security against
adaptive chose keyword search [Goh04]. Bellare and Boldyreva [BB07] introduced
asymmetric Efficiently Searchable Encryption (ESE), which allows users with ac-
cess to the public key to extend the index by adding keywords and also generate
trapdoors to search the index. The scheme is deterministic and achieves sub-linear
search time, which is bought by leaking access patterns.

Dong et al. [Don+13] proposes an interactive public key encryption with fuzzy
keyword search (IPEFKS) scheme. They use an embedding from the edit distance

1Google Trends: https://www.google.com/trends/ (last accessed: 2015-03-09)
2PubMed: http://www.ncbi.nlm.nih.gov/pubmed (last accessed: 2015-03-09)
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string metric to the Hamming distance from Ostrovsky and Rabani [OR07] and
measure closeness as Hamming distance between a keyword query and the inverted
index of the document store using the homomorphic encryption scheme from Fan
and Vercauteren [FV12]. For generation or insertion of elements into the encrypted
index, pairing based cryptography is used to check of an entry for a certain keyword
already exists.

The public key search schemes described above can be generalized under the
term Functional Encryption (FE). We will now briefly describe this generalization
to have an overview on the respective field and can put the presented SE schemes
into line with other enhanced encryption schemes, which come together under the
FE umbrella.

FE, introduced by Boneh, Sahai, and Waters [BSW11] describes a combination
of several lines of work, which offer additional functionality for encrypted data. In
general FE enhances traditional encryption schemes by introducing a functionality
F and extending the key generation and decryption algorithm definitions. Loosely
speaking, generation of a decryption key from a master key is bound to a certain
functionality F , such that Dec(kdF , c) = F (x) with Dec being the decryption
algorithm, kdF the decryption key for functionality F , c the ciphertext and x the
corresponding plaintext. A typical scenario would be that the data owner encrypts
all data and outsources it to a public HBC server. The data owner can then, using
the master key, generate specific decryption keys kdF for a certain functionality F
out of a family of functionalities F . This kdF can be given to clients, which can
then learn the result of applying F upon the encrypted data, but nothing else.

Such FE schemes include Identity-Based Encryption (IBE) [Sha85; BF03; Coc01],
that replace the traditionally randomly generated public key with a key that is the
function of the users identity. As such attributes that uniquely describe a user, such
as a name and address, or his email address can be used as the public key. It must
not be possible for the user to later on deny his connection to the same public key.
In such a system public keys are by design linked to users and thus authenticated.
There is no need for a Public Key Infrastructure (PKI) that manages, certifies and
distributes public keys on request. Variants on IBE are fuzzy-IBE [SW05], which
supports fuzziness in the public key. An often given use case is the utilization of
biometrical data — which is by default fuzzy — as key material. Another varia-
tion is hierarchical-IBE [HL02; Yao+04; GS02], which allows to define hierarchical
access control to data encrypted under the respective encryption system. Further-
more, having a PEKS scheme implies IBE schemes, as shown by Dan Boneh et al.
[Dan+04].

Further schemes are related to and also covered by FE. These include Attribute-
Based Encryption (ABE) [Goy+06], which allows fine-granular access control over
encrypted data by defining access structures. Collusion attacks are thwarted and
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users are able to derive new keys, which are more restricted in access than their
own keys. Delegation is a property, which is found in some FE schemes, i.e.
generating further restricted keys given the own decryption key. This is typically
associated with Hierarchical Identity-Based Encryption (HIBE) [HL02; GS02] and
ABE [Goy+06] or other predicate encryption systems that support delegation like
presented by Shi and Waters [SW08].

Furthermore, access policies can be associated with the private decryption keys
(key-policy ABE) or the ciphertext (ciphertext-policy ABE). Broadcast-encryption
[FN94; AI09] extends the functionality of ABE schemes by introducing direct revo-
cation, by which revocation of private keys can be performed without updating all
other private keys. Searchable Encryption (SE) [Cur+06; KPR12], as described
in Section 2.2 is also covered by FE, similarly to different predicate encryption
schemes like [BW07; KSW08; SW08].

Access Patterns While guaranteeing high security under these assumptions, they
still leak access and very likely search patterns [Liu+14]. Similar to the leakage
of search patterns in the private key setting described in Section 2.2.1 and attacks
building upon this information, leaked access patterns can be exploited to iden-
tify queries. Islam, Kuzu, and Kantarcioglu [IKK12] describe an attack based on
revealed access patterns. Boneh et al. [Bon+07] present a system that does not
leak access patterns, but is also rather inefficient as pattern hiding is bought by
an square root sized overhead in the size of the document collection. Leakage of
access patterns can even result in key recovery attacks.

The proven way to even hide access and therefore also search patterns is to use an
ORAM [Gol87], which however is highly inefficient due to polylogarithmic overhead
in all scheme parameters — that is communication, computation, storage and
number of protocol rounds. Even the current, more efficient, lighter constructions
are still unpractical [Cur+06]. Alternatives to hide access patterns for retrieval of
documents are single-database PIR schemes first described by [KO97]. Ostrovsky
and Rabani [OR07] show how to use such computational PIR schemes to search
on data, even if considering continuously updated or streaming data. However,
to hide access patterns, such schemes must touch the whole database for a single
query, as the server would otherwise learn that the user is not interested in the
untouched entries. Taking many queries of possibly different users together in a
batch can amortize the per-query costs. A single run over the whole database
would again touch every entry, but answer for all considered queries are generated
at once, which was shown by Ishai et al. [Ish+04] and generalized in [Ish+06].
Further, specific optimizations for certain architectures were presented like generic
keyword searches in computational single-server PIR schemes, optimized by Blass
et al. [Bla+12b] towards efficient execution in the Cloud computing paradigm with
the help of the widely used Map-Reduce model.
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2.2.3. Authenticated Data Structures

When dealing with not-fully trusted parties that store and operate on data — as it
is the case with searchable encryption, it might be useful to perform different sanity
checks from time to time. These can include Proof of Data Possession (PDP) or
Proof of Retrieval (PoR) for stored data, as well as authenticated data structures or
in general verifiable computing for checking on correct evaluation of computational
tasks.

Research into PDP [Ate+07], providing efficient detection of unauthorized changes,
and PoR [JK07], guaranteeing correct retrieval even in case of unauthorized changes,
quickly emerged into new research fields. PoR schemes typically employ erasure
coding to correct a small amount of incorrect data and thus accommodate for small
scale tampering.

While PDP and PoR schemes allow validation of fixed and static data, it is
highly desirable to check and validate correct operation on remote data. One way
to achieve this goal in general is to use verifiable computing [GGP10]. The idea
is that a function F : 0, 1n → 0, 1m should be evaluated remotely. This function
is represented as Yao’s garbled circuit [Yao86], while all input is encrypted using
FHE [Gen09]. First, the input x is enhanced by random labels, which — depending
on the input bits — transform to random labels for the output bits. The client
can then, after retrieving the output bits and labels, extract F (x) and check if
the labels are correct for the received output. The chance of the worker to guess
correct labels must be very small, so that the client is ensured that the output is
correct. FHE is employed to hide the output labels from the worker. If the worker
would see F (x) together with the correct labels, he could also present F (x) with
the associated output labels for any different input x′, without the client being
able to detect the misbehavior. The downside of this approach lies within the
associated overhead of evaluating a garbled circuit over a FHE system.

Other approaches use authenticated data structures [Tam03], which allow oper-
ations upon them to be checked and verified. The Merkle hash tree [Mer90] is an
example for a static data structure, which allows answers to queries to be checked.
The construction does however not easily allow interaction with the data. Naor and
Nissim [NN00] solved this issue by proposing authenticated trees, which can han-
dle updates upon the stored data. Further authenticated tree-based protocols were
presented by Buldas et al. [Bul+00], Gassko, Gemmell, and MacKenzie [GGM00],
and Kikuchi et al. [Kik+99]. Simpler and thus more efficient constructions succeed-
ing the authenticated trees were skip-list based protocols [GTS01; Mic01], which
need no rebalancing operation to be performed, as balancing happens over time.
Ranked based authenticated skip lists were the followup constructions which were
optimized for storage size improvements and specifically designed to store files
remotely [Erw+09].
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2.3. Inference Control

Defining inference control in a broader sense might be done intuitively by stating
that a privacy-preserving scheme should only output as few information as pos-
sible and as much as necessary. However in this sense most privacy-preserving
schemes implement inference control. A stricter definition would require such a
scheme to offer mechanisms for input or output regulation. Schemes employing
input regulation will learn something about the input and be able to detect and
mitigate — being active. Whereas output regulation works might also take in-
formation about the input into account, but could also work independent of the
input. A possible approach for output regulation would be to employ anonymiza-
tion techniques known from privacy-preserving data publishing.

Output Inference Control Schemes Output inference control can be achieved
in several ways. The regulator can, for example, perturb the results, just before
returning them to the querier. Perturbation can again be done using many dif-
ferent techniques, with differential privacy [Dwo06] being an actively studied and
recently used example. It gained popularity for giving impossibility results on
absolute privacy guarantees and providing relative privacy guarantees for a single
user participating in a database or not. Next to perturbation, data aggregation,
generalization and suppression are well known methods from the Privacy-Preserv-
ing Data Publishing (PPDP) research community. The final information that the
output carries can be limited down to a single bit. This could be a binary an-
swer to an arbitrary question like: “Is the distance between two inputs below a
certain threshold?” (or within a given range). The functionality of calculating the
distance in a privacy-preserving way can be delivered by any privacy-preserving
distance calculation scheme. The (output) inference control functionality would
be the range testing and binary answer generation. Domingo-Ferrer [Dom08] gives
an overview over such methods, but not in the context of secure computation, but
data publishing. As such there is no relation to input leakage from other parties
or application of these techniques upon encrypted data.

Input Inference Control Schemes Input inference control requires the input of
the privacy-preserving algorithm to be checked in any way to decide if and possi-
bly what level of inference control actions should be applied. Of course to be able
to decide input inference control prerequisites, the server must either learn some
information about the input of one or more participating parties, that is the pri-
vacy-preserving scheme leaks information towards the server with the purpose of
applying inference control. This can be done for HBC parties by actively providing
input to the inference control allgorithm, like checksums, message authentication
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codes or commitments. For malicious supplicants, the input to the inference con-
trol protocol must be validated to be correct, complete and up to date. This can be
done using ZKPs to ensure input to the inference control prerequisites is properly
derived from the input to the overall privacy-preserving scheme. To the best of
our knowledge, these schemes are not studied together with secure computation
and thus there is a lack of related work.

2.4. Symmetric Encryption Decrypted Homomorphically

As homomorphic cryptographic schemes are typically based upon randomized
asymmetric cryptography, they inherit their drawbacks like slow overall perfor-
mance, relatively large memory consumption and ciphertext expansion due to ran-
domization, leading to transmission and storage overheads. All of these drawbacks
are not really desired and it would be nice to at least partially circumvent them.

To increase storage and communication efficiency while using homomorphic en-
cryption systems, a combination of symmetric and asymmetric cryptography —
similar to the construction of a hybrid cryptographic system as used by [Cal+07]
and [Kal98] — was proposed. In the hybrid cryptographic system case, an asym-
metric system is used to encrypt a symmetric key ks, which is used for a symmetric
cryptographic system to encrypt the actual data. Through such a construction,
properties from the asymmetric system are combined with the efficiency of sym-
metric cryptography.

The idea of combining a symmetric cryptosystem for efficient client side encryp-
tion and transmission with an homomorphic cryptographic system for outsourced
processing was mentioned in several papers. Data is encrypted symmetrically be-
fore sending it to a remote server for further processing. The cipher used for this
will be referred to as the transmission-cipher. It should have minimal cipher-
text expansion and a very simple decryption circuit. The server received data
encrypted under the transmission-cipher and reverses the transmission encryption
(typically symmetrical encryption) within the homomorphic encryption using the
homomorphically encrypted symmetric key. It obtains the data encrypted under
the homomorphic system, which we will refer to as the compute cipher. Or simply
stated, there is a transition function, which takes the symmetrically encrypted data
and the symmetric key — homomorphically encrypted and outputs the same data
encrypted under the homomorphic cryptographic system. The encrypted data will
never be decrypted and plainly accessible at the server side.

The reasons given to motivate such a hybrid system are twofold. Brakerski,
Gentry, and Vaikuntanathan [BGV11] brings up the idea of using bootstrapping
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within a leveled homomorphic cryptosystem upon an AES circuit to save storage
space until data must be securely processed. Next to just promoting the use of
a symmetric system in front of an homomorphic one, [GHS12b; DHS14; LCT14;
Che+13] use the AES decryption circuit as a benchmark to compare the perfor-
mance of homomorphic cryptosystems against each other. Therefore, they test
and optimize their leveled/fully homomorphic cryptosystems to evaluate the AES
decryption circuit as fast as possible.

The generic FHE construction was improved regarding its expansion factor and
operation costs by introducing the concept of batching [BGH13; GHS12a; Che+13],
which allows storing a vector of plaintexts within a single ciphertext and operate
on all elements like in the Single Instruction Multiple Data (SIMD) setting.

There are two different ways of utilizing batching when operating on Advanced
Encryption Standard (AES) circuits homomorphically. We follow the naming given
by [Che+13].

• Byte-Wise Bitslicing refers to splitting the 128 bit state into groups of 8 bit,
with a single ciphertext carrying one bit of each group and thus 16 ciphertexts
are necessary to store and evaluate a single AES block homomorphically.
• State-Wise Bitslicing, also known as fully bit-sliced stores each bit of the
AES state in a different ciphertext, leading consequently to 128 ciphertexts
to represent the state of a AES decryption circuit.

One of the fastest homomorphic AES decryption evaluations is reported by Le-
point, Coron, and Tibouchi [LCT14], requiring (amortized by decrypting many
blocks in parallel) roughly 23 seconds per block. The overall runtime was about
three and a half hours, using a public key of size 11 GB.

The compression for homomorphic ciphers (presented in Chapter 6) decodes a
single bit in about one millisecond (using [NS98] with a 32 bit sized plaintext group
order), or roughly 0.1 seconds for a symmetrically encrypted block of 128 bit. It
must be kept in mind that these performance values from the literature on AES
decryption circuit evaluation use a LHE system with a security parameter between
72 and 80 bit. Our system uses a much higher security parameter between 80 and
128 bit. Even more, our proposal scales much better with the security parameter,
compared to the performance penalty received for increasing the security parameter
for LHE or FHE. See also Chapter 6 for the detailed construction, security proof
and discussion.

A few contributions try to improve the overall performance of the hybrid sym-
metric/homomorphic cryptographic system construction. To achieve a perfor-
mance gain, they especially use ultra-lightweight symmetric cryptographic sys-
tems like PRINCE [Bor+12] to achieve better homomorphic decryption perfor-
mance [SES14], SIMON [Bea+13] is used in [LN14] or Trivium [Can06] in [Hu13].
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Increased performance then follows from the use of more efficient homomorphic
systems, as well as from the simpler decryption circuits of the lightweight crypto-
graphic systems. Canteaut et al. [Can+15] uses the block cipher family LowMC
[Alb+15], Trivium and Kreyvium Canteaut et al. [Can+15], to construct a similar
system, which they call homomorphic ciphertext compression.

Hu [Hu13] describe a scheme conversion framework in which an additive or
somewhat homomorphic encryption scheme is combined with a multiplicative ho-
momorphic scheme to evaluate more complex functions. More detailed, an additive
homomorphic encryption scheme can be converted into a multiplicative encryption
scheme, while a somewhat homomorphic encryption scheme can be converted to
a multiplicative scheme and also back — through evaluation of the decryption
function of the multiplicative scheme — to further extend the range of possible
functions that can be evaluated homomorphically. Furthermore, a client side com-
pression is described using a symmetric cipher at the client and homomorphic
evaluation of the symmetric decryption circuit at the server. The used symmetric
system is the light weight stream cipher Trivium [Can06].

Reduction of communication and storage costs is also investigated in [CK13],
which combines public-key encryption schemes with somewhat or fully homomor-
phic encryption schemes. Data is first encrypted under the traditional public-key
encryption scheme without any padding and later – on the server side – transformed
into an encryption under the final somewhat homomorphic encryption scheme. As
some asymmetric cryptographic system provide rather simple decryption circuits,
transition from the transmission-cipher to the compute-cipher can also be efficient
for pure asymmetric transmission-ciphers. If the first public-key scheme already
provides homomorphic properties, the function family of the combined scheme can
be enhanced similar to the results of [Hu13].

More loosely related, several other publications are also trying to increase the
efficiency of very basic secure computation primitives. For example by trading off
functionality for evaluation efficiency [ZW14], or combining garbled circuits with
homomorphic encryption schemes [KSS09] to use the most efficient scheme for the
next operations and perform costly transitions between them.

The schemes, which perform homomorphic decryption of the symmetric cipher,
are instantiated to just be able to evaluate the decryption circuit, but nearly no
further functionality. This increases the decryption performance, but leaves no
space for further actual computations.

To understand the background of these decisions, one must look at the multi-
plicative depth of a circuit. The multiplicative depth of a circuit is defined as the
length of the longest multiplicative path — only counting multiplications along
the path — from any input to any output of the algorithm. The cryptographic
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system must be configured and build to be able to handle this maximum multiplica-
tive depth, while its efficiency typically decreases when the possible multiplicative
depth is increased.

2.4.1. Fully Homomorphic Encryption Friendly Algorithm Design

FHE systems can be seen as a virtualization layer between the host CPU and a
virtual CPU, providing oblivious instruction evaluation. This concept of a privacy-
preserving virtual machine has been studied several times. This even goes into the
design of a fully homomorphic cryptographic processor, offering instructions to
perform fully homomorphic operations natively on the processor [BB13]. However
specializing algorithms towards efficient execution on such virtual processors, or
upon specific FHE or LHE systems is a research field still open for exploration
and exploitation. This is mentioned as side notes at times [Fau+13], but not yet
studied in depth.

Such a specialization follows the research of efficient algorithms for other re-
stricted devices, like Application-Specific Integrated Circuits (ASICs), microcon-
troller or Field-Programmable Gate Arrays (FPGAs), for which lightweight and
ultra-lightweight cryptosystems are designed and specifically challenged in projects
like eSTREAM [RB08]. The same can apply to the construction of cryptosystems,
which are optimized for efficient evaluation within FHE systems.

The argumentation for having optimized algorithms for virtual architectures fol-
lows the same line of arguments as for other real architectures. Single operations
and construction techniques have a very different performance impact on different
architectures. An example are conditional jumps and variable length loops, these
are more or less efficiently implementable on architectures, which work on plain
data, but cannot be used on architectures working on encrypted data. Program
flow cannot be changed if the information for deciding is not available. However,
encrypted architectures can simulate such conditional jumps by evaluating all pos-
sible paths. Such behavior of course quickly leads to very inefficient algorithms.

Another example are lookup-tables, which are used quite often in normal pro-
grams. However, due to the above mentioned issue of performing conditional
jumps, lookups within tables are not easily implementable on encrypted archi-
tectures. To work around this, efficient logic is needed to replace the tables and
deliver correct results. This is only feasible for small tables and is used to effi-
ciently perform homomorphic evaluation of the AES decryption circuit by Doroz,
Hu, and Sunar [DHS14]. They use a technique presented by Boyar and Peralta
[BP10] from the area of logic minimization to get a low gate-count circuit for the
AES decryption logic.
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FHE, Somewhat Homomorphic Encryption (SHE) and LHE typically includes
noise within its ciphertexts, which is low after encryption and grows together with
the homomorphic operations performed. The amount by which the noise grows
differs between homomorphic addition and homomorphic multiplication, with ho-
momorphic multiplication resulting in a much larger growth rate than homomor-
phic addition. The noise level determines if the ciphertext can still be decoded
correctly and thus sets limits on the maximum additive and multiplicative circuit
depth, that a certain SHE or LHE can evaluate. As multiplicative multiplication
increases the noise much faster, algorithms should mainly be optimized in their
multiplicative circuit depth.

Lightweight algorithms intuitively seem to fit to the restrictions enforced by ho-
momorphic cryptography, are however optimized for different goals. Looking at
symmetric cryptographic schemes, one might be a low gate count as for SIMON
and SPECK [Bea+13], or LED [Guo+11]. Another would be to achieve a high
throughput to gate-size ratio like LBlock [WZ11], or low latency as offered by
PRINCE [Bor+12]. The downside of having simple round functions, leading to
small silicon footprints is the typically increased number of rounds performed for
lightweight ciphers. An example is KATAN and KTANTAN proposed by De Can-
nière, Dunkelman, and Knežević [DDK09], which uses 254 rounds to achieve the
desired security level of 80Bits.

First optimizations in this regard are studied by Tillich and Smart [TS14], which
look at the performance of different functions, construct their circuits and compare
them regarding their evaluation within Multi-Party Computation (MPC) and FHE
systems. Furthermore Albrecht et al. [Alb+15] construct the LowMC cipher family,
which offers a reduced multiplicative size of the cryptographic primitive, making it
favorable for MPC and FHE evaluation. Upon these constructions Canteaut et al.
[Can+15] describes a system that uses the LowMC family to perform homomorphic
ciphertext compression with increased efficiency.
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We are going to describe mathematical, cryptographical and otherwise technically
necessary primitives used over the next chapters for constructing a privacy-pre-
serving comparison system.

3.1. Edit Distance

A typical string comparison algorithm is the Levenshtein distance [Lev66], which
is often also referred to as edit distance and describes the minimum number of
insertions, deletions and substitutions needed to transform one string s1 into an-
other s2. The result is a distance measure dE, which can easily be converted into
a similarity score sE between zero and one by: sE = 1− dE

dEmax
.

dEmax , i.e. the maximum distance between two strings, equals the length of the
longer string and can thus be replaced by dEmax = max(|s1|, |s2|) regarding the
Levenshtein distance.

sE = 1− dE
max(|s1|, |s2|)

The algorithm for computing the Levenshtein distance belongs to dynamic pro-
gramming and outputs more than just the actual distance between two strings.
The original algorithm also generates a table with distances between all prefixes
of s1 and s2. Table 3.1 depicts such a table for the strings security and secrecy.
The green field on the bottom right gives the actual edit distance, while the red
fields describe one possible edit path — which fixes the sequence of operations
to transform one string into the other. As the edit path is constructed using a
backtracking algorithm starting with the edit distance result, it depends on the
actual backtracking algorithm which out of the possible edit paths is build.
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s e c r e c y

0 1 2 3 4 5 6 7
s 1 0 1 2 3 4 5 6
e 2 1 0 1 2 3 4 5
c 3 2 1 0 1 2 3 4
u 4 3 2 1 1 2 3 4
r 5 4 3 2 1 2 3 4
i 6 5 4 3 2 2 3 4
t 7 6 5 4 3 3 3 4
y 8 7 6 5 4 4 4 3

Table 3.1.: Table generated by original Levenshtein algorithm [Lev66] given equal
weights for insertion, deletion and substitution.

Edit Distance Extensions Extensions of the Levenshtein distance introduce weight-
ing of single operation or the swapping of consecutive characters, which can again
also be weighted. Several optimizations were presented to calculate only nec-
essary parts of the overall table to reduce the quadratic time complexity from
O(n ·m) with n = |s1|,m = |s2| being the lengths of the strings. Assuming a
maxium edit distance for two strings dEmax , Ukkonen [Ukk85] defines a method
to only compute values around the table diagonal. This algorithm has complexity
O(dEmax ·min(n,m)).

Finally a Levenshtein automata [SM02] is a Finite State Machine (FSM), which
is build given an input string s1 and a maxium edit distance dEmax and accepts
any other string s2 with an edit distance up to dEmax .

3.2. Q-Grams

A string can be converted into and represented by a set of shorter strings. This
allows set operations to estimate results of string operations. Several ways exist
to generate this representative set, depending on the properties that should be
preserved from the original string. We use the notion of q-grams, which defines
items over the input string and selects q consecutive items as a q-gram. Different
domains use deviating definition for what actually an item is. As an example,
gram can refer to a character, word, syllable or even base pair or nucleic acid in
biology. We will always use gram to denote a single character of a string. As such
a q-gram is a substring of q consecutive characters.

Let s[i,j] be the substring of a string s starting at position i and ending at
(including) position j, thus s[i,(i+q−1)] — or just short si — defines the q-gram
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starting at position i in s. For a string of length n = |s|, nq = n − q + 1 q-grams
exist. The complete set of all possible q-grams is then defined as S =

⋃nq

i=1 si.

The resulting elements in S are independent of their original position, informa-
tion about repetitions within strings and permutations between substrings is not
captured anymore by the set representation. To accommodate for this, the q-grams
are prefixed with their original position within the string s. A positional q-gram
is then defined as (i, si).

Using this construction, characters at the beginning and end of the string are
in less q-grams than characters in the middle of the string. An example: The first
and last character is only present in a single q-gram — the first and last q-gram.
On the other hand, for strings with length n ≥ 2q− 1, characters in the middle of
s are present in q q-grams.

To even out the underrepresented characters at the beginning and end of the
sequence, an extension of q − 1 identical characters, which are not part of the
original alphabet, is appended on both sides. Positional q-grams on extended
strings were introduced by Gravano et al. [Gra+01].

____CGACATGGTTACAGACTC____

Position i=7

q=5

(7,CATGG)
Positional
q-gram:

Extension
by (q-1)

____CGACATGGTTACAGACTC____

Position i=8

q=5

Extension
by (q-1)

(8,ATGGT)
Positional
q-gram:

Figure 3.1.: A sliding window moving over a string to generate q-grams. The string
is prefixed with q−1 non-alphabet symbols and the position is attached
to create positional q-grams.

Figure 3.1 visualizes the sliding window that moves over the extended input
string to read out positional q-grams.

The concept of q-grams is related to k-mers and n-tuples. A generalization of
q-grams are skip-grams. As such a k-skip-q-gram also consists of q items, which
must however not be consecutive and may be up to k positions away from each
other.

Selecting the correct value for q is a non-trivial task. From a “feeling” point of
view, it seems intuitive that the longer the string s is, the bigger q should be. As
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such, for representing single words, q = 2 could be fitting, while sentences might
achieve better results with something like q = 4 and documents like scientific
publications or patents could be best represented around q = 9.

We will however eliminate the need to choose q on our own, as we will be using
a variable length gram algorithm, which is trained using a reference dataset.

3.3. VGRAM

Different techniques for selecting a feasible value for q were proposed, however
instead of using a single fixed value for q, we use an algorithm that choses the
length of the current gram dynamically, based on its frequency within a previously
given reference dataset. The algorithm is called VGRAM and was proposed by Li,
Wang, and Yang [LWY07].

Following the VGRAM algorithm, a range of possible values for q is defined by
[qmin, qmax] ⊂ Z. All possible positional grams within this range are generated and
its frequency over a predefined dictionary is recorded. A frequency threshold then
defines the desired frequency a gram should have, which is leveraged during the
actual gram generation. The gram length is chosen on-the-fly while constructing
grams in such a way that the frequency of the generated gram is as close as possible
to the frequency threshold.

The final grams set does not include positional information to allow grams
with insertions or deletions on previous positions and thus changed indices to
be matched. Li, Wang, and Yang [LWY07] also defines a relation between the edit
distance and the set intersection cardinality upon a VGRAM set. This is done
by giving a lower bound on the number of common grams between two strings
converted via VGRAM using the same dictionary. Further a upper bound on the
Hamming distance between bit vectors, representing the VGRAM sets is given.

We used the “Human Mitochondrial Genome Database” [IG06] as a reference
dataset to train the algorithm. The resulting grams — chosen by the VGRAM
algorithm — are similarly common within the representative training data and
thus should yield comparable frequencies for the actual data. This means larger q
values are used for more frequent grams, whereas shorter grams are preferred if a
sub-string is not well represented within the dictionary.
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3.4. Bloom Filter

A Bloom filter is a probabilistic data structure representing a set. Elements can
be added to the data structure and member tests can be performed. Checking for
an element is probabilistic due to the design of the filter.

Let b be an array of bits of length n and bi the i-th value within the array with
i ∈ [1, n]. Further let h1 . . . hk be k hash functions, with uniformly distributed
output in [1, n]. For initialization set bi = 0 : ∀i ∈ [1, n].

To add an element e to the filter, evaluate all k hash functions on e and treat
the results as indices for b to set these positions to one. Set bhj(e) = 1 : ∀j ∈ [1, k].

A member test for element e′ is performed by evaluating all k hash functions
upon e and checking the referenced positions in b. If at least one of the positions
bhj(e′) is set to zero, the element has not been added to the Bloom filter before. If
all bits are set to one, however, one cannot be sure if a previous insertion of e′ set
these, or if these are hash collisions with with other elements.

Using these operations a set is represented by adding all set elements to the filter.
Depending on the filter parameters, Christensen, Roginsky, and Jimeno [CRJ10]
define the probability pfp that a false-positive member test occurs — i.e. that an
element is falsely identified as being added to the filter before — by equation (3.1).
l carries the number of inserted elements, k represents the number of hash functions
used and n specifies the size of the binary array.

(3.1)pfp =

(
1−

(
1− 1

n

)kl)k

(
1− 1

n

)kl specifies the probability that a single bit is still zero after l elements
have been added to the filter of length n using k hash functions. This formula can
be transposed to calculate the required length n of a Bloom filter given the desired
false-positive probability pfp for the last inserted element and the actual number of
elements to be inserted l. The equation (3.2) then specifies the required bit length
to achieve a certain false-positive probability.

(3.2)n =
−1

kl

√(
1− k
√
pfp
)
− 1
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As specified above, Bloom filters can be used for membership tests and esti-
mations of set cardinality, Papapetrou, Siberski, and Nejdl [PSN10] analyzed how
the number of hash functions used for constructing the Bloom filter influences the
accuracy of estimated results. It was concluded, that the optimal number of hash
functions to do cardinality estimation is one. Based on this — as we also want to
do cardinality estimation — we fix k = 1 and only use a single hash function to
build and query Bloom filters throughout the rest of the thesis.

By having k = 1 Equation (3.1) simplifies to pfp = 1 − (1− 1/n)l and Equa-
tion (3.2) to n =

(
l
√

1− pfp − 1
)−1 respectively.

Bloom Filter Operations

Due to the structure of a Bloom filter, it can be easily used to approximate set
operations for represented sets. Given two Bloom filters b1, b2 representing the
sets S1, S2, the primitive set operations union S1 ∪ S2, intersection S1 ∩ S2 and
symmetric difference S14S2 are estimated using the binary or b1 ∨ b2, and b1 ∧ b2
and xor b1⊕ b2 operations between the binary representations of the Bloom filters
b1 and b2.

The absolute set complement denoted SC1 requires a universe U to be defined,
with S1 ⊆ U . A possible equivalent for the Bloom filter b1 can be found in
the binary negation ¬b1, but it must be used carefully. If there is a universe
U , it is very unlikely that ¬b1 is a good approximation of SC1 . However, the
absolute set complement can be used to derive a good approximation for the relative
complement S1 \ S2 = SC1 ∩ S2 through (¬b1) ∧ b2 or short b2 − b1.

Given the bit-wise or operation ∨ upon Bloom filers, one can see that the Bloom
filter b∨ = b1 ∨ b2 is identical to the Bloom filter b∪ derived from S1 ∪ S2. This
is however not true for set intersection and the absolute complement, as described
above. Intersection ∧, relative complement − and symmetric difference ⊕ may
produce different representations, compared to applying the set operation upon
the original sets and deriving the Bloom filter afterwards.

A simple example for k = 1 is S1 = {a} and S2 = {b, c} with b producing a
collision with the hashed value of a. Surely S1 ∩ S2 = ∅ and the cardinality of the
thereof generated Bloom filter is zero |b∩| = 0, but due to the collisions generated,
b∧ = b1 ∧ b2 = b1 the intersection equivalent produces a non-empty Bloom filter.
Further more, a membership test on b∧ regarding the element a or b returns true,
which is clearly wrong.
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3.5. Homomorphic Encryption

An homomorphic encryption scheme, is a cryptographic encryption schemes, which
exhibit at least one homomorphism between the plaintext group and ciphertext
group.

A client wants to outsource computation to a server and uses a homomorphic
cryptographic system to hide the sensitive data from the less trusted compute
server. He chooses a cryptographic system that can evaluate the desired func-
tionality homomorphically and encrypts all private input data using this scheme.
All necessary plaintext data together with the generated encrypted ciphertexts
are send to the compute server. The server performs all necessary homomorphic
operations and sends the result back to the client.

Definition 3.1: Homomorphic Encryption Scheme

A homomorphic encryption scheme (HE) is a quadruple H =
(KeyGenH,EncH,DecH,EvalH) of polynomial time algorithms.
KeyGenH(1κ) = (sk, pk) is the key generation function, which takes a
security parameter κ and outputs the secret key sk ∈ KS and public key
pk ∈ KP . EncH:KP × PH → CH denotes the encryption function with
EncH(pk,m) = c and equivalently DecH:KS × CH → PH the decryption
function with DecH(sk, c) = m′. Plaintexts are m,m′ ∈ PH and c ∈ CH
is a ciphertext. EvalH:KP × F × C∗H × P ∗H → CH performs an homomor-
phic evaluation of some functionality. Let EvalH(pk, F, c̄, p̄) be such an
evaluation for a function F ∈ F given some ciphertexts c̄ ∈ C∗H, and some
plaintexts p̄ ∈ P ∗H. Decryption and evaluation must be correct, that is
DecH(sk,EncH(pk,m)) = m and DecH(sk,EvalH(pk, F, c̄, p̄)) = F (m̄, p̄).

The function family F depends on the choice of the actual encryption scheme
and its supported homomorphisms. In case EvalH needs no plaintext input, we
just use EvalH(pk, F, c̄) and imply an empty plaintext vector. For example, Partly
Homomorphic Encryption (PHE) schemes can be split into Additive Homomor-
phic Encryption (AHE) [Pai99; NS98] and Multiplicative Homomorphic Encryp-
tion (MHE) schemes [ElG84; RSA78]. Schemes that support both homomor-
phisms, addition and multiplication can be split into Somewhat Homomorphic
Encryption (SHE), Leveled Homomorphic Encryption (LHE) [LCT14] and Fully
Homomorphic Encryption (FHE) [Gen09; Bra12]. They typically differ in the op-
erational depth of the function that can be evaluated, especially depending on
the maximum path length counting consecutive multiplications throughout the
evaluation of the function F .
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Asymmetric homomorphic cryptographic systems need to be randomized and
thus indeterministic to achieve the notion of semantic security [GM84]. Seman-
tic security implies that an adversary, given a ciphertext, gains no information
about the corresponding plaintext. Randomization is achieved using a random
value as input to the encryption function EncH, however for the sake of brevity
this randomization parameter is omitted. In case this parameter is relevant for
the scheme, it will be explicitly included — typically as r, r′, r′′, r′′′ — which are
independent uniform random variables, unless specified differently. To increase
readability and ease of presentation further the public key parameter can also be
omitted if the context is clear and the shorter notation E(m) = EncH(pk,m) is
used. This notation might also carry the randomization parameter, i.e. E(m, r).

Next to PHE exist schemes that offer increased functionality. These are denoted
SHE and LHE and offer the possibility to evaluate both operations homomorphi-
cally (addition and multiplication) while being restricted to low multiplicative-
depth circuits. The difference between them is that LHE guarantees a certain
multiplicative depth that can be evaluated properly, whereas SHE does not pro-
vide such guarantees. If F uses too many consecutive multiplications for a specific
instantiation of an SHE or LHE system, the correctness of decryption is not guar-
anteed anymore. In contrast to these schemes, the function family F for a FHE
contains all boolean functions of arbitrary (multiplicative) depth.

3.6. Encrypted Bloom Filter

A Bloom filter can be used to perform cardinality estimation or run membership
tests over a set. It further allows to perform equivalences of set operations on two
Bloom filter representations. These basic set operations like union (∪), intersection
(∩) or difference (\) can be used to construct metrics over sets like the Jaccard
index J(X,Y ) = |X∩Y |

|X∪Y | or Sørensen S(X,Y ) = 2|X∩Y |
|X|+|Y | . Such operations upon

Bloom filters were discussed in Section 3.4.

Representations of strings or character sequences were constructed in Sections 3.3
and 3.4 using the VGRAM [LWY07] algorithm and Bloom filters. However despite
Bloom filters being a very efficient data structure for performing the desired op-
erations, they are themselves not a good way to preserve the confidentiality of
the original strings. Several publications including [KS15; Kuz+11; Nie+14] show
that a lot of original information can be reconstructed given a typical Bloom filter.
Even so they also propose Bloom filter configurations which limit the leakage ac-
cording to their attack scenario, the privacy guarantees of a Bloom filter [BBL12]
are too weak for our concern.
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Thus we construct encrypted Bloom filters to preserve privacy of the filter con-
tent. An additively homomorphic cryptosystem is used as described in Section 3.5.

A homomorphic cryptosystem offers at least one homomorphic property to evalu-
ate an operation ⊕ on the ciphertext, which translates into applying the equivalent
operation + on the plaintext. We will use an Additive Homomorphic Encryp-
tion (AHE) — i.e. the one introduced by Naccache and Stern [NS98] — which is
probabilistic and offers semantic security.

Let E(x, r) denote the encryption of a value x using a fresh random value r for
each encryption, this additively homomorphic system has the following properties:

E(x, r) · E(y, s) = E(x+ y, rs)

E(x, r)y = E(xy, ry)

Furthermore, let E(x, r)−1 denote the calculation of the multiplicative inverse
upon E(x, r), found through executing the extended euclidean algorithm, which is
by the homomorphism definition the encryption of the additively inverse plaintext.
This results in E(x, r)−1 = E(−x, r) and can be used to calculate a difference
between two encrypted values.

To multiply an encrypted plaintext with a negative factor −z, first the multi-
plicative inverse of the encrypted value is calculated and then multiplied using the
positive factor.

E(x, r)−z = E(x, r)−1·z

= E(−x, r)z
= E(−xz, rz)

An encryption of a Bloom filter b with length n is constructed by encrypting
every bit in b separately, storing the resulting n values in a new array c with equal
length.

Figure 3.2 gives an example for a possible q-gram to Bloom filter mapping,
followed by an encryption using a homomorphic cryptosystem. Similarly equa-
tion (3.3) defines the encryption of a Bloom filter.

ci = E(bi, r) : ∀i ∈ [1, l] and fresh r (3.3)
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Hashing

Bloom Filter:
(Length n)

Positional
q-grams:

(6,ACATG)
(7,CATGG)
(8,ATGGT)

...
...

hash(ACATG)

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 000 0

e2e1 e3e4e5...

Homomorphic Encryption

Figure 3.2.: Construction of a Bloom filter over q-grams and conversion to an en-
crypted Bloom filter.

3.7. Error-Correcting Codes (ECCs)

ECCs are commonly used to correct errors occurring during transmission. Let x
be a bit string of length l′ bits. We call x the information word. An ECC will then
transform the information word into a codeword of length l > l′ bits containing
(l− l′) check bits. The resulting codeword y is typically transmitted by the sender
over an error-prone communication channel. The transmission might be faulty and
the recipient receives y′. On the receiving end the participant can recover x from
y′ as long as the distance between y and y′ is below a certain threshold t. The
performance of a code and, therefore, the threshold t is described by the minimum
Hamming distance dHmin , defined as the minimum distance among all possible
distinct pairs of 2l

′ codewords in the code alphabet. The maximum number of
correctable errors can be calculated with t = b

(
dHmin − 1

)
/2c. Of course, a high

performance t requires a high amount of check bits (l − l′).

In chapter 5 the investigations are based on
(
l, l′, dHmin

)
=

(
2m,

1∑
i=0

(
m
i

)
, 2m−1

)
first-order Reed-Muller codes as defined by Muller [Mul54] and Reed [Ree54]. Fur-
thermore, we use a first-order code, such that we only have first-order decoding
equations, i.e., each decoding equation sums two and only two received bits. Most
importantly, we use modified Reed-Muller codes. We modify the code, such that
it is shortened and has an odd number of decoding equations for each information
word bit as far as this is possible. This has the purpose that each word y′ has
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exactly one associated information word x. In particular, we avoid by this con-
struction decoding failures where the decoding equations result in an equal number
of 0s and 1s.

Let Encecc: {0, 1}l′ → {0, 1}l denote the encoding function, which takes an in-
formation word x and outputs the corresponding codeword y = Encecc(x) for the
given ECC. Likewise Dececc: {0, 1}l → {0, 1}l′ denotes the decoding function, that
decodes a received bit sequence and recovers the information word x′ = Dececc(y

′)
(error-correction is performed implicitly during decoding). In general decoding
may fail, but as we use a shortened Reed-Muller code with an odd number of
decoding equations, we are always able to decode. The ECC is utilized in the pro-
posed scheme in Chapter 5 in a way that the encoding functionality is only used
to construct reference points, but the main focus lies upon decoding. However, the
notion of a decoding error — that is decoding to an information word x′ different
from the originating information word x 6= x′ — is not of importance for our work.

Reed-Muller

As described above, we are using first-order Reed-Muller codes [Mul54; Ree54].
We therefore describe encoding and decoding, as well as our introduced shortening
of the code in order to eliminate decoding failures.

A first-order Reed-Muller code R(1,m) with m > 0 is a
(
2m,m+ 1, 2m−1

)
linear code. Following this, each information word has length l′ = m+ 1 and each
codeword has length l = 2m. All codewords have a Hamming weight of 2m−1,
except the codeword 0 = (0, . . . , 0) generated from the information word (0, . . . , 0)
and the codeword 1 = (1, . . . , 1) generated from the information word (1, 0, . . . , 0).
Let

G1 =

(
1 1
0 1

)
be the generator matrix of the first-order Reed-Muller code R(1, 1). The generator
matrix for the first-order code R(1,m+ 1) is then defined as

Gm+1 =

(
Gm Gm

0, . . . , 0 1, . . . , 1

)
.

Encoding follows the normal encoding of linear codes using a vector-matrix
multiplication. An element from the finite field x ∈ Fm+1

2 is encoded to y =
Encecc(x) = xGm with y ∈ F2m

2 . Reed [Ree54] defines a simple decoding algorithm
using majority voting. This decoding algorithm guarantees correct decoding in
case of up to t bit errors. Its basis is again the generator matrix Gm, which has
l′ rows, denoted by ri (0 ≤ i ≤ m). Let x′i be a binary value at position i of a
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bit sequence x′, which is the result of the decoding algorithm applied to a possibly
corrupted bit sequence y′ of length l bits. From now on we will purely focus on the
decoding algorithm of the ECC and are thus not interested in (and even do have
a notion for) the original information word within our application. Due to this
we use x to describe the result of the decoding algorithm instead of the typically
used x′. Similarly we use y as the bit string that is input to the decoding function
Dececc.

In case of a first-order Reed-Muller code, for m bits of the decoded information
word x, specifically for xi, (1 ≤ i ≤ m), 2m−1 decoding relations are obtained
from the associated generator row ri. For example, the Reed-Muller code R(1, 4)
has the associated generator matrix:

G4 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 r1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 r2

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 r3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 r4

.

Let yj denote the j-th bit (0 ≤ j < l) from the received bit sequence y, which
should be decoded. If y was not corrupted and therefore is a codeword, then all
following terms for a certain i evaluate to the same result. The 2m−1 relations for
xi (following the row ri and 1 ≤ i ≤ m) are then:

x1 = y0 ⊕ y1 = y2 ⊕ y3 = y4 ⊕ y5 = y6 ⊕ y7 = y8 ⊕ y9 = y10 ⊕ y11 = y12 ⊕ y13 = y14 ⊕ y15

x2 = y0 ⊕ y2 = y1 ⊕ y3 = y4 ⊕ y6 = y5 ⊕ y7 = y8 ⊕ y10 = y9 ⊕ y11 = y12 ⊕ y14 = y13 ⊕ y15

x3 = y0 ⊕ y4 = y1 ⊕ y5 = y2 ⊕ y6 = y3 ⊕ y7 = y8 ⊕ y12 = y9 ⊕ y13 = y10 ⊕ y14 = y11 ⊕ y15

x4 = y0 ⊕ y8 = y1 ⊕ y9 = y2 ⊕ y10 = y3 ⊕ y11 = y4 ⊕ y12 = y5 ⊕ y13 = y6 ⊕ y14 = y7 ⊕ y15

Figure 3.3 shows the connection between the structure of the generator matrix
rows and the decoding relations. The relations for R(1, 4) (0 ≤ j ≤ 7) can also be
expressed as:

x1 = y2j ⊕ y2j+1

x2 = y4bj/2c+(j mod 2) ⊕ y4bj/2c+(j mod 2)+2

x3 = y8bj/4c+(j mod 4) ⊕ y8bj/4c+(j mod 4)+4

x4 = y(j mod 8) ⊕ y(j mod 8)+8

For a first-order Reed-Muller code R(1,m), each of the m terms Ti,j for every
xi can thus be generalized to

Ti,j = y2ibj/2i−1c+(j mod 2i−1) ⊕ y2ibj/2i−1c+(j mod 2i−1)+2i−1 (3.4)

66



3.7. Error-Correcting Codes (ECCs)

r1 = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

r2 = (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1)

r3 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1)

r4 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

Figure 3.3.: Selection of Reed-Muller decoding relations following the generator
matrix G4. Example taken from Reed [Ree54]. Different colors and
heights of arcs are only to ease following an arc and recognize related
elements.

for (1 ≤ i ≤ m, 0 ≤ j < 2m−1). If y is a codeword, then all terms Ti,j for a fixed
i evaluate to the same result. Put differently, all relations given for xi hold. Note
that for a certain xi, no bit yj is used more than once within all related terms
Ti,j . This ensures that in case of an bit error, only a single term Ti,j evaluates to
a wrong value, i.e. m− 1 values would still be correct. Bit-wise decoding is done
by taking a majority vote of the term results Ti,j for each xi. A decoding failure
happens in case the majority vote fails, that is if half of the terms evaluate to 0
and the other half to 1.

The described mechanism only works for 1 ≤ i ≤ m, but not for i = 0. So
decoding of the information word bit x0 must be handled differently. In order
to decode the remaining bit, the received bit sequence y must be reduced by all
decoded bits multiplied with their respective generator matrix row as follows:

y′ = y ⊕
m∑
i=1

xiri.

y′ describes the reduced bit sequence necessary for the last step of the decoding
algorithm, not the possibly error-prone received bit sequence, as it was used during
the description of general Error-Correcting Codes (ECCs). The sum operator

∑
is using the ⊕ operator for additions. The final bit x0 is then again decoded using
a majority vote over the bits in y′. Using the Hamming weight wH of y′, decoding
x0 can specifically defined as:

x0 =

{
1 if wH(y′) > 2m−1

0 else
.
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Shortened Reed-Muller Decoding The Reed-Muller decoding algorithm, as de-
scribed above, can result in decoding failures in case wH(

∑2m−1

j=1 Ti,j) = 2m−2 for
any fixed i. We however want to have no decoding failures, but still use the Reed-
Muller code for its high error-correction capability and simple decoding function.
In order to avoid all decoding failures, we simply use an odd number of terms Ti,j
for each xi by limiting j to 0 ≤ j < 2m−1 − 1. In other words, we just ignore the
last term for all decoded bits. This eliminates all decoding failures, as a majority
vote over an odd number of votes will always succeed. The same technique is
applied to the decoding of the final bit xi, the last bit of the bit sequence y′ is not
used for the final majority vote.

As a result the number of correctly decoded bits is as least as high as with the
original decoding function, while the number of false decodings might increase. All
previous decoding failures are decoded either correctly or incorrectly, depending
on the correctness of the ignored term Ti,2m−1 and the last bit of y′.

3.8. Commitments

In a commitment scheme a committer binds itself to a certain value without re-
vealing this value. It consists for two phases, the commitment stage, in which a
committer fixes a value m he wants to commit to. The commitment must ensure
the binding property — it must not be possible to change the committed value
afterwards. Further confidentiality for the committed value must be ensured to
fulfill the hiding property. The receiver of the commitment must not be able to
learn anything about the committed value.

Generating a commitment can be done using a collision resistant hash functions
f(m). However, committing to a single bit or low entropy values is not be possible
in such a way directly. Therefore Brassard, Chaum, and Crépeau [BCC88] proposes
a scheme to commit to bits by also committing to a large enough random number
r as f(m, r).

3.9. Zero Knowledge Proofs

A Zero Knowledge Proof (ZKP) is typically an interactive proof system between
two parties up, uv, which has certain distinctive properties. Specifically it must
be complete, sound and zero-knowledge. It is constructed upon an commitment
scheme as it was discussed in Section 3.8.
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The Completeness property requires that for a honest prover up and a honest
verifier uv, the overall proof must return a positive result with overwhelming prob-
ability. Soundness requires that for a malicious prover and a honest verifier the
probability to get to a positive result must be negligible in the security parame-
ter. Further, the zero-knowledge property requires that the verifier learns nothing
except whether some statement that the prover wants to prove is true.

A typical round for an interactive ZKP is divided into three steps, as shown by
Figure 3.4.

Prover up Verifier uv

1. Generate commitment
Commitment

2. Select challenge
Challenge

3. Build response
Response Check response

Figure 3.4.: Schematic overview of a generic zero-knowledge round, represented by
the three typical steps.

Figure 3.5 shows a visualization for a protocol to perform a ZKP. Two users are
standing in front of a cave, which has one entrance that goes around a corner and
then splits into two different passages, which are connected only via a locked door.
From the entrance to the cave one cannot see the parting of the way into the two
passages. The task for user up (the green user, or prover) is to prove to user uv
(the blue user, or verifier) that he possesses a certain key to open the locked door
that connects both passages.

A

B

(a) Commitment

A

B

(b) Challenge

Figure 3.5.: A visualization of the “Strange Cave of Ali Baba” from Quisquater
et al. [Qui+89]

Both stand outside the cave. In the commitment phase (Figure 3.5(a)) up ran-
domly chooses way A or B to follow till the end, while uv stays outside of the
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cave. uv did not see which way up was taking. Next, uv enters the cave till he
arrives at the fork. He then — in the challenge stage, Figure 3.5(b) — selects a
random passage that up should return from and calls for him. If up returns from
the proper passage, this round succeeded. They will both leave the cave and repeat
the experiment with fresh random decisions.

up has a probability of 0.5 to cheat on each round, after l consecutive successful
rounds the chance of up cheating is therefore reduced to 2−l. After several rounds,
this probability is so low, that uv stops the ZKP and accepts the overall proof.

A proof of knowledge is an often used example for a ZKP. To a public value
x — known to the prover and verifier — belongs a specific secret y via the re-
lation (x, y) ∈ R. The prover then proves in zero-knowledge that he knows the
corresponding y to a certain x without revealing y.

Even though the chances for the prover cheating and not getting caught can
be made arbitrarily low, a ZKP never gives a probability of 1 that the proof was
genuine and the prover didn’t cheat.

Also non-interactive ZKPs systems exist, for which the proof can be validated
offline, what makes these proves repeatable. Positive and negative consequences
follow from that. On the positive side, it can be used to convince third parties,
as they have all the information necessary for validating the proof themselves. On
the other hand — as the proof can be copied — it can be represented as someone
else’s proof.

This constitutes in relay and Man-In-The-Middle (MITM) attacks, where the
actual prover and verifier have at least one more intermediate party, which they
cannot detect. Beth and Desmedt [BD91] gave some possibilities to solve this issue,
while Cramer and Damgård [CD97] proposed the use of the OR-protocol [CS94],
which mitigates MITM attacks on ZKPs.

In this work we use ZKPs to prove that a ciphertext is an encryption of either
of two plaintexts from Damgård and Jurik [DJ01] and that a vector of ciphertext
is a shuffle of another vector of ciphertexts [Gro10].
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Parts of this chapter were published in [BK13].

4.1. Introduction

Matching strings and in general character sequences is a wide field and so generic
that it is used in a large number of systems. Comparing strings privately is a spe-
cialization inside the security community with main use cases in the private record
linkage and genome matching domain. Examples from literature are discussed in
Section 2.1.2.

The most important requirements that a string comparison scheme should pos-
sess to fit the use case of a user carrying a mobile, resource-constraint device that
stores sensitive information like the sequenced genome are highlighted and argued
in Section 1.2.

The most fitting proposals for our desired solution were reviewed and underlying
techniques evaluated against the requirements. None of the related work combined
the important points of an efficient, privacy-preserving comparison scheme for
long sequences with the ability to have inference control and supporting resource-
constraint clients. Details on the related work can be found in Section 2.1.2.

Therefore we will construct (Section 4.2) the basic, efficient string compari-
son scheme, evaluate its security in Section 4.3 and measure its performance in
Section 4.4. A quick interlude in Section 4.5 will discuss a generalization of the
presented scheme towards approximating other measures. Finally, Section 4.6 con-
cludes the construction of the basic comparison scheme, which is more efficient than
the related work and already offers some basic output inference control.

In this chapter we will construct and evaluate the basic, efficient string matching
scheme that forms the basis for all further constructions. The scheme will be
extended in Chapter 5 to detect and mitigate inference attacks and further on in
Chapter 6 to be resource efficient regarding encryption and transmission — while
at the same time adding only minimal overhead on the server side.
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4. Approximate String Matching

4.2. Design

Two parties A (Alice) and B (Bob) have private input strings that should be
compared. The desired comparison function is the edit distance between both
inputs. The output is given to the initiating party (in our case Alice). However,
to speed up the computation (which has a textbook time complexity of O(n ·m),
with n,m being the lengths of the input strings) the edit distance is approximated
by an embedding into the Hamming distance over bit strings.

Alice could be the person holding her sequenced genome, or the difference of
her genome to a reference genome. Bob could be a database owner belonging to
a hospital or another health institution. Bob’s task is to calculate the similarities
between Alice’s genomic sequence and the instances in his database, which might
be reference values for certain classes of predispositions. The construction of the
string comparison scheme follows the introduced preliminaries in Chapter 3.

The overall protocol will work like this:

1. Alice and Bob both convert their input strings sA, sB into a set of variable
length grams following the VGRAM algorithm [LWY07] described in Sec-
tion 3.3.

2. Further, both map their set of variable length grams to a Bloom filter bA, bB,
as described in Section 3.4.

3. Alice encrypts every bit of the Bloom filter bA using an Additive Homomor-
phic Encryption (AHE) scheme and sends the resulting vector to Bob.

4. Bob computes the exclusive OR inside the homomorphic encryption as shown
in Figure 4.1.

5. Further, Bob homomorphically sums up all obtained results and sends the
sum back to Alice.

6. Alice decrypts the result and finds the approximated distance.

Alice should learn the result of a comparison, while Bob should learn nothing.
To achieve this we use the protocol depicted in Figure 4.1, which follows the
description given above. The input for each party is its respective private string sA
for Alice and sB for Bob. For ease of presentation we use b[i] to identify the i-th
element of array b. The index j ∈ [1, l] in Figure 4.1 always runs over the whole
length of the indexed array of length l, while i ∈ [1, |gA|] and i′ ∈ [1, |gB|] runs
over all generated grams.
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4.2. Design

Alice on input sA Bob on input sB

Generate grams Generate grams

gA = VGRAM(sA) gB = VGRAM(sB)

Build Bloom filter Build Bloom filter
bA[h(gA[i])] = 1 bB[h(gB[i′])] = 1

Encrypt Bloom filter

a[j] = E(bA[j], r) Send a Encrypted XOR

E(bA[j]⊕ bB[j]) =

E(bB[j]) · a[j]1−2bB [j]

Encrypted distance

E(d) = E(dH(bA, bB)) =

Decrypt and output Send E(d)
∏l
j=1E(bA[j]⊕ bB[j])

dH(bA, bB)

Figure 4.1.: Protocol for privacy-preserving distance measure using Bloom filters
and homomorphic encryption. Alice and Bob input their genomic
strings sA and sB. Alice outputs a privacy-preservingly calculated set
cardinality estimation as distance measure.

Extension to Decrease Inference

Figure 4.1 specifies, that the calculated approximate distance value E(d) between
both compared strings sA and sB is returned to Alice for decryption so that she
learns the actual distance value. This would however result in increased sensitivity
to inference attacks, as they are described by Goodrich [Goo09]. To present an easy
circumvention against such attacks, we restrict the information Alice gains from
executing this protocol. Instead of learning the exact result of the comparison, the
result is manipulated to give Alice only the information whether the distance is
within a previously defined range d ∈ [tmin, tmax] or not.

Following the classification from Section 2.3, this extended scheme represents
an “output inference control scheme”. We utilize removal and minimization of
information, similar to techniques from privacy-preserving data-publishing. Other
possible techniques are perturbation as done by differential privacy [Dwo08] or
aggregation. In contrast to Chapter 5, the scheme presented there belongs to
the “input inference control schemes”, similar to actively preserving privacy in
statistical databases through identification of inference attack queries.
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Recall that the calculated distance value d equals the Hamming distance be-
tween the Bloom filters bA and bB. Furthermore, Li, Wang, and Yang [LWY07]
present in Section 5.3, Lemma 1, equation (4) an upper bound for the Hamming
distance between bit vectors of gram sets generated using their VGRAM algo-
rithm. The actual calculation of the upper bound involves the number of affected
grams for both input strings sA and sB. As sB is not available to Alice, she
uses the revised Cambridge Reference Sequence (rCRS) [And+81] srCRS as a ref-
erence to replace sB in the calculation of the upper Hamming distance bound.
This replacement is a good approximation for small edit distances due to a high
similarity between the rCRS and other mitochondrial genomic sequences. Follow-
ing [LWY07] the upper bound tmax for a maximum edit distance dEmax is calculated
as tmax = NAG(sA, dEmax) +NAG(srCRS, dEmax), where NAG(s, dE) describes the
maximum number of affected grams for dE edit operations on string s. Further,
as NAG(srCRS, dEmax) is very close to NAG(sB, dEmax) it is thus used as an ap-
proximation. NAG(sA, dEmax) can also be replaced for the same reason. It follows
that the approximation for tmax does not depend on the input sequences sA and
sB and can be determined before running the protocol. The estimation of tmin for
dEmin is performed equivalently. These thresholds can later on be used to decide
if the edit distance between input sequences sA and sb is above a certain edit dis-
tance threshold dEmax . This functionality will be used in the extended protocol
described below.

Due to the probabilistic nature of the Bloom filter, elements are mapped to the
same positions with a probability pfp as described in Section 3.4. As the expected
Bloom filter cardinality |bA| =

∑l
i=0 bA[i] for a Bloom filter bA of length l is

therefore smaller than the number of inserted elements — or in our case variable
grams for sA — the upper bound must be corrected to take the Bloom filter hash
collisions into account.

Cardinality Analysis Swamidass and Baldi [SB07] analyzed for a given Bloom
filter of length l, cardinality i′ and k hash functions what the most likely number
of originally inserted values i is. They showed that i = −l/k · ln(1− i′/l) is a very
good approximation of the probable number of inserted elements. As discussed
in Section 3.4, we use k = 1 hash functions, which is optimal, and can therefore
simplify the equation to i = −l · ln(1− i′/l). Once this equation is transposed
to estimate i′, it defines the most probable number of bits set after inserting i
elements into a Bloom filter of length l.

(4.1)i′ =

(
1− exp

(
− i
l

))
· l
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This cardinality estimation from Equation (4.1) is then used for calculating the
corrected threshold values tmin and tmax as follows.

tmin =

(
1− exp

(
−
NAG

(
srCRS, dEmin

)
l

))
· l (4.2)

tmax =

(
1− exp

(
−NAG(srCRS, dEmax)

l

))
· l (4.3)

Using a Homomorphic Encryption (HE) scheme, as described in Section 3.5,
the generated thresholds can be encrypted and used for further processing. Re-
call that E(ti, r)

−1 denotes the multiplicative inverse element of the encryption
E(ti, r), found through executing the extended euclidean algorithm, which is by
the homomorphism definition the encryption of the additive inverse plaintext.

E(ti, r)
−1 = E

(
−ti, r′

)
By using the extended euclidean algorithm to find a homomorphic additive in-

verse and applying a homomorphic addition afterwards, the homomorphic subtrac-
tion can be defined, as it was described in Section 3.6.

Extended protocol To extend the basic protocol depicted in Figure 4.1, the server
Bob has to perform a few more steps before the result is sent to Alice. The exten-
sion fits in the original protocol just after Bob calculated the encrypted distance
and thus just before he sends the encrypted distance to Alice. The extended pro-
tocol is depicted in Figure 4.2 and replaces the last step of the original protocol,
which was sending the distance to Alice and final decryption of the encrypted dis-
tance value. Calculating the return values for Alice by Bob for the output inference
control extension works as follows.

The algorithm generates all possible integer values within the threshold range
[tmin, tmax] and subtracts the calculated distance dH(bA, bB) from every value in
this range. Observe that if tmin ≤ dH(bA, bB) ≤ tmax, there will be an encryption of
the zero element in the resulting vector of all differences. This difference vector will
then be multiplied with random factors and randomly permuted. The resulting
vector is then sent to Alice for complete decryption. If Alice finds a zero after
decryption she knows that the distance was within the threshold range, otherwise
it was not. Section 4.3 will recall the steps and show for each that privacy is
preserved and what information is leaked (or not).

75



4. Approximate String Matching

The protocol can be split up in three parts. The first part would be the mapping
of inputs to Bloom filters on both sides, including the encryption and transmission
done by Alice. The second part spans all remaining computations that Bob is
performing including the transmission of results back to Alice. The last (third)
part then includes the necessary steps (decryption and zero check) on Alice side
to get to the result.

The extended protocol is identical to the basic protocol from Figure 4.1 until
the red dashed line, then — instead of just sending the encrypted distance back
to Alice — further steps on Bob’s side are applied. Section 4.3 will discuss these
steps in detail regarding their privacy implications. We are going to look at the
additional steps regarding their functionality.

Recall that the goal of the extended protocol is to allow Alice to learn only
whether the distance between the input strings is within a predefined range or
not. We use an approximation of the edit distance as the distance measure. So
after calculating the encrypted distance between both strings, the idea is that Bob
generates all possible values within the threshold range [tmin, tmax], which means
o = tmax − tmin + 1 consecutive integer values. Further he subtracts them all
from the actual encrypted distance E(d− ti) to derive an array d′ of size o. Let’s
seperate the two cases that Alice should be able to separate.

First, if the actual distance d between both strings is not within the threshold
range, that is either d > tmax or d < tmin, then all values in d′ are either above
0 iff d > tmax or below 0 otherwise. However, if d is within the threshold range,
then there is a single value in d′, which is zero. This is exactly the test that Alice
performs once she receives the encrypted array. She checks whether one of the
decrypted values is zero. If there is a zero, she knows that the string distance
is within the threshold range, otherwise she learns that the distance is outside
the checked range. All the other steps, which were not mentioned are to remove
unnecessary information that Alice could use to infer the actual distance.
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Alice on input sA, tmin, tmax Bob on input sB, tmin, tmax

Generate grams Generate grams

gA = VGRAM(sA) gB = VGRAM(sB)

Build Bloom filter Build Bloom filter
bA[h(gA[i])] = 1 bB[h(gB[i′])] = 1

Encrypt Bloom filter

a[j] = E(bA[j], r) Send a Encrypted XOR

E(bA[j]⊕ bB[j]) =

E(bB[j]) · a[j]1−2bB [j]

Encrypted distance

E(d) = E(dH(bA, bB)) =∏l
j=1E(bA[j]⊕ bB[j])

Inverse thresholds

E(−ti) = E(ti)
−1

Threshold differences
E(d′i) = E(d− ti) =

E(d) · E(−ti)

Randomization
E(d′′i ) = E(ri · d′i) = E(d′i)

ri

Decryption and Send all E(d′′i ) Random permutation
zero check

Any d′′i
?
= 0

Figure 4.2.: Extended protocol for privacy-preserving, decreased-inference distance
measure using Bloom filters and homomorphic encryption. Alice and
Bob input their genomic strings sA and sB. Both previously agreed
upon a threshold range [tmin, tmax] to test the distance against. Alice
outputs a binary answer whether the calculated distance measure is
within a predefined threshold. The gray part is identical to the basic
scheme depicted in Figure 4.1.
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4.3. Security Analysis

The security properties of the described protocols are implications of the under-
lying homomorphic cryptosystem, e.g. Naccache-Stern [NS98]. Exchanging the
homomorphic system thus also affects the security properties. Typically the AHE
system guarantees semantic security, Indistinguishability under Chosen Plaintext
Attack (IND-CPA) and thus input privacy against a Honest-But-Curious (HBC)
attacker, not pursuing an inference attack. Furthermore, our protocol guarantees
input privacy for Alice even in case of an malicious server Bob, as Bob never re-
ceives any data that depends on input from both parties. Furthermore, Bob does
not receive any output and can thus not perform an inference attack. The only
data that Bob receives is the encrypted input from Alice, which is guaranteed to
be semantically secure by the implemented crypto system.

The only influence that Bob can exert is in manipulating the choice of the
threshold range [tmin, tmax]. The selection of these values can have an effect on how
much information can be inferred from the results of the protocol. Both parties
must ensure that viable and non-intruding thresholds are chosen. The choice of
these thresholds to achieve a good utility-privacy trade-off are out-of-scope for this
thesis.

Protocol Dissection In the first part of our protocol, Alice translates her input
string into variable length grams, generates a Bloom filter representation and en-
crypts it using a public key cryptosystem. As she is not using any information
from Bob, she cannot gain any insight into Bob’s input.

The second part involves Bob working on the encrypted Bloom filter from Alice
and her encrypted Bloom filter cardinality. As all values are encrypted using an
asymmetric, probabilistic cryptosystem that is semantically secure and for which
only Alice has the private decryption key, Bob cannot decide if an encrypted value
represents a zero, a one or any other value, which directly follows the guarantees
of the underlying hardness assumption. The number of elements received does not
depend on Alice input, as only public information is used to set the Bloom filter
length, as introduced in Section 4.2. Further Bob sums up elements from Alice’s
encrypted Bloom filter, based on his Bloom filter. The result is then subtracted
several times from different public threshold values and multiplied with random
numbers, chosen uniformly from within the domain of plaintexts of the underlying
cryptosystem. All results are shuffled at random and transmitted back to Alice.
Bob gained no information in this phase about Alice’s input.

As a last step Alice decrypts all results received from Bob and checks if they
contain a zero. If a zero is found, she learns that the Hamming distance between
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the Bloom filters was within a predefined threshold [tmin, tmax]. There can be at
most one zero. If no zero was found, the Hamming distance was outside the range.
From the decrypted non-zero results, she cannot learn anything, as these numbers
are uniformly distributed due to the multiplication with uniform random numbers
drawn from the plaintext domain modulo the plaintext domain modulus. The index
of the zero element, if there was one, gives no information to Alice, as the return
values were randomly shuffled by Bob. The number of returned elements also holds
no further information, as there are always tmax−tmin+1 results if no multiplicative
homomorphic system is used, or fewer if the homomorphic cryptosystem supports
multiplications and these multiplications are used for aggregation of results. Even
if the returned array is aggregated to some arbitrary degree, this does not use
any information from the private input, but solely depends on the multiplicative
properties of the underlying homomorphic system and the configuration on how
many multiplications to use for aggregation.

The only information Alice learns about the input of Bob is, if the Hamming
distance towards his Bloom filter bB lies within the threshold range.

4.4. Evaluation

We are going to evaluate the effectiveness of the proposed scheme by looking at
the correlation between the original edit distance and the approximation given by
the Hamming distance. Furthermore, a mapping from the Hamming distance to a
possible edit distance is given and an extension to increase accuracy is proposed.
A performance evaluation shows that the algorithm is performance-wise at the
same level as comparable algorithms with similar privacy-preservation but less
functionality, as explained in Chapter 2.

For the experiments a Linux Laptop with an Intel Core2 Duo T9600 running
at 2.8 GHz with 4 GB RAM was used. The code is written in Java, using the
Bouncy Castle library1. The first tests evaluate the relation between the Leven-
shtein distance and the Hamming distance as introduced in Section 4.2. Further,
the runtime performance of the algorithm is evaluated for string lengths also used
in the literature for comparable privacy-preserving string matching protocols.

4.4.1. Distance Measure

As our distance measure approximates the Levenshtein distance, we measure the
relation between the edit distance and the Hamming distance over Bloom filter.

1http://www.bouncycastle.org/
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Li, Wang, and Yang [LWY07] already specifies a maximum Hamming distance for
a certain edit distance given bit encodings of the equivalent variable length gram
sets. However, our binary strings have slightly different properties. First of all we
cannot use the NAG vector function upon the private inputs, but estimate their
results using the reference sequence NAG(srCRS, e) instead. Second, our mapping
to bit strings is probabilistic, producing strings with hamming weight smaller than
the number of variable grams. Therefore we combine these theoretical upper limits
with the approximation of the final Bloom filter cardinality from Equation (4.1),
introduced by Swamidass and Baldi [SB07].

The first practical issues arise for selecting useful values for the minimum and
maximum gram length that is used in the VGRAM algorithm. The parameters
are denoted qmin and qmax equivalently. Luckily Li, Wang, and Yang [LWY07]
proposes to start with a rather small qmin and a large qmax. Following this approach
the parameters qmin = 2 and qmax = 40 are used. Appropriate values can later
be extracted during the execution of their internal data structure optimization
(pruning the built Trie). The lower value was set to 2 as we operate on a 4
character alphabet for genomic sequences and having a single character without
its position carries nearly no information about the original sequence. In this sense
a bi-gram is probably also much too short, but the algorithm must start somewhere
and can handle too small gram lengths. The upper value is a practical limit as the
test machine was not able to handle larger gram lengths due to its limited main
memory. However, it seems that using smaller values doesn’t influence the results
much.

To run the tests the Bloom filters are set up to use a single hash function as
discussed before. In our case “SHA1” is used to calculate a hash of an element. The
hash is reduced modulo the size of the filter, except for when the largest integral
multiple of the filter length — which is still smaller or equal than the maximum
value returned by the hash — is smaller than the actual hash value. In such a case
the hash function is called again with a non-alphabet character and an incremental
number appended to the actual element.

The mitochondrial genomic sequences contain roughly n = 16569 characters,
which means that about the same number of variable grams had to be inserted
into each Bloom filter. The probability that a false-positive test occurs after the
n elements are added to the filter was set to pfp = 0.1 and pfp = 0.5 to ei-
ther keep the error introduced by false-positives of the Bloom filter rather low,
or support the upcoming requirements from the Error-Correcting Code (ECC) in
Chapter 5. Following equation (3.2) these parameters required a Bloom filter of
size l = 157261bits or 23905 bits respectively. The influence of the false-positive
rate setting on accuracy will be discussed in more detail in Section 5.7.

To perform the runtime analysis we chose random strings from the human mito-
chondrial DNA database [IG06] and applied e edit operations to it, such that in the
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end there are always two strings with edit distance e. Edit operations were chosen
so that they do not cancel themselves out or produce shortcuts which evaluate to
lower edit distances. Each edit distance e was measured 100 times for repeated
runs for all e in the range [1, 100]. Thus overall 10000 randomized comparisons
were made. The chosen edit distance range is well fitting, as the average human
mitochondrial genome pairwise substitution distance is 28 with a standard devi-
ation of 18 due to Goodrich [Goo09], our tests thus include the majority of cases
that will happen when comparing two full human mitochondrial genomes.

After choosing a fixed number of edit operations, they are used to create pairs
of private inputs sA and sB. Subsequently the extended protocol depicted in
Figure 4.2 is run. The original string and the altered string are thus compared
using our distance measure. The resulting distance value d is the difference between
the union cardinality and the intersection cardinality of both Bloom filters bA and
bB. This represents the total number of unique elements for both parties, or the
Hamming distance between both Bloom filters. Following Lemma 1 in [LWY07]
this directly correlates with the Levenshtein distance between the strings.
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Figure 4.3.: Relation between the original edit distance of two strings and the
Hamming distance between the according Bloom filters.
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Figure 4.3 shows a Boxplot for every Levenshtein distance in the range [1, 100]
depicted on the x-axis and calculated over 100 runs. As can be seen from the
figure, our distance value approximates and especially separates small Levenshtein
distances very good, with a narrow range of possible Hamming distance values and
a small variance. The Pearson correlation between the Levenshtein distances and
the Hamming distances between the corresponding Bloom filters is cp = 0.997 for
up to 100 edit operations.

We can also see that the variance in our approximated distance grows with
larger edit distances and that the means are not growing linear, but sub-linear,
which together leads to higher overlaps of Hamming distance ranges for consecutive
edit distances. Figure 4.4 gives an idea for the distributions. As a result, exact
reconstruction of the original edit distance is not possible. However, the Hamming
distance distributions overlap only slightly for small edit distances. For higher
distances over the inputs, probabilities for a range of possible edit distances can be
given. This means that approximations for larger Levenshtein distances are less
accurate than for smaller ones.
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Figure 4.4.: Distribution of Hamming distances between Bloom filters for different
edit distances between the original strings s1, s2. The Bloom filters
were constructed using a false-positive probability of pfp = 0.5.

Figure 4.4 gives several distributions of Hamming distances over Bloom filters
generated by the protocol described in this chapter. Each plotted distribution cor-
responds to results obtained for a different edit distance between the input strings.
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The Bloom filter was further generated to have a final false-positive probability of
pfp = 0.5. One important task is to have a good mapping between the edit distance
and the Hamming distance upon Bloom filters, as this reduces false-positives and
false-negatives in the extended protocol. Distributions for small edit distances can
be separated well, while distributions overlap more for higher edit distances. As
an example: deciding between an edit distance 1, 5 or 10 was possible in all cases
based on the Bloom filter Hamming distance, which can already be an important
use case for distinguishing between different types of genetic mutations. Point
mutations typically affect a single base pair, causing an edit distance of one for
the sequenced section of the genome, while a single repeated expansion may affect
a few base pairs and DNA duplication possibly yields a very high edit distance to
a large number of insertions.2

4.4.2. Protocol Execution Time

To evaluate the performance of our protocol, we used the same configuration as
above, that is 100 runs for each edit distance test. The parameters were thus set to
qmin = 2, qmax = 40, pfp = 0.1 and actual runtimes for a maximum edit distances
of up to 10 operations (tmax is set using an dEmax = 10 in Equation 4.3) are shown
in the following figures.

The client runtime depends linearly on the length of the input sequence, where
the most time is spent on encrypting the Bloom filter prior to transmission and
decrypting the results from the server. We can see a pretty high variance on client
runtimes, with a linearly growing mean over longer sequences (see Figure 4.5). This
behavior is easily explained by the unknown number of results which must to be
decrypted until a zero is found. If the distance between both compared sequences
is not within the predefined range given by the thresholds, the client always needs
to decrypt all results, as no zero will be found within the returned values. Thus
the maximum time is used. On the opposite, if the distance is in range, then the
time spent on decrpting the results might be considerably less, as the client stops
once a zero is found. This might introduce a side-channel on timing if there are
subsequent protocol steps after the client side decryption of results.

Server runtime depends linearly on the threshold range size, whereas runtimes
for different sequence lengths are only increasing slightly. The measured values for
a constant threshold derived from a maximum edit distance of 10 and a variable
sequence length range between 7.45 seconds for sequences of length 200 and 7.8
seconds for full mitochondrial DNA sequences. Empirical results are depicted in
Figure 4.6.

2Possible genetic mutations and effects upon base-pairs taken from the U.S. National Library
of
Medicine http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/possiblemutations
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Figure 4.5.: Overall runtime for different sequence lengths at client side. Required
resources grow linear in the sequence length. The gap between the
minima and maxima is the time necessary for decrypting all results
from the extended protocol. The mean is calculated for comparisons
which returned true and thus had a distance within the threshold
range. Non-similar results always need maximum time.

The amount of data that needs to be transferred between Alice and Bob is
shown in Table 4.1 and grows linearly with the length of the Bloom filter for the
traffic from Alice to Bob and linearly with the size of the threshold range for the
traffic from Bob to Alice. For this test the threshold tmax is set to the maximum
Hamming distance defined according to Equation 4.3 in Section 4.2 for a maximum
edit distance of 10, tmin is set to 0 to match all strings up to a certain edit distance.
An edit distance of 10 is used as the majority of the results can be correctly mapped
back to the original edit distance — the range between the first and third quartile
of the Hamming distance distribution for a single edit distance does not overlap
with the first to third quartile range of the next lower and higher edit distance.
This separation of ranges can be seen in Figure 4.3.

Looking at the results given by Jha, Kruger, and Shmatikov [JKS08] and Huang,
Evans, and Katz [HEK11] in the evaluations of their state of the art protocols,
we achieve a similar performance with a low constant crypto overhead starting
with the smallest sequence lengths of 200 characters. Due to the lower linear
complexity of our protocol it scales better (we have a lower multiplicative factor)
and thus comparisons of full mitochondrial DNA sequences can be performed more
efficiently.
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Figure 4.6.: Overall runtime for different sequence lengths at server side. Required
resources grow linear in the sequence length.

Sequence Length l Client → Server Server → Client

200 296 KB 123 KB
400 590 KB 123 KB
800 1169 KB 123 KB

1600 2337 KB 123 KB
3200 4663 KB 123 KB
6400 9323 KB 123 KB

12800 18636 KB 123 KB

Table 4.1.: Size of transmission for different sequence lengths and both directions.

4.5. Extensions

In case the homomorphic cryptosystem also supports at least one homomorphic
multiplication — as is the case with the BGN cryptosystem presented by Boneh,
Goh, and Nissim [BGN05] — the computation could be completely outsourced to
a HBC third party. But as this is not fitting our requirements as described in
Section 1.2, we will not dive deeper into outsourcing computations.

Further, with homomorphic multiplications at hand the number of returned ele-
ments by Bob can be reduced very effectively. Specifically if the underlying homo-
morphic encryption system allows at least dlog2(tmax − tmin + 1)e multiplications,
Bob can reduce the array d′′ to a single element. For the BGN system [BGN05],
which allows a single multiplication, the number of array elements can be reduced
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from o to do/2e by taking any two values which were not multiplied before and mul-
tiply them. This way, multiplying two values which are not zero will never result
in a zero, as zero is not part of the multiplicative group. Furthermore, multiplying
zero with any other value will always return a zero. This way if there was a zero
in the original array d′′, there will be a zero in the aggregated array, too. If there
was no zero element in d′′ there will be none in the aggregation.

If the system supports two multiplications, Bob takes the resulting do/2e elements
from the first aggregation turn and multiplies pairs of elements which have been
multiplied up to once. The result is an array of size do/4e. This way a reduction
of the size of the vector returned from Bob to Alice, exponential in the number of
multiplications, can be achieved. A possible homomorphic cryptographic system
is a BGN-style system, which uses multi-linear maps instead of bilinear maps, as
described by Coron, Lepoint, and Tibouchi [CLT13]. Other possible systems are
those presented by Doroz, Hu, and Sunar [DHS14], Lepoint, Coron, and Tibouchi
[LCT14], Cheon et al. [Che+13], and Lepoint and Naehrig [LN14].

Improving approximation accuracy In the proposed scheme an approximation
of the original edit distance dEo can be performed by looking up the most probable
edit distance that could produce the resulting hamming distance dH. This lookup
can be performed by constructing and evaluating probability functions pi, i ∈
[1, dEmax ] that specify the probability of a Hamming distance for a certain edit
distance. dEmax is the maximum edit distance dEo being considered. Figure 4.4
shows plots of such probability functions generated by measurements. The actual
approximated distance d′Eo

can then be selected by d′Eo
= {i|max(pi(dH)), i ∈

[1, dEmax ]}.

This approximation can be improved in case the approximated metric has some
invariance property or is homogeneous linear. Examples include transposition-in-
variant string metrics, translation-invariant distances between points or the in-
variance of angles and for rotations. The edit distance is limited transposition-in-
variant [MNU05], which is enough in our case. Improving the approximation then
works by running the protocol several times given randomly translated, transposed
or otherwise randomized input regarding the invariance property. It is known that
the approximation for all results must be the same, so a simple majority vote over
the results improves the approximation.

The protocol described in Section 4.2 is used in the genome sequence matching
setting, but can of course also be used for arbitrary other sequences of elements
over which either the edit distance can be adopted, or the Hamming distance itself
can be defined. Of course the protocol can also be used in a broader scope and
for different measures if a low distortion embedding into a supported set measure
or the string edit distance can be found. Ostrovsky and Rabani [OR07], Akutsu
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[Aku06], Akutsu, Fukagawa, and Takasu [AFT06], and Bille [Bil05] describe such
embeddings.

Furthermore, we also support the exact evaluation of the Manhattan distance
or l1-norm without any approximation by replacing our embedding of a string via
the VGRAM algorithm and the subsequent Bloom filter with the actual values
(vectors) from the l1-space. This way approximations for other metrics for which
embeddings into the l1-space are known can be efficiently evaluated. Indyk and
Matousek [IM04] give an overview on known embeddings into lp and further Bour-
gain [Bou85] describes generic embeddings from any lp-space into l1 together with
the expected distortion.

4.6. Conclusion

We presented a novel, non-interactive approach for a privacy-preserving approxi-
mate string matching protocol, that achieves higher performance than comparable
state-of-the-art proposals and can scale to real-world sized mitochondrial genomes.
A user who tries to attack the server via inference queries will not even learn the
exact distances or approximations, but only whether two compared strings are
within a predefined distance range — if the extended protocol was used.

Due to the computational complexity being linear in the length of the longest
input sequence: O(max(|sA|, |sB|)) and the communication complexity being linear
in the size of the threshold range o, respectively in the Bloom filter length l:
O(max(o, l)), this protocol is very practical and was tested for full mitochondrial
sequences with roughly 16500 base pairs, which are encoded as the same amount
of characters. A sequence comparison took about 286 seconds on the mentioned
hardware to complete.

As the most time is spent for encryption, transmission and decryption, tech-
niques as presented in Chapter 6 together with a fitting threshold homomorphic
encryption system [CDN01; DJ01] are apt to reduce the absolute wall time from
the start till the successful completion of the comparison protocol.

The efficiency can also be increased by trading matching accuracy against perfor-
mance by using a sketching algorithm as described by Bar-Yossef et al. [Bar+04].
They find different embeddings from the edit distance into Hamming space. They
especially find an embedding from an arbitrary string into a Hamming space with
constant dimensions to decide the gap-Levenshtein problem. This is the problem
of deciding whether the distance between both strings is below k or above l.

Chapter 5 will show that also Bloom filters with much higher false-positive rate
can still be used for accurate edit distance estimation and thus instantly have a
much decreased runtime.
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Parts of this chapter were published in [KBS14].

5.1. Introduction

Following the overall goal of building an efficient, privacy-preserving comparison
scheme, we designed a basic comparison scheme in Chapter 4, instantiated it as an
approximate string matching scheme in Section 4.2 and described its generalization
in Section 4.5. Its security, effectiveness and efficiency was thoroughly analyzed.
Recalling the identified open research questions from Section 1.3, as well as the
scheme requirements outlined in Section 1.2, emphasis will be put on inference
control to reduce the efficiency of inference attacks. Up until now a privacy-
preserving string matching scheme was designed — together with a framework for
privacy-preserving comparisons —, which can minimize the amount of information
returned. However, the presented in-range-check might not be applicable in all
cases, particularly when more information than a boolean range check is necessary.

Nevertheless, Goodrich has shown that even in the case of a privacy-preserving
protocol significant information may often be leaked [Goo09]. Using only the result
of the comparison, the querying party Alice can guess Bob’s string by repetitive
invocations. Surprisingly few queries are actually necessary to infer even long,
real-world sized genomes, e.g. for a sample of 1000 human mitochondrial genomic
sequences Goodrich’s attack inferred 90% of them using 875 queries or less.

In this chapter we will design a privacy-preserving protocol that also can detect
(and mitigate) whether an inference attack is taking place. If no attack is taking
place, i.e., in the case of an honest Alice, both parties’ privacy will be protected
and Alice will learn the result of the protocol. If an attack is taking place, Alice
will not receive the answer to “suspicious” queries. We use Goodrich’s attack as
a template, but we detect and mitigate all types of attacks that leverage close
queries in terms of the hamming distance over pairs of queries.

We validate against Goodrich’s attack, since it is well known and designed to be
particularly efficient in this type, but our approach is more general. We construct a
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generalization of Goodrich’s attack and use it for evaluation. An interesting result
is that the structure of queries artificially generated for inferring information via
close queries and the typical mutations that happen on genomes can be separated
quite well for simple attack schemes. This again greatly helps reducing false-
positives and false-negatives for inference attack detection in Goodrich-like attacks.

Inference attack detection on encrypted data is a complicated, not straight-
forward approach. First, Bob should not know Alice’s query string in order to
preserve privacy. It must remain encrypted. Therefore the inference control algo-
rithm must also work on encrypted data; to the best of our knowledge we are the
first to develop and analyze such an inference control algorithm. This could still be
implemented using a generic secure computation, but, second, all inference control
algorithms work on the entire history of Alice and match the query against all
previous queries by Alice [Dom08]. Therefore the secure computation must span
the entire history of queries, quickly making it impractically inefficient with the
inherent quasi-quadratic complexity in the number of inputs O

(
n2
)
.

Instead, in our solution the cryptographic operations are limited to a single
query and inference control can be performed using simple (plaintext) equality
matching over the history, denoted Chist. Yet, we need to trade some precision of
the inference control mechanism, e.g., compared to logic-based methods, for this
efficiency while still effectively mitigating the attack.

Our construction achieves this by using two different primitives and works as
follows: We use the secure computation genome matching protocol based on Bloom
filters and homomorphic encryption described in Chapter 4. In addition to the en-
crypted Bloom filter Alice submits a fuzzy (but deterministic) commitment [JW99]
of the Bloom filter using an Error-Correcting Code (ECC). Bob can match those
fuzzy commitments and will not answer the query if Alice has committed to a
similar value before, such that “close” queries are prevented. The idea is that by
only answering queries from Alice, which are not close to all previous queries, an
uncertainty about Bob’s string remains and thus the efficiency of inferring infor-
mation is greatly reduced. We are going to evaluate the effect of this uncertainty
upon the inference attack.

An obvious attack on the sketched scheme is that Alice could use different Bloom
filters in secure computation and fuzzy commitment. So, an important contribu-
tion of this chapter is an efficient zero-knowledge proof — not resorting to generic
constructions — that Alice actually used the same Bloom filter in both. Further-
more, Alice could compute the ECC incorrectly. For this, we also contribute a
zero-knowledge proof that Alice submitted an information word.

We emphasize that our approach to mitigate Goodrich-like attacks is detective.
Our algorithm groups close patterns to match an on-going attack. As such, our
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inference control algorithm for mitigating attacks is probabilistic and thus may give
false-positive and -negative results. This implies that there is no provable guarantee
that an attacker cannot infer the genome in the database and furthermore, some
legitimate queries may be rejected. On the contrary, our guarantee of privacy
— and soundness in the zero-knowledge proof — is provable.

In summary, this chapter contributes

• a privacy-preserving comparison scheme that allows detection of similar en-
crypted inputs
• an efficient zero-knowledge proof that the client has submitted its input truth-
fully and does not evade detection
• an analytical and emperical analysis of our detection scheme and how it
mitigates Goodrich-like attacks on privacy of genome matching.

The remainder of the section is structured as follows. Section 5.2 references re-
lated work specific to privacy-preserving genome matching and inference control.
We introduce the building blocks used in our protocol in Section 5.3. In Section 5.4
we describe the overall design of the inference attack detection construction. We
describe our zero-knowledge proof in Section 5.5 and its security proof in Sec-
tion 5.6. Section 5.7 presents the analysis of our scheme under Goodrich’s and
similar attacks. Furthermore, Section 5.8 describes an empirical analysis of the
inference attack detection scheme under various parameters and demonstrates its
applicability. Section 5.9 concludes the chapter on inference control.

5.2. Related Work

Privacy-preserving matching of genomes has been introduced in [AKD03]. It
presents a secure computation based on homomorphic encryption, such that both
the querier’s genome and the database’s genome are protected. The implemented
string metric via secure computation is the edit distance. The original setup de-
scribed in [AKD03] has been improved in performance using Yao’s protocol [Yao86]
for secure computations in [JKS08]. Although further improvements to Yao’s pro-
tocol yield even better performance in this computation [HEK11] it is still too slow
for large scale deployment.

Therefore different approaches to computing the edit distance were sought.
Automata and regular expressions can emulate edit distance computations effi-
ciently for small edit distances. An oblivious evaluation of automata is presented
by Troncoso-Pastoriza, Katzenbeisser, and Celik [TKC07], but due to the regular
expressions it does not scale to real-world sized genomes. Bloom filters can also be
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used to estimate the edit distance. An evaluation of this approach using homomor-
phic encryption is presented in [BK13]. This approach yields reasonable runtimes
(approx. 5 minutes) for real-world sized mitochondrial genomes (approx. 16568
characters) and we therefore build upon this approach.

In order to improve performance, simplified algorithms — compared to the edit
distance — are considered. Baldi et al. [Bal+11] use simple set intersection to
match genomes. Of course, the applicability to life sciences is limited. Instead,
life sciences use increasingly complex algorithms, of which some have already been
made privacy-preserving. An example are hidden Markov models, which are used
to privacy-preservingly analyze gene sequences by Franz et al. [Fra+12].

Although secure computation offers a formal security model — semi-honest se-
curity [Gol04] (see Section 1.5.1), it does not prevent inferences from the result.
Goodrich therefore presented an attack based on the information of the edit dis-
tance alone [Goo09]. With very few repeated queries it can infer real-world sized
genomes. The contribution of this chapter is to combine the efficient protocol pre-
sented in Chapter 4 with a mitigation technique against this and similar attacks.

The guaranteed randomization approach to prevent inferences about the input is
differential privacy [Dwo08]. A randomized functionK:D → Rd gives ε-differential
privacy if, for all data sets D1 and D2 differing on at most one element and all
S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) · Pr[K(D2) ∈ S].

It means, that the likelihood of any function result will only marginally change
with the presence or absence of one additional element. Let ∆K denote the sensi-
tivity of the function K with ∆K = maxD1,D2‖K(D1)−K(D2)‖1 and Lap(λ) be
a random variable sampled from the Laplace distribution. The Laplace distribu-
tion is defined by the probability density function Pr[x|λ] = 1

2λ exp(− |x|λ ). So the
parameter λ directly controls the magnitude of the random variable Lap(λ), which
is called noise.

Dwork [Dwo08] proposed to perturb output K(D) using noise sampled from
Lap(∆K/ε) and proofed that this connection between the noise and the sensitivity
of K satisfies ε-differential privacy. The actually perturbed output K̂(D) is gener-
ated by summing up the output of K and the noise. K̂(D) = K(D) +Lap(∆K/ε).

Unfortunately, in our scenario the sensitivity of the function K is the maximum
distance between any two possible genomes, i.e., the length of the genomes them-
selves in case of the edit distance metric. Following this definition, the probability
of any query result (edit distance) — regardless of the genomes — may change
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by at most a factor of exp(ε). Smaller values for ε increase privacy, but also po-
tentially decrease utility. How to chose a trade-off is discussed by Lee and Clifton
[LC11]. On the opposite, increasing values for the sensitivity ∆K let the Laplace
distribution approach the uniform distribution.

As the sensitivity in our case is rather large, this clearly annihilates the utility of
any differentially private query result, since the resulting noise distribution quickly
approaches the uniform distribution with decreasing ε. Furthermore, we want to
protect the presence of a genome in the database against a series of edit distance
queries with other genomes. In repeated queries the security parameter ε adds
up, since the same genome in the database may be queried [McS10]. Frameworks
offering basic differential privacy functionality are already available from McSherry
[McS10] and Roy et al. [Roy+10], but suffer from side-channel leakage, which was
only partly fixed by Haeberlen, Pierce, and Narayan [HPN11].

Based on the inherent limitations of differential privacy in our setting, we there-
fore propose in this chapter the competing approach of detecting possible inference
attacks based on the similarity of queries.

Further attacks on privacy mechanisms in genomic computing have to be con-
sidered. Bloom filter matching using the approach of [BC04] (keyed cryptographic
hash functions instead of regular hash functions) is insecure [Kuz+11]. A so-
phisticated attack can infer information from a Bloom filter with unknown hash
functions using environmental information, such as the space of all genomes. We
therefore use homomorphic encryption to protect the Bloom filter and are not
susceptible to this attack. Anonymization techniques have also been found to be
insecure [Wan+09b].

A related problem to privacy-preserving genome matching between two parties
is outsourcing of this computation. This has been first considered in [AL05]. A
protocol for two servers executing a secure computation is presented. The protocol
of Troncoso-Pastoriza, Katzenbeisser, and Celik [TKC07] has been used for out-
sourcing in [BA10]. The protocol of Jha, Kruger, and Shmatikov [JKS08] has been
used in [Bla+12a]. A clever technique of partitioning the problem into a coarse and
a fine-granular part has been presented in [Che+12] to solve the problem of read
mapping. That is matching a private genome against a public reference genome.
An approach for simple queries on an encrypted, outsourced genome database are
presented in [Kan+08].

5.3. Preliminaries

We quickly recall necessary building blocks previously introduced in Chapter 3,
as well as introduce new ones and describe necessary modifications of well known
primitives.
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5.3.1. Homomorphic Encryption

The definition in Section 3.5 is used throughout this chapter and recalled briefly
using a simplified notation. Specific properties — necessary for the construction
and security proofs — are also introduced in this section. Homomorphic encryption
supports a homomorphism of (at least) one arithmetic operation on the ciphertexts
to an arithmetic operation on the plaintexts. Additive Homomorphic Encryption
(AHE) supports addition as the homomorphic operation on the plaintexts. Let
E(x, r) denote the encryption of plaintext x with randomization parameter r.
Then the following addition properties hold

E(x, r)E(y, s) = E(x+ y, rs) (5.1)
E(x, r)y = E(xy, ry) (5.2)

For readability reasons we write the simplification of E(x) = E(x, r), which
also always uses a fresh r implicitly. Particularly we use the encryption scheme
of Boneh, Goh, and Nissim [BGN05]. This scheme is somewhat homomorphic,
because it also supports one round of multiplication. Let E′(x, r) denote a sec-
ond encryption of plaintext x with randomization parameter r. This scheme is
constructed from a bilinear map ê(c, d). Let η be a fixed parameter and θ a ran-
domization parameter1, then the following multiplication property holds

ê(E(x, r), E(y, s)) = E′(xy, η + xs+ yr + θrs)

For the encryption E′(·, ·) the above addition properties hold again.

The Boneh-Goh-Nissim (BGN) scheme has been proven to be Indistinguishability
under Chosen Plaintext Attack (IND-CPA) secure under the subgroup decision
problem by Boneh, Goh, and Nissim [BGN05]. This indistinguishability implies
that an adversary cannot distinguish a ciphertext even if it is from the same plain-
text without the private key. Somewhat Homomorphic Encryption (SHE) is less
powerful than Fully Homomorphic Encryption (FHE) which supports arbitrary
operations on finite fields, but also significantly more efficient, since it does not
require the error-correction operation.

The BGN scheme uses asymmetric keys and in our scenario the server has only
the public key, while the client holds the private key. This means the client can
perform encryption E(x) and decryption D(c) whereas the server can only perform
encryption E(x). This implies that all ciphertexts remain indistinguishable to the
server unless the plaintext is explicitly disclosed in the protocol.

1If we choose the generators in the group of the result of the bilinear map cleverly, then we can
compute η and θ.
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5.3.2. Fuzzy Commitment

A commitment scheme binds the committer to a certain value (binding prop-
erty) without revealing its value (security property). A fuzzy commitment scheme
binds the committer to a value within a distance of the committed value. The
distance metric can again be the Hamming distance. The fuzzy commitment
scheme of [JW99] commits to a randomly selected codeword y and secret key
κ with MAC(y, κ) and adds a distance sequence τ . Let v = y ⊕ τ be the com-
mitted value. When testing whether a value z is covered by the commitment,
one first computes z′ = z ⊕ τ and then performs error-correction to z′′ of z′. If
MAC(z′′, κ) = MAC(y, κ), then z is covered by the fuzzy commitment of v.

This type of fuzzy commitment is perfectly suitable for privacy-preserving stor-
age of biometrics, but in our application we require the element in the commitment
to be checkable (and not random). More similar to [DFM98], we treat the value to
be committed as the l-bit string y′. First, y′ is decoded to the information word
x of length l′ and x is committed using a MAC function (MAC(x, κ)). To check
whether a l-bit string y′′ is covered by the commitment to x, one performs decoding
to the information word x′′ and then checks whether MAC(x, κ) = MAC(x′′, κ).

In our construction, Alice commits to her genome sequence using this commit-
ment scheme with a pre-defined MAC function (see Section 5.5.1), i.e., she sends
MAC(x, κ) along with the encrypted Bloom filter. If Alice submits two Bloom
filters for genome strings within a certain distance, she likely commits to the same
value x using the fuzzy commitment scheme. Bob will be able to detect this and
can withhold his answer.

Note that in our construction of the fuzzy commitment using modified, first-
order Reed-Muller codes, it is possible that two committed values y′ and y′′ are
close, but are decoded into different information words and consequently fuzzy
commitments. This is unavoidable except in a perfect code which only exists for
t = 1 or t = 3, but results in a false-negative. Similarly, it is possible that two
committed values are not close, but are covered by the same fuzzy commitment
generating a false-positive. We empirically estimate these errors in our experiments
and discuss techniques to reduce false-positives and -negatives.

5.4. Design

The basic protocol for matching sequences is taken from Chapter 4 and enhanced
by necessary elements to achieve the claims made in Section 5.1. To achieve this,
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we first recall the basics of the comparison scheme from Chapter 4 and intro-
duce changes in the proposed protocol to allow detection of a Honest-But-Curi-
ous (HBC) client (Alice) that performs an inference attack. To strengthen the
detection algorithm, Zero Knowledge Proofs (ZKPs) are presented to allow detec-
tion of malicious adversaries performing an inference attack.

An inference attack detection scheme that compares the similarity of user inputs
can perform detection either on a per-user basis, across a group of users or all users.
Furthermore, if detection is performed only for queries from the same user, how to
handle Sybil attacks on the system? Our scheme resides in the centralized setting
with global knowledge, i.e. the party supposed to defeat Sybil attacks is a central
server who knows all users, which are always directly connected to him in a star
topology. Defeating Sybil attacks in such a scenario could be implemented by
simply requiring all users to register personally for an account and link accounts
to identity documents. There are also other, non-trivial methods which try to
detect Sybils [Vis+10], but require assumptions about the behavior of the attacker
or knowledge about the social graph. We therefore don’t consider Sybil attacks.
Furthermore, collusion attacks are also out of scope similarly to Sybil attacks. In
our scheme attacks are evaluated on a per-user basis, not across users.

5.4.1. Genome Matching Using Bloom Filters

We approach the problem of comparing two genomes by first converting each into
a Bloom filter. Bloom filters, as described in Section 3.4, can be used to represent
sets and run member tests against them. When using Bloom filters with equal con-
figuration, i.e. identical values for l, k and functions h1(), . . . , hk(), set union and
intersection can be performed through the use of bit-wise AND and OR operations.
Building upon this a bit-wise XOR (⊕) can be used to calculate the Hamming dis-
tance between set representations and thus approximate the symmetric difference
between sets. The cardinality of the symmetric distance is an appropriate measure
to solve the original string similarity problem as it closely approximates the edit
distance — as shown in Chapter 4. For brevity, the protocol is only sketched and
further information can be found in the mentioned chapter.

A similar analysis, which also demonstrates the utility of using Bloom filters
for string comparisons was done by Durham et al. [Dur+12]. However, they only
discuss privacy as mutual information which is leaked. Different techniques to
estimate the string similarity are evaluated regarding their performance, accuracy
and information leakage. No further privacy protection was applied. Figure 5.1
recalls the beginning of the string matching protocol from Chapter 4. It is en-
hanced with hooks in places that are changed by the scheme described in this
chapter. Specifically these places are denoted “Build Fuzzy Commitment” and
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“Check Commitment”, as this is the overall functionality these steps must provide.
The function Dececc(bA) represents the error-correction and decoding function for
the underlying Error-Correcting Code (ECC).

Alice on input sA Bob on input sB

Generate grams Generate grams

gA = VGRAM(sA) gB = VGRAM(sB)

Build Bloom filter Build Bloom filter
bA[h(gA[i])] = 1 bB[h(gB[i′])] = 1

Encrypt Bloom filter

a[j] = E(bA[j], r) Send a

Build Fuzzy Commitment Check Commitment

c = MAC(Dececc(bA), r) Send c c
?∈ Chist

Encrypted XOR

E(bA[j]⊕ bB[j]) =

E(bB[j]) · a[i]1−2bB [j]

Encrypted distance

E(d) = E(dH(bA, bB)) =∏l
j=1E(bA[j]⊕ bB[j])

...
Figure 5.1.: Extension for privacy-preserving distance measure protocol presented

in Chapter 4. The client generates a fuzzy commitment of its input
(see Section 5.3.2), which is checked at server side against the history
of all previous query commitments Chist. Similar to the concept of
Locality-Sensitive Hashes, presented in Section 2.1.1, close inputs are
mapped to the same commitment.

Changes from Chapter 4 The depicted protocol follows the approach from Sec-
tion 4.2. The Bloom filter configuration was modified towards using a false-pos-
itive probability of pfp = 0.5 instead of 0.1, as it was discussed in the original
presentation. As a result the generated Bloom filters bi with length li have a
Hamming weight of roughly wH(bi) = li/2 and thus a normalized Hamming weight
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w̄H(bi) = wH(bi)/li ≈ 0.5. Section A.3 discusses the implications by having differ-
ent false-positive rates for the Bloom filter. Particularly for 10000 samples taken
from Ingman and Gyllensten [IG06], the mean wH(bi)/li amounts to 0.484 with a
standard deviation of 0.0059. The Hamming weight of the Bloom filters wH(bi) is
important for the employed ECC, as it works best when bit strings with a roughly
equal amount of zeroes and ones are used for error-correction towards a codeword.
Almost all codewords from a first-order Reed-Muller code with configuration m
— and thus a codeword length of 2m — have a weight of 2m−1, except for the
codewords generated from the information word (0, . . . , 0) with codeword weight
0 and (1, 0, . . . , 0) with codeword weight 2m.

Another positive effect is the shortened Bloom filter length l compared to the
original work in [BK13]. For full mitochondrial DNA sequences with approximately
16568 nucleotides, a Bloom filter length of 23905 bit is used instead of the origi-
nally proposed 157261 bit, as can be derived from Equation (3.2). In return the
number of homomorphic operations on the client and server side is greatly reduced.
Especially the time used for encrypting the Bloom filter at the client makes up for
the largest part of the total protocol time. The mean time for comparing a full
sized mitochondrial genome is therefore lowered by 77% compared to [BK13] for
an otherwise identical configuration.

5.4.2. Inference Attack Detection

As indicated by Figure 5.1, the protocol from Chapter 4 is extended by the creation
of a fuzzy commitment for the query on client side and the check if this commitment
was previously seen on the server side. Section 5.3.2 describes a fuzzy commitment
and its use case. Within this protocol the fuzzy commitment groups similar inputs
— similar Bloom filters — and maps them to the same commitment, comparable
to the mapping Locality-Sensitive Hashing (LSH) performs. Similarity is defined
by Bloom filters, which decode to the same information word by the employed
error-correction scheme. Thus the actual additional steps at the client side are:

• Decoding of Bloom filter bA into information word x
• Generate commitment c = MAC(x, r) for x using an appropriate commitment
scheme (see Section 5.3.2 and 5.5.1)

The first two steps are performed together within the decoding function of our
selected ECC x = Dececc(bA), while the last step generates our commitment c =
MAC(Dececc(bA), r), as depicted in Figure 5.1.

Upon generating the commitment, the client sends the Bloom filter bA together
with the commitment c to the server. The server needs to check whether it has
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already received a query for the same commitment before. It cannot test this upon
the query directly, as the query is encrypted using an indeterministic, semantically
secure, encryption scheme, upon which the server must not be able to detect two
ciphertexts for identical plaintexts with non-negligible probability in the size of the
security parameter. The commitment however must be deterministic to be able
to match two identical commitments. Section 5.6 will discuss security and privacy
implications that follow from the deterministic commitment.

If the commitment was not seen before, it is added to the commitment history
Chist of Alice to be checked against future queries. However, in case the commit-
ment has been used previously, the query is dropped and the protocol execution
is aborted. Due to this behavior Alice cannot easily use close queries to infer
information, as close queries will be detected and dropped.

The described protocol works as long as the client follows the HBC model, which
dictates the correct execution of protocols and algorithms, using correct inputs.
However, once a client wants to perform an inference attack, it might also be willing
to deviate from the protocol and adjust inputs arbitrarily. The problem that arises
in such a setting of course is, whether the client has committed to the same value
that is used to query the server. To let the client prove usage of identical inputs,
we present techniques for detecting deviations from the protocol and input done
by the client. That is, over the next sections we describe changes to the steps
described above to make inference detection support malicious client adversaries.

5.5. Zero Knowledge Proof

In this Section we describe the zero-knowledge proof (ZKP) that the client Alice
submitted the same Bloom filter in the homomorphic encryption and (correspond-
ing) information word in the fuzzy commitment scheme. Obviously, the generic
technique for ZKPs based on Karp reductions to languages in NP is incredibly
inefficient. We therefore provide a specialized proof for our problem based mostly
on somewhat homomorphic encryption. Our choices of ECC in Section 3.7 and
MAC function in Section 5.5.1 have been specifically tailored to our choice of ho-
momorphic encryption scheme, i.e., they are computable in the efficient scheme of
Boneh-Goh-Nissim (see Section 5.3).

Still, it is quite difficult to prove that an information word has been correctly
decoded from a Bloom filter using homomorphic encryption. In Reed-Muller codes
this requires l′ majority (range) proofs. Instead, we first compute the codeword d
for the Bloom filter, prove that it has the right distance from the Bloom filter in
Section 5.5.2 and decodes to the information word x in Section 5.5.3. Specifically,
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to compute the codeword d, we decode the Bloom filter into x and apply the
encoding function of the chosen ECC to generate the codeword d = Encecc(x) This
requires only one range proof and several proofs of plaintexts zero and is therefore
significantly more efficient. Finally, in Section 5.5.4 we prove that the information
word has been used in the fuzzy commitment. Note that neither the codeword nor
the information word is seen in the clear by the server, but its computation can
be performed in the clear by the client without homomorphic encryption.

In our construction we will use ZKPs that a ciphertext is an encryption of either
of two plaintexts from [DJ01] and that a vector of ciphertexts is a shuffle of another
vector of ciphertexts [Gro10]. Furthermore, we use a simple technique to prove that
a plaintext x is encrypted by ciphertext E(x, r) as described in Section 3.5: The
prover reveals the random parameter r.

Before we start describing the actual parts of the overall proof, we first fix the
MAC function that will be used in the fuzzy commitment scheme. The choice
of MAC function is influenced by the requirements of the overall ZKP as detailed
later. The subsequent sections show how to prove input equality between encrypted
Bloom filter and MAC function. Finally the single proofs are combined.

5.5.1. Message Authentication Code Function

We replace the use of a standard MAC function in fuzzy commitments by a one-
way function, as the strong security properties of forgery resistance or pseudo-
randomness are not required. The one-wayness property is sufficient, since we
sample from a sufficiently large, but restricted domain of l′-bit information words2.
Usually symmetric cryptography is used for speed, but the time-critical operation
in our case is the ZKP. Therefore we use a one-way function whose properties can
be proven.

We use the homomorphic encryption function with a fixed random parameter κ.
Using a domain with more than l′ bits in the homomorphic encryption function
we are certain to avoid collisions. If the information word has more bits than the
domain, we can use multiple encryption functions. Then our one-way (“MAC”)
function is

OWF(x, κ) = E(x, κ)

The key κ is at Alice’s discretion, but she has to commit to it by sending a
random value s and ŝ = E(s, κ) to Bob during setup. Of course, Alice has to also

2Alice only needs to decrypt values smaller than the logarithm of the size of the domain.
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prove proper construction of the homomorphic encryption scheme. Since the key is
a composite of two primes, she can use another zero-knowledge proof, e.g. [CM99],
or for efficiency reveal the primes to an authorized third party. Alice also needs to
prove that the generators of the encryption scheme were chosen randomly. She can
do this in a white-box way by revealing the randomness used to compute them.
Note that all of these steps only need to be completed once during setup and not
for each genome Alice is querying.

5.5.2. Proof of Hamming Distance

Alice intends to prove that the same Bloom filter was used in the homomorphic
encryption and in the fuzzy commitment scheme, but the information word in the
fuzzy commitment scheme is based on an error-corrected Bloom filter. This error-
corrected Bloom filter is a codeword. Therefore there will likely be a difference
between the Bloom filter and the codeword, but the difference must be small. Alice
therefore proves that the Hamming distance between the two strings is at most
our chosen parameter δ.

Let bA[i] (0 ≤ i < l) be the i-th bit of the Bloom filter bA in the homomorphic
encryption. Let r[i] be fresh random values and a[i] = E(bA[i], r[i]). Alice sends
all a[i] to Bob.

Alice first creates the codeword d by error-correcting the Bloom filter bA. As
described before, using the Reed-Muller ECC to generate a codeword d for a give
bit string bA implies decoding it to an information word x followed by an encoding
to Encecc(Dececc(bA)). d also has a length of l bits, with d[i] again denoting the
i-th bit of d. Then dH(bA, d) ≤ δ. Let r′[i] be fresh random values and c[i] =
E(d[i], r′[i]). Alice sends all c[i] to Bob.

Alice proves in zero-knowledge that all a[i] and c[i] are indeed encrypted bits,
i.e., their plaintext is either 0 or 1. She uses the ZKP from [DJ01].

Alice and Bob compute the encrypted exclusive or via element-wise subtraction
and squaring of the encrypted bit vectors a and c. The Hamming distance then
follows from summing up all xored elements.

E′(dH(bA, d), r) =

l∏
i=0

ê(a[i]c[i]−1, a[i]c[i]−1)

They compute for each 0 ≤ j ≤ δ:

f [j] = E′(g[j], r′) = E′(dH(bA, d), r)E′(−j, 0)
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Note that for j = dH(bA, d) it holds that g[j] = 0 and g[j] 6= 0 otherwise. That is,
g is a vector of length δ + 1 and contains the elements

g = (dH(bA, d), dH(bA, d)− 1, dH(bA, d)− 2, . . . , dH(bA, d)− δ),
while f is a vector of the same length as g, but all elements encrypted.

Alice performs a random shuffle of all f [j]. Let f [π(j)] denote the elements in
this shuffle. Alice sends the shuffled f [π(j)] and proves in zero-knowledge that it
indeed is a shuffle. Alice then reveals f [π(dH(bA, d))] = E′(0, r′′) and r′′ to Bob.
Bob verifies that f [π(dH(bA, d))] is in the shuffle and an encryption of zero (with
the revealed random parameter r′′).

Bob knows that d is a bit string within Hamming distance δ of Bloom filter bA.

5.5.3. Proof of Code and Information Word

In order to prove that d is a codeword with information word x Alice needs to
prove that all decoding equations have the same result for each bit. This follows
from the construction of Reed-Muller codes [Mul54; Ree54]. The generator matrix
and therefore the equations are known to both — Alice and Bob. We operate
(mod 2), i.e., all operations in the equations are xor.

Alice and Bob build all equations for each information word bit x[i]. Let x′[j]
(0 ≤ j < 2m−1) be the result of the j-th equation for x[i]. Alice and Bob can
compute the result E(x′[j]) from E(d) using the homomorphic operation. Re-
call that we use modified Reed-Muller codes and further utilize only first-order
equations, i.e. two decoding bits. Let d[j′] and d[j′′] be the two bits decoding to
x′[j] = d[j′]⊕ d[j′′]. Then

E′(x′[j], r′[j]) = ê(E(d[j′], r′)E(d[j′′], r′′), E(1, 0))
ê(E(d[j′], r′), E(d[j′′], r′′))−1.

Alice also sends the bit-wise encrypted information word E(x[i], r[i]) (0 ≤ i < l′)
to Bob. Alice and Bob compute the second ciphertext for each bit E′(x[i], r′′′[i]) =
ê(E(x[i], r[i]), E(1, 0)). Then, Alice and Bob compute the differences between each
bit of the information word and each decoding result (in one variable):

E′(x′′[i], r′′[i]) =
2m−1−1∏
j=1

(E′(x[i], r′′′[i])−1E′(x′[j], r′[j]))2j

= E′(
2m−1−1∑
j=1

2j(x′[j]− x[i]), r′′[i]).

This difference must always be zero and Alice proves that all x′′[i] = 0 by revealing
all r′′[i]. Bob knows that x is the information word for codeword d.
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5.5.4. Proof of One-Way Function Computation

Alice sends OWF(x, κ) = E(x, κ) to Bob, which is referred to as E(x′, κ). Alice
has already proven that x is the information word for a codeword d within Ham-
ming distance δ of bA. She needs to prove that the OWF was computed on x.
Particularly, note that Alice could cheat on using the correct key κ.

Alice and Bob compute

E(x, r) =
l′−1∏
i=0

E(x[i], r[i])2i

and
E
(
h, r′

)
= E(x, r)E

(
x′, κ

)−1
.

Alice proves that h = 0 by sending r′. Bob verifies that indeed E(h, r′) = E(0, r′).

Recall that ŝ = E(s, κ) is Alice’s commitment to her OWF key κ. Alice needs
to prove that E(x, κ) was also computed with the random parameter κ. Alice and
Bob compute

E(u, v) = OWF(x, κ)E(s, κ)−1.

If the OWF was computed properly, then v = 0 (but u is randomly distributed).
Alice needs to prove v = 0, but without revealing the difference of d and s. She
therefore cannot reveal u, as u is the difference between x and s, with x being the
decoded information word obtained from the codeword d. Revealing u would thus
also reveal the difference between d and s.

Instead, she chooses a random value r′′ and computes w = E(r′′, 0). She sends
w to Bob. Bob flips a coin η ∈ {0, 1} and either challenges Alice to reveal r′′ (if
η = 0) or r′′ + u (if η = 1). Bob verifies that w = E(r′′, 0) (in case of η = 0) or
wE(u, v) = E(r′′ + u, 0). This is repeated λ times. Alice’s chance of successfully
cheating is 2−λ.

5.6. Security Analysis

Theorem 5.1
Our ZKP is complete, sound and honest-verifier zero-knowledge.
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Our ZKP is a composition of several smaller ZKPs. We therefore either prove
their completeness, soundness and zero-knowledge properties first or reference the
relevant literature.

We begin in reverse order with the ZKP whether v = 0 in c = E(u, v). It is
complete, because if v = 0, then in both options — E(r′′, 0) and E(r′′ + u, 0) —
the randomization parameter is 0. It is sound, because if v 6= 0, then either in
E(r′′, v′) or E(r′′ + u, v′′) the randomization parameter — v′ or v′′ — is not 0.
The prover will be caught with probability 1

2 . It is honest-verifier zero-knowledge,
because the following simulator does not require the secret input, i.e., the value u
or the secret key. First, the simulator outputs an uniformly chosen ρ as the last
message. If the verifier selects η = 0, it sends E(ρ, 0) as the first message. If the
verifier selects η = 1, it sends w = E(ρ, 0)E(u, v)−1 as the first message.

Next, we consider the ZKP whether x = 0 in c = E(x, v). The completeness,
soundness and zero-knowledge property of this ZKP were given in [DJ01]. Based
on this, the proofs for one of two plaintexts were also given in [DJ01]. Furthermore,
the completeness, soundness and zero-knowledge property of the shuffle ZKP were
given in [Gro10].

We need to prove the completeness, soundness and zero-knowledge property of
the composite ZKP. For brevity we do not prove each step individually, but only
present the summary of our construction. We follow the composition theorem
for semi-honest secure computations by Goldreich [Gol04] and replace the sub-
ZKP by oracle functionality. The composite ZKP is complete, because if the fuzzy
commitment OWF(x, κ) and the encrypted Bloom filter a[j] (0 ≤ j < l) relate to
the same information word x, all oracle ZKPs will succeed. The composite ZKP is
sound, because if the fuzzy commitment OWF(x, κ) and the encrypted Bloom filter
a[j] use non-related information words, one oracle ZKPs will not succeed. This is
an abbreviation, since we would need to show how the prover could deviate and
then be caught. Instead — for brevity — we leave this as a proposition.

In order to show honest zero-knowledge we give the following simulator. First,
Alice sends the encrypted Bloom filter a[j] and c[j] (0 ≤ j < l). These can
be simulated using random plaintexts and randomization parameters, since the
encryption is IND-CPA secure [BGN05]. We invoke the simulator for ZKP that
the plaintext is one of either two from [DJ01]. Note that this simulator will be
correct, since it is independent of the secret input. The subsequent computations
are performed by both — Alice and Bob. We then choose δ+1 random ciphertexts
including E′(0, r′′). We invoke the simulator for the shuffle from [Gro10]. Again,
recall that the simulator is independent of the secret input. Furthermore, due to
the IND-CPA security our simulated shuffle is indistinguishable from a real shuffle.
The simulator reveals the random parameter r′′.
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The simulator computes the information word x for the (random) codeword d
(c[j] = E(d[j], r′[j]) for 0 ≤ j < l). It chooses random r[i] (0 ≤ i < l′) and outputs
the ciphertexts E(x[i], r[i]) for the information word. Again, these are IND-CPA
indistinguishable. Furthermore, it performs the computations as in Section 5.5.3
and outputs the corresponding r′′[i].

The simulator chooses random r′ and sends from the previous simulated mes-
sages E(x, κ) =

∏l′−1
i=0 E(x[i], r′[i])2iE(0, r′)−1 as the fuzzy commitment. It is in-

distinguishable again due to the IND-CPA security of the encryption scheme. The
subsequent computations are again performed by both — Alice and Bob. The sim-
ulator reveals r. The simulator invokes the simulator for the ZKP whether v = 0
in c = E(u, v) from above. Again, this simulator succeeds, since it is independent
of the secret input.

We have given a complete simulator — independent of the secret input by Al-
ice — for the message exchange between prover and verifier. It uses the simulators
of the oracle ZKPs as subcomponents.

Information Leakage Towards Server Since all fuzzy commitments from Al-
ice use the same randomization parameter κ — which Alice commits to during
setup — the commitments are deterministic and can be compared on server side.
This property is essential for efficient history checking as described in Section 5.4.2.
However, deterministic queries are also apt to leak frequency information and pos-
sibly allow dictionary attacks. Both concerns however do not pose a privacy issue
in our system for two reasons. First, the randomization parameter of MAC(·, ·) is
at the client’s discretion, thus the server cannot generate and check commitments.
Second, for frequency attacks to be mounted, the attacker needs frequency infor-
mation about queries. Without such a distribution — i.e. if every commitment
occurred only once — the server cannot infer information from the commitments
of queried strings. Achieving unique commitments for genuine queries and iden-
tical commitments for close inference attack queries with a low false-positive and
-negative rate is one of the goals of the proposed scheme. Reaching this goal
depends on the configuration of the ECC and its usage, as will be discussed in
Section 5.7.3.

5.7. Theoretical Evaluation

Goodrich [Goo09] describes two attacks to discover private strings using similarity
scores obtained in a supposedly privacy-preserving way. One of the two attacks
Goodrich describes relates to the black-peg score of the Mastermind game and can
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easily be adopted to be used against edit distance scores. The second attack uses
results from a privacy-preserving sequence alignment, which is not appplicable in
our case. We therefore focus on the straight-match (black-peg) score attack. Again,
for brevity we only give an overview of the attack and refer the reader to [Goo09]
for details.

We are going to describe an example of a class of efficient inference attacks
formulated by Goodrich [Goo09] in Section 5.7.1. A generalization of the proposed
attack, which can handle rejected comparisons is presented in Section 5.7.2. In
Section 5.7.3 we describe a property of the Mastermind attack, which is responsible
for a certain pattern observed for queries that are part of an Mastermind inference
attack. We describe how to exploit that attack structure to detect Mastermind
and related attacks. Section 5.7.4 analytically evaluates sensible configurations
for the underlying Reed-Muller ECC with respect to trade-off detection accuracy
of inference attack queries against the false classification of genuine queries as an
ongoing attack.

5.7.1. Description of the Original Attack

The Mastermind attack presented by Goodrich [Goo09] aims to efficiently infer
a private, real-world sized genomic sequences s from another party. The only
prerequisite is that a privacy-preserving protocol π can be used to compare an
arbitrary sequence r over the same alphabet against the private sequence. The
protocol returns the actual distance d = π(r, s) or an approximation of it. A
possible distance measure could be the edit distance.

The generic algorithm to infer the private sequence s starts with a reference
string r0 and an alphabet A, containing j = |A| characters. These are used to
generate j − 1 strings {r1, . . . , rj−1} in such a way that two characters taken
from the same position of different strings are always pair-wise different. The
strings ri (1 ≤ i < j) are deviations from r0. Furthermore, r0 defines the base
character for a specific position. Let ri[p] denote the character at position p in
string ri. For each string ri (1 ≤ i < j), the character at position p is selected
from A\{r0[p], r1[p], . . . , ri−1[p], ri+1[p], . . . , rj [p]}. It follows that for any position

p,
j−1⋃
i=0

ri[p] = A. The method for selecting the actual Character has no impact on

the effectiveness of the attack. It could be chosen uniformly at random, sequentially
ordered by character code or any other mean. However, it is important that all
ri[p] are distinct and thus present a partition of A.

For each string ri (0 ≤ i < j) a similarity score di = π(ri, s) using the privacy-
preserving comparison protocol π is obtained and the algorithm starts a recursion
for each ri in which it performs the following steps. These steps are also visualized
in Figure 5.2.
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1. Split the previously queried strings into a left and right part ri = riL|riR,
with “|” denoting the string concatenation.

2. Select the left part (e.g. riL) and replace it by another string r′iL ∈ A‖riL‖.
Let ‖r‖ denote the length of the string r. The replacement is performed
j − 1 times, generating j − 1 new strings (called r4, r5, r6 in Figure 5.2). All
(r′iL[p]) at position p across all substrings generated in this step (including
the original substring riL) must be distinct. All distances (i.e. d4, d5, d6) for
the new constructed strings are queried using π.

3. Distances of the changed parts diL and diR — in the example d4L and d4R —
can be calculated as diL = dp − di and diR = di − diL. dp references the pre-
viously calculated distance for the parent node in the Mastermind recursion
tree, as visualized in Figure 5.2.

AAAAAAAAr0

CCCCCCCC
GGGGGGGG
TTTTTTTT

CCCCAAAA

GGGGAAAA
TTTTAAAA

AACCAAAA

r1

r2

r3

r4

r5

r6

r7

d4L

d4R
d0

d4

GGCCAAAA
TTCCAAAA

Figure 5.2.: Visualization of Mastermind attack scheme. ri denotes the sequences
that are queried, while di denotes the equivalent distances returned.
diL (diR) denotes the calculated distance for the left (right) — changed
(unchanged) — substring. Edits made by the algorithm are depicted
in red, while the blue arrows show the sequence of queries.

Stop Condition If at some point the similarity score equals zero for one query,
then the used deviation from the original character set can be ignored for deeper
recursive steps and the number of strings to be generated and queried reduces
by one. At some point the number of queried strings drops below two and the
recursion stops.

5.7.2. Goodrich Randomization

Using the proposed inference attack detection, we describe its implications on
the original Goodrich attack and construct a generalization of the specific attack
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Figure 5.3.: Accuracy of original Goodrich attack using different simulated thresh-
olds for rejecting close queries. A Hamming distance threshold tH
means that any query with an Bloom filter Hamming distance less
than tH to any of the previously accepted queries will be rejected.
This simulation therefore does not include false-positives or -negatives
in similarity detection, or other characteristics which are introduced
by the ECC. Taking a threshold of tH = 32 for example results in a
simulated accuracy of 0.31 for the string returned by the Mastermind
attack.

described by Goodrich to properly handle rejected queries, for example due to in-
ference detection algorithms. Finally, the generalized attack is evaluated against a
simplified inference attack detection construction. Analytical and empirical eval-
uations of the actual construction can be found in the subsequent sections.

In Section 5.3.2 we presented the use of an ECC — specifically a Reed-Muller
code as given in Section 3.7 — to generate a fuzzy commitment. The benefit of
having such a commitment is to detect similar queries which are covered by the
same commitment.

The Hamming distance on strings of equal length equals the number of positions
on which the strings differ. Depending on the configuration of the used ECC, two
submitted Bloom filters within a certain Hamming distance δ can be detected
as similar with high probability and no distance score will be calculated. Put
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Figure 5.4.: Accuracy after several randomization rounds using the simulation
setup without the ECC.

differently, for a new query q and the set of all previously accepted queries Q, let
δ be the smallest Hamming distance to all elements in Q: δ = min

p∈Q
dH(q, p).

The Hamming distance threshold tH in the following figures describes different
configurations of the inference detection algorithm. Specifically, tH describes the
minimum Hamming distance between any two valid queries. Intuitively, if the
Hamming distance δ for a query is below the threshold δ < tH it should be de-
tected and rejected with high probability, whereas a δ ≥ tH should result in an
accepted query with high probability. Please note that tH is not the parameter
used for configuring an ECC, but solely a threshold for the pair-wise Hamming
distance between any two accepted queries. The following evaluation is based on
a simulation of the inference attack detection without the use of an ECC and thus
without the false-positives and -negatives introduced by the ECC. It is therefore
an optimal solution in terms of query matching based on the Hamming distance.
If a query was generated with a Hamming distance smaller than the threshold tH
to any of the previously accepted queries, it is detected as being too close to a
previous submission and the answer will be withhold. Figure 5.3 shows how the
accuracy of the original Mastermind attack goes down as the Hamming distance
threshold tH increases. The accuracy was calculated by comparing the proposed
string by the Mastermind algorithm against the correct one. The ratio of the num-

109



5. Inference Control

0
10

2
0

3
0

4
0

5
0

Rounds for Distinct Accuracy per Hamming Distance

Hamming Distance Threshold tH

N
u
m
b
er

o
f
R
o
u
n
d
s
(V

o
te
s
p
er

C
h
a
ra
ct
er
)

2 8 16 32 64

42

Accuracy

0.95
0.9
0.85
0.8
0.75
0.7

Figure 5.5.: Rounds necessary to reach distinct accuracy

ber of correctly extracted nucleotides over the total length of the sequence (approx.
16568 characters) is given as the mean accuracy value. 100 different genomes were
sampled from the mtDB [IG06] with 100 runs performed for each of the genomic
sequences.

Of course, an attacker is not bound to the original Goodrich attack. An adapted
version, handling rejected queries, is used to test our detection mechanism. Instead
of running the Goodrich attack as described (that is to abort recursion when a
query gets rejected), we can calculate the probability that a certain character
appears at a specific position. After all recursion paths have led to a rejection, the
generalized goodrich attack starts all over using a fresh random reference string r0.
The substring generation and distance calculation follows the original attack. With
each invocation of the adopted Goodrich attack, a vote for every possible character
at every position is recorded. The adversary uses the top voted character for every
position of the string to build the inferred sequence, following the plurality voting
scheme. Figure 5.4 gives the accuracy (number of correctly guessed characters
divided by the total number of characters) of the inferred sequence after a certain
number of attack invocations (rounds). The different curves show the achieved
accuracy using the adopted Goodrich attack and plurality voting under different
thresholds for minimum query distances.

In contrast, Figure 5.5 specifies the number of attack rounds necessary to reach
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a certain accuracy level for different detection scenarios, rejecting strings with
a Hamming distance below tH ∈ {2, 4, 8, 16, 32, 64}. Thus it specifies the gain
achieved against attackers trying to perform inference attacks. A single round has
about the same complexity and number of queries as the original Goodrich attack,
which needed on average 536 queries to infer a genomic sequence. Following the
results presented in Figure 5.5, an attacker that tries to infer a sequence with 95%
accuracy — using the repeated, randomized attack described above — under a
configuration that detects and rejects queries with a pairwise Hamming distance
below 16 bits, must perform roughly 536 ·60 = 32160 queries against the database.
This is 536 queries on average for a single round times 60 rounds for a 95% accuracy
extrapolated from Figure 5.5.

As a countermeasure to this attack, we propose to also limit the number of total
queries to a level dependent on the target accuracy. Goodrich reports that for
90% of the genomes less than 875 queries are needed. Following the simulation,
if an attacker has the goal to reach a target accuracy level of 75% for an inferred
sequence (given that the Hamming distance threshold is set to tH = 32), it requires
the attacker to perform about 42 attack rounds (or invocations) of the adopted
Goodrich attack, resulting in roughly 42 · 875 = 36750 queries. The values are
taken directly from Figure 5.5. This is a significant increase in allowed queries
until a certain privacy level is breached — compared to the maximum number
under Goodrich’s attack.

Using the above described inference attack detection and query rate limiting,
we achieve a much lowered success rate and at the same time higher attack costs.
In subsequent sections we analyze the detection capability of our algorithm using
a specific ECC.

5.7.3. Distinguishing Attacks from Valid Requests

We should ensure that our detection algorithm rejects as few legitimate queries
as possible due to being close to each other. When comparing genomic sequences
against a reference sequence usign the edit distance, it yields on average a low
number of substitutions and even less insertions and deletions. Goodrich [Goo09]
gives an average number of 28 substitutions for a sample set of 1000 mitochondrial
genomic sequences. Of course, an algorithm that tries to detect inference attacks
based on pairwise query distances and a threshold-based classification will produce
false-positives and false-negatives during attack detection. A false-positive would
be the classification of a genuine query as an inference attack, due to being close
to a previous query. Similarly, a false-negative would be a not-detected inference
attack query, which has a high pair-wise distance to all previous queries.

111



5. Inference Control

Over the next sections, we are going to discuss how sensible trade-offs between
detection accuracy, false-positives and false-negatives can be found. The basis
for the following discussion will be patterns emerging from the Goodrich attack,
an analytic evaluation of the applied Reed-Muller ECC, as well as an empirical
evaluation using three different ECC mapping schemes. We are going to start with
the Goodrich attack patterns.

The mutated positions (for point mutations) in the genomic sequences — if
compared to the reference sequence — are typically distributed over different re-
gions, with a low probability of having consecutive changes on adjacent character
positions. The generated strings from the inference attack described by Goodrich
[Goo09], however, follow certain patterns, for example from dividing the sequence
into substrings, as shown in Figure 5.2, changes are made at consecutive positions,
rather than at distant ones. This difference in edited positions between queries has
an effect on the Bloom filter generation and can still be detected from the Bloom
filter Hamming distance. This reflection of the attack in the Bloom filter is used
to better distinguish attacks from valid queries.

Recall the generation of positional grams, as it was described in Section 3.4
and 3.3. The VGRAM algorithm [LWY07] — sketched in Section 3.3 — also
defines the generation of NAG-vectors, which describe the “number of affected
grams” that follows from a certain edit operation or sequence of edit operations.
Based on the number of affected grams we specified in Chapter 4 the approximated
maximum Hamming distance over Bloom filters for a given edit distance.

Assume that the edit positions are at least qmax characters away from each other.
Let qavg denote the mean length of a gram. One edit operation will then affect
about qavg grams on average, i.e. the gram with the edit operation affecting the
last character, the gram with the second to last character affected and so on. This
is especially true for a fixed gram length and without skipping any grams. So each
edit operation affects a set of about qavg grams. As long as edit positions are far
away from each other (more than qmax characters), each edit operation adds about
qavg new grams to the set of affected grams. For the VGRAM algorithm [LWY07]
the mean number of affected grams for an edit operation is a bit lower than the
mean length of a gram, as will be shown later.

For an edit distance dE between two strings, a rough estimation of the Ham-
ming distance between the corresponding Bloom filters would be dH = qavg · dE.
This is a good estimation for most genomic sequences found in the used genomic
database [IG06]. The actual distances will be evaluated later as part of the empir-
ical evaluation.

However, if dE changes appear consecutively, as is the case with the Mastermind
attack described by Goodrich, the sets of affected grams for each edit operation
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overlap to a very large extend. Thus if dE consecutive characters are changed, on
average only qavg + (dE − 1) grams are affected. The resulting Hamming distance
between the corresponding Bloom filters represents this large overlap in affected
grams. The Hamming distance for consecutive edit operations increases very slowly
with additional edit operations, as the set of affected grams also grows slowly with
additional consecutive edits.
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Figure 5.6.: Bloom filter changes by distance of edit positions. Edit operations at
consecutive sequence positions result in a lower number of changed
grams, than edit operations at distant sequence positions. A lower
number of changed grams results in a lower Hamming distance between
the respective Bloom filters.

Figure 5.6 visualizes both functions and it is easy to see that consecutive edit
operations produce very low Bloom filter differences. The database of human
genomic sequences has a large number of pairs with an edit distance of 20. Using
the above approximation of dH = qavg · dE, such an edit distance yields an average
Bloom filter distance of about 400 for a qavg ≈ 20 as taken from Figure 4.3 and
Figure 4.4 in Section 4.4.1. The same edit distance applied to adjacent characters,
as it is the case with the attack algorithm described by Goodrich [Goo09], however,
results in a much lower Hamming distance of around 39. The curves were derived
using the proposed values qmax = 40 and pfp = 0.5, which yield a Bloom filter
length of approximately l = 23905 bits. If a single character at a random position
in the sequence is changed, the Bloom filter will have on average approximately
20 bit distance to the Bloom filter of the original string.

According to Figure 5.6 and thus the gap between changed bits for valid genomic
sequences and artificial queries, we can easily define an arbitrary threshold for the
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detection scheme that allows queries with higher pairwise Hamming distance. For
example, if the Hamming distance threshold between submitted Bloom filters is
set to tH = 100 bits, consecutive changes of up to 81 characters or changes of up
to 5 characters at distant positions are detected. The just mentioned Bloom filter
threshold value is an example illustrated in Figure 5.6.

This gap between valid and artificial queries can be increased even further by
increasing the value qmax within the VGRAM algorithm and by decreasing the
false-positive rate pfp for calculating the appropriate Bloom filter length.

5.7.4. Configuration of the Error-Correcting Code

The previous sections presented a generic analysis and discussion of the inference
detection construction without considering any specific ECC. The integrated ECC
represents the core of the fuzzy mapping and detection algorithm. Therefore we
must analyze what the ECC can provide, how it must be instantiated and which
results can be expected in order to derive useful and practical configurations.

Our goal is to map a random bit string bA and a close string bB to the same bit
string with high probability by using the error-correction and decoding function
of an ECC. Closeness is defined by the Hamming distance dH(bA, bB), together
with some threshold tH ≤ t value. If the Hamming distance between both bit
strings is above the threshold, they should decode to different bit strings with
high probability. As the bit strings are practically random strings — Bloom filters
generated using a cryptographic hash function —, it cannot be ensured that the
ECC can correct tH errors applied upon them. It thus follows that the decoding
into identical and different information words is probabilistic. This section will
provide an analysis of the properties of the selected Reed-Muller ECC. As defined
in Section 3.7, a first-order Reed-Muller code is used, which can be completely
described by a single parameter m. This parameter defines the length of the
information word (m+ 1)bits, the length of the codewords 2m bits, the generator
matrix G, as well as all other necessary variables. An empirical analysis of the
Reed-Muller ECC will be presented in Section 5.8.

First of all, the codewords generated by Reed-Muller have a length of 2m bits
for a first-order Reed-Muller code R(1,m). The closest codeword lengths for the
desired Bloom filter length l = 23905 are achieved using m1 = 14 and m2 = 15,
which yield a bit string length (for the Bloom filter and codeword) of 16384 bits
or 32768 bits, respectively. As will be shown later, the ECC works best when the
normalized Hamming weight w̄(b), which is the Hamming weight of a bit string b
divided by its length w̄(b) = wH(b)/‖b‖, is close to 0.5 (‖b‖ specifies the length of the
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Figure 5.7.: Distribution of the number of grams generated by the VGRAM al-
gorithm [LWY07] for mitochondrial DNA sequences taken from the
genome database [IG06].

vector b). The Hamming weight of the bit string b (the Bloom filter) is determined
by its length and the number of inserted elements.

The number of inserted elements into the Bloom filter equals the number of
variable length grams generated for the input string at the corresponding party. In
previous sections the number of grams generated was approximated to be close to
the actual input string length, which is 16568. Figure 5.7 shows the distribution of
the number of variable length grams generated for DNA sequences from the human
mtDNA database [IG06]. The mean number of grams for a human mitochondrial
genome sequence is 15198. As the grams are input to the Bloom filter, the number
of elements inserted into a Bloom filter equals the number of grams. Following
this, the average number of inserted Bloom filter elements is equally 15198.

Under the restriction of using a single Reed-Muller code, the only available
Bloom filter sizes are 214 bits or 215 bits. Equation (4.1) estimates the number of
set bits in a Bloom filter b given the number i of inserted elements and the length l
of the Bloom filter. Dividing the expected number of set bits by the length of the
filter results in the approximated normalized Hamming weight w̄(b) = 1−exp(−i/l)
(see Equation (4.1)). Using i = 15198, the expected normalized Hamming weights
are either w̄14(b) = 0.604 or w̄15(b) = 0.371. Both values are too far off from
0.5 to be applicable. Following these constraints, a Bloom filter of size 214 bits
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or 215 bits does not produce the desired normalized Hamming weight as given by
Equation (4.1) in Section 4.2. It is concluded that a single, large Reed-Muller
code is unsuited for the desired functionality and we thus use several shorter ones
to be able to set the bit string length more fine-granular. As the total number
of elements that are inserted into the Bloom filter is fixed, two variables remain
flexible. That is the length of the Bloom filter and the normalized Hamming weight
of it. Therefore we are going to analyze the ECC decoding equations analytically
for different ECC lengths and study the behavior of the ECC decoding function
depending on bit strings with different normalized Hamming weight.

As a next step we analyze the decoding algorithm of a first-order Reed-Muller
code to learn what settings are suitable to decode similar Bloom filters to the same
information word and dissimilar strings into different ones. The standard Reed-
Muller decoding algorithm describes for each but one bit of the information word
a set of 2m−1 decoding equations, each summing up exactly 2 distinct bits of the
Bloom filter. The final bit of the information word is generated using a majority
vote over the result of all decoding equations out of the respective set. If there
are equally many zeroes and ones, a decoding failure occurs. See Section 3.7 for a
detailed description. To circumvent this situation, we propose to use a shortened
Reed-Muller code, which skips one of the decoding equations (the last one) to have
an odd number of votes and thus never reach a draw during voting.

Reed-Muller Analysis

To analyze the Reed-Muller decoding, we are going to analyze the probability
of two random bit strings b1, b2, having Hamming distance k and a length of
2n = 2m bits to decode into different information words. The first of the two
strings is a random bit string b1, while the second bit string b2 is a copy of the
first, which is changed at k different, random positions, chosen uniformly. Let b
be a placeholder of either of the two.

Following Section 3.7, decoding b implies evaluating 2m−1 linear equations for
every bit (except the last one) of the information word. The equations are XORs
(⊕) between two different bits of b. To simplify the following analysis, we arrange
all bits from b in two lists of length b/2 in such a way that the decoding equations
always use the same index for both lists during decoding. This is achieved by
applying a permutation πi on b as a model for selecting the appropriate bits for
decoding. The permutation differs for each of the herewith decoded information
word bits, however all m permutations are fixed for R(1,m). The resulting bit
string is split in two half’s of the same length πi(b) = biL|biR, with “|” denoting a
concatenation of bit strings. biL denotes the first n selected bits by the permutation
πi and biR denotes the last n bits. The permutation is chosen such that for a fixed
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information word bit at position i, the decoding equation eqij takes the form eqij =

biL[j]⊕biR[j]. Let bi⊕ = biL⊕biR denote the result of evaluating and concatenating all
n decoding equations for the i-th information word bit. Decoding of an information
word bit at position i is then described as a majority vote over bi⊕. Recall that we
use modified decoding, i.e. we use an odd number of decoding equations, which
means that the length of bi⊕ is also odd. bil(b

i
R) is the vector of length n, which takes

all elements denoted by 0(1) in Figure 3.3, therein termed vector ri (1 ≤ i ≤ m).

The following analysis focuses on the probability of changing the outcome of
decoding a single information bit. “Changed outcome of decoding” refers to the
result of the majority vote over b⊕, i.e. the vote returns 1 for decoding a specific
bit of b1, but returns 0 decoding the same information word bit on b2 — or vice
versa.

Modeling R(1,m) Decoding Let b1, b2 be two compared bit strings of identical
length and Hamming distance k. We fix the information word bit that is to be
decoded and don’t change it unless specifically mentioned. Decoding the selected
information word bit is simulated by generating b⊕ using all n decoding equations.
Let n0 denote the number of zeroes and n1 the number of ones in b⊕. Furthermore,
the total length of b⊕ is n = n0 +n1 with n being odd due to the use of a shortened
Reed-Muller code. The decoding algorithm—more precisely: the chance to decode
a fixed information word bit differently in both bit strings b1 and b2 — is modeled as
a two step experiment. For ease of presentation and without loss of generality, we
assume that n1 > n0 for b⊕ on bit string b1, which simply means that the decoded
information word bit is 1 using a majority vote over b(1)

⊕ . We then derive the
probability p̄bit of reaching n0 > n1 for b2 —i.e. decoding the selected information
word bit to 0 instead of 1 for the other compared bit string. In cases where we
need to distinguish between b⊕, bL, bR, n0, n1 for both compared bit strings b1, b2
we add (1) and (2) as in b(1)

⊕ for b1 or n(2)
0 for b2. The opposite case, that n0 > n1

for b1 can be reduced to the aforementioned case n1 > n0 by flipping all bits in bL.

As we are interested in the probability p̄bit of decoding a single information
word bit differently between a given b1 and a random b2 with Hamming distance k
towards b1, we need to split the problem of calculating the desired probability into
smaller problems that can be tackled easily. From the assumption n1 > n0 follows
that a different decoding happens in case of n0 > n1. Thus, we need to calculate
the probability for that case to happen given b1 and k as input. As n = n0 +n1, we
can reformulate the inequality as n0 > n/2. We therefore have p̄bit = Pr[X > n/2].
The random variable X denotes the number of 0’s in b(2)

⊕ after all k bit flips. Using
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the law of total probability, we break up the probability for the inequality into a
sum of probabilities for concrete events as given in Equation (5.3).

Pr[X > n/2] =
n∑

m=dn/2e

Pr[X = m] (5.3)

We described the experiment as a two step process. In the first step of the
experiment we draw l ≤ k positions from b

(1)
L of b1 and flip the bits at the cor-

responding positions to construct a b(2)
L . In the second step we flip k − l bits at

random positions in b(1)
R to generate b(2)

R and calculate the probability that these
second bit flips together with the first l flips generate a difference i = n

(2)
0 − n

(1)
0

between b(1)
⊕ and b(2)

⊕ .

We start with considering the probability of having a Hamming distance of l
between b

(1)
L and b

(2)
L given a Hamming distance of k between b1 and b2. Recall

that the number of draws in the first step is l over a string of bit length n. The
number of total draws is k over a bit string of length 2n. Therefore the probability
of having l draws in the first n bits is equivalent to the probability given by the
hypergeometric distribution, which describes the probability of having l success-
ful draws out of a total of k draws with in total n possible successes and a total
population of 2n. Equation (5.4) uses the probability mass function of the hyper-
geometric distribution to calculate the probability for the event that the random
variable F1, which denotes the number of flipped bits in bL, equals l.

Pr[F1 = l] =

(
n
l

)
·
(
n
k−l
)(

2n
k

) (5.4)

Given the probability of having exactly l bits flipped in bL we need to calculate
the probability that these l bit flips changed the number of 0’s between b(1)

⊕ and b(2)
⊕

by i: i = n
(2)
0 − n

(1)
0 . The random variable X̃ denotes the number of zeros in b(2)

⊕
after flipping the first l bits. Due to flipping l bits upon a bit string, the possible
values for i in the change of 0-bits between the original string b(1)

⊕ and the generated
string b(2)

⊕ have a specific structure i ∈ {−l,−l+2, . . . , l−2, l}. If l = 1, then either a
1 in b(1)

⊕ is changed to a 0 in b(2)
⊕ , resulting in i = 1, or a 1 is changed to a 0, resulting

in i = −1. Similarly for l = 2 follows i ∈ {−2, 0, 2}, for l = 3 is i ∈ {−3,−1, 1, 3}
and so forth. Given this structure and a helper variable a1

0 = l−i
2 , it holds that

a1
0 ∈ {0, . . . , l}. The variable a1

0 describes the number of bits in b
(1)
⊕ which were

changed from 0 to 1 in b
(2)
⊕ . At this point we can again use a hypergeometric
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distribution to describe the probability distribution for having exactly i changed
0’s between b(1)

⊕ and b(2)
⊕ . The problem is reduced to hypergeometric distributions

by letting a1
0 — i.e. the number of 0’s changed to 1’s — be the number of successes

out of l total draws with a maximum number of successes n(1)
0 and a population

count of n bits to choose from in total. Equation (5.5) uses the probability mass
function of the hypergeometric distribution to describe the probability of a concrete
event that changes the number of 0’s by i in b⊕ given l bit flips in the first n bits.
The probability for the event that exactly l out of k bits are flipped in the first n
bits was given by Equation (5.4). As the probability for i changes given a specific
l is only defined for a certain i as given above, Equation (5.5) includes a case for
a1

0 /∈ {0, . . . , l} returning a probability of 0.

Pr[X̃ = n0 + i|F1 = l] =


0 if a1

0 /∈ {0, . . . , l}
(n0
a10

)·(n−n0
l−a10

)

(nl)
else

(5.5)

The second step in our experiment is to draw the remaining k − l positions
from the n bits in b(1)

R , flip them, construct b(2)
R and calculate the final probability

that Pr[X = m], as required for our “different bit decoding” probability. We use
the same approach as before by applying the probability mass function of the
hypergeometric distribution upon a new helper variable a2

0 = n0+i+k−l−m
2 , which

describes the number of 0’s in b⊕ that are changed by the second experiment step.
This also includes the zeroes generated previously by the first experiment step
and therefore includes the case that the XOR-operation executed by the decoding
equations might cancel out some of the k bit flips on the original bit string b1.
Equation (5.6) describes the probability of reaching m 0’s in b(2)

⊕ after applying all
k bit flips, given that l flips happen on the first n bits and i zeroes are changed
after the first l flips. Similarly to Equation (5.5), a special case takes care of values
for a2

0 that are undefined.

Pr[X = m|X̃ = n0 + i, F1 = l] =


0 if a2

0 /∈ {0, . . . , k − l}
(n0+i

a20
)·(n−n0−i

k−l−a20
)

( n
k−l)

else
(5.6)

We can put all the single probabilities together and sum over all the intro-
duced variables to reach a combined probability for Pr[X = m], as given in Equa-
tion (5.7).

Pr[X = m] =

k∑
l=0

l∑
i=−l

Pr[X = m|X̃ = n0 + i, F1 = l] · Pr[X̃ = n0 + i|F1 = l] · Pr[F1 = l]

(5.7)
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We have defined how to calculate the probability that a certain decoded infor-
mation bit changes if we apply k bit flips at random positions to a given bit string
b1. In the following sections we combine this result to derive a probability for a
changed information word and finally a changed Bloom filter decoding, or fuzzy
commitment, as necessary to detect similar queries for inference attack purposes.

Reed-Muller Analysis Results

As the decoding algorithm (see Section 3.7) actually describes m sets of decoding
equations, the probability of a single change throughout all of these bit decodings
is required. Or in other words, if a single bit decodes differently between b1 and the
k bits distant other bit string b2, than both produce different fuzzy commitments
and are not identified as similar inputs. We are thus interested in the probability of
having any of the decoded bits changed. As there are m+ 1 decoded information
bits, we thus calculate the probability of having b1 and b2 decode into different
information words:

p̄code = 1− (1− p̄bit)m+1.

Furthermore, next to m sets of terms or relations for majority decoding of m
bits, the last bit is computed using a simple majority decoding over a reduced bit
sequence b′, as specified in Section 3.7. This step is a simplification as it assumes
that all decoded information bits are independent, which they aren’t. However,
we will later on see that this is a good approximation.

As a single Reed-Muller ECC was too restrictive on its possible length, r shorter
codes are used to get closer to the desired bit string length. For example, using
m = 10 allows the bit string length to be a multiple of 210. The overall probability
of decoding two Bloom filters into different commitments is therefore given by
p̄total.

p̄total = 1− (1− p̄code)r

Figure 5.8 gives an overview on how the probability of decoding into different in-
formation words (ptotal) evolves for two bit strings with different Hamming distance
k and one of the bit strings having a certain Hamming weight offset o from 2m−1.
Let s0 be a bit sequence of length n with a Hamming weight wH(s0) = bn/2c, then
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Figure 5.8.: Probabilities to decode into a different commitment depending on
codeword offset o and Hamming distance k between Bloom filters.
The plotted probabilities are values obtained for ptotal as described in
the theoretical Reed-Muller analysis.

a bit sequence b has offset o = wH(b) − wH(s0). Put differently, this offset deter-
mines the Hamming distance between the bit string b1 and a word with Hamming
distance bn/2c. b1 and a Hamming distance k is used as input in the theoretical
analysis above.

The blue plane at the bottom of the graph represents the area in which the
parameters Hamming weight of Bloom filter and Hamming distance to another
Bloom filter can vary, without decoding into a different commitment. However, as
we move to the red plane, that is the region of higher distances between Bloom
filters or lower offsets (Hamming weights close to 0.5), the probability of decoding
into a different information word is very close to one. The blue and red areas
are connected via a very steep upward curve between them. It can be seen that
by choosing the offset — that is the normalized Hamming weight — of the Bloom
filters properly, the detection of similar Bloom filters, by the definition of Hamming
distance, can be steered nicely.

Figure 5.8, does not show the probability distribution for a single ECC word, but
for the whole Bloom filter to decode into the same commitment. The adaptation
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of the probability for a differently decoded word towards a differently decoded
total Bloom filter is straightforward, as the bits used for the next ECC word can
be assumed to be independent (they are set using a cryptographic hash function,
which is known to be a good randomness extractor and thus generate output close
to the uniform distribution). It takes the inverse probability of a change — the
probability to decode identically for a single word — raised to the power of r (to get
to the length of the Bloom filter) and subtracted from one again. In the discussed
case r = rmax = 22.
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Figure 5.9.: Probabilities to decode two bit strings into different information words
depending on normalized Hamming weight and Hamming distance to
another Bloom filter.

For example it follows for a bit string b of length 2m ·r = 22528bits (m = 10, r =
22) and normalized Hamming weight w̄(b) = 0.486 (the green curve in Figure 5.9)
that another string with a Hamming distance of up to 16 bits in all r single ECCs
substrings of length 2m that are used for decoding, will be decoded into the same
commitment with high probability. Figure 5.9 highlights that case for different
normalized Hamming weights w̄(b) and Hamming distances between the two bit
strings.

At last, it is to note that once a desired normalized Hamming weight is picked,
i.e. w̄(b) = 0.486, Equation (3.2) is used to derive the correct Bloom filter length,
which provides normalized Hamming weights close to the desired value pfp = w̄(b).
The calculation is based on the average number of grams generated by the VGRAM
algorithm. In our example the calculated Bloom filter length would be 22836. As
the length clearly differs from the possible length of 2m · 22 = 22528 (m = 10),
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5.7. Theoretical Evaluation

it must be specified how to map 22836 bits (size of the Bloom filter) to 22528 bits
(total size of the r ECC words). Section 5.8 will discuss, implement and evaluate
three such mappings. One possibility — that will also be evaluated later on —
is to insert all grams into the full length Bloom filter and remove the last bits
of the filter to reduce the filter size to a multiple of the selected ECC length.
This essentially resembles a sampling of the Bloom filter and in the specific case
only a very small fraction is removed (< 1.4%). This procedure is identical to
Locality-Sensitive Hashing (LSH)-families that perform bit sampling in Hamming
spaces, as done by Gionis, Indyk, and Motwani [GIM99] and Indyk and Motwani
[IM98], and offers a very good approximation especially at this high sampling rate.
Despite not drawing or removing bits from random positions or dimensions, the
bit strings themselves are treated as random strings, making the random index
choice for sampling unnecessary. Furthermore, the high accurate sampling can be
used to select the average normalized Hamming weight very precisely, as arbitrary
sized Bloom filters can be used to exactly mimic the desired normalized Hamming
weight. Sampling the Bloom filter then brings its size down to the actual required
size.
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Figure 5.10.: Distribution of Hamming weights for all Bloom filters generated over
the DNA database [IG06]. Approximately 78% of all normalized
Hamming weights are above 0.48, within the desired range below the
desired normalized Hamming weight of 0.5, as shown in Figure 5.9.
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The actually achieved distribution of normalized weights over the database is
presented in Figure 5.10 and nicely shows that the interesting range of normalized
Hamming weights [0.48, 0.49] includes over 75% of all database entries, with the
median being w̄(b) ≈ 0.484.
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Figure 5.11.: Probability of a decoding error for random bit strings using a Reed-
Muller code with m ∈ [2, 20]. The error probability perr decreases
fast with an increasing m. At m = 15 the probability of a decoding
error is already below 10%: perr = 0.08

This plot together with Figure 5.11 helps in deciding which value for m to
choose. In the appendices (Section B.1) follows an overview on the influence of
the choice of m. The requirements are that the probability of a decoding error
for a random bit string (Figure 5.11) should be low to allow a few bits to be
changed and still decode to the same information word and finally into the same
commitment. In the end we want to detect inference attacks by means of mapping
into the same information word. Furthermore, we want a high number of “Message
Information Bits” from Figure B.1, as these specify the size of the domain that can
be successfully compared without being detected as similar values. Similarly to the
low probability of receiving a decoding error for a random string, the actual ECC
should be able to correct a possibly large amount of bit flips, denoted as “Single
ECC Correctable Bits” in the Reed-Muller configuration comparison figure. From
all of this it follows that m = 10 seems to be a reasonable choice as a compromise
between being able to correct errors (Hamming distances between two genuine
genome Bloom filters) and the size of the domain that can be compared. Values
for both parameters are most similar for m = 10. We therefore continue our
analysis with this choice.
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Figure 5.12.: Distribution of pair-wise Hamming distance between all Bloom fil-
ters generated out of the “Human Ditochondrial Genome Database”
[IG06] using the scheme presented in Chapter 4 and a Bloom filter
length of 22836 bits.

The distribution of actual Hamming distances found in the database of Ingman
and Gyllensten [IG06] — as plotted in Figure 5.12 — demonstrates that it is very
likely that a pair of genuine genomic sequences, as they are found in the database,
has a Hamming distance above 500 using our measure. Furthermore, as 22 ECCs,
each with a length of 210 bits are used to decode the Bloom filters, all ECCs have
to handle on average ≈ 22.7 bit flips. Figure 5.9 shows that, especially for Bloom
filters b with normalized weights w̄m(b) close to 0.5, such an amount of flipped bits
very likely results in the overall decoded message being changed and thus mapped
to a different commitment. This is even more true when the overall changed bits
— the Hamming distance dH between two Bloom filters is viewed as one of the
Bloom filters being flipped at dH different positions — are not distributed equally
over all the 22 ECCs. The probability of a single ECC decoding differently raises
when it receives more flips and so does the probability for the overall mapping to
another commitment.
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5. Inference Control

5.8. Empirical Evaluation

Next to the analytic evaluation of our proposed inference attack detection scheme
in Section 5.7.4, we present the results obtained from evaluating our scheme over
all unique genomes in the used database [IG06] under selected configurations. To
better understand the details of the empirical evaluation, we quickly recall the
overall concept and comment on important details. As described in the construc-
tion in Section 5.4, each genomic sequence is mapped to a set of variable length
grams using the VGRAM algorithm [LWY07] and all sets of a sequence are inserted
into a Bloom filter. These Bloom filters are then decoded using the selected ECC
(shortened Reed-Muller) with a configuration derived from our analytic results in
Section 5.7.4.

We use a Bloom filter length of l = 22836 bits and utilize the filters to store on
average 15198 grams per genomic sequence in each filter. Using this configuration,
we reach a normalized Hamming weight in the range [0.48, 0.5] for about 78%
of the Bloom filters build from the genomic database as depicted in Figure 5.10.
A normalized Hamming weight in this range was found to deliver the desired
performance. Furthermore, the configuration of the ECCs was set to m = 10,
which balances the domain size for the possible genomes with the error-correcting
capability of the ECC. As a result the ECC was combined r = bl/2mc = 22 times
to reach a combined reduced length of lr = 210 · 22 = 22528 bits. All Bloom filters
were thus shortened by removing l − lr = 308 bits to fit the reduced length of the
combined ECC size boundary.

Until now we did not mention how the Bloom filter bits are mapped to ECC
words. Therefore we will describe and discuss different mappings.

In general we propose to map bit positions of the pseudo-random bit strings
(Bloom filters) to positions within the words that are to be decoded by the ECC.
This map can be implemented in three steps:

1. Permute the bits of a Bloom filter using permutation π

2. Remove the last l − lr bits

3. Select 2m consecutive bits for all r ECC words

These three steps are also depicted in Figure 5.13 together with the conceptually
following decoding step. We will also describe three different ideas to construct the
permutation π and evaluate the respective influence on the detection capability.
Those three techniques are:
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Bloom filter (BF) b (length l)

0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 000 1
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Permuted BF π(b)

1. Apply permutation π

Shortened bit string

2. Shorten bit string to lr bits

0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 001 1

lr bits

3. Mapping to r ECC words

Mapped words

ECC decoding

Information words

0 001 1

2m bits

010

1 1 0 1 0

110

1 0 1 0 0

001

1 1 0 0 0

011 101

1 0 1 1 0

m+ 1 bits

Figure 5.13.: Steps performed to map a Bloom filter to a bit string that will be
decoded using an ECC. The supplied word bit lengths are specific for
the selected Reed-Muller ECC.

1. No permutation (Sequential)

2. Normalized Hamming weight of 0.5 (Uniform)

3. Close to codeword (Codeword)

However, before mapping strategies are described, a generic requirement must
be ensured. The final domain to which all compared elements will be mapped
to must be large enough to actually represent all compared elements with high
probability. The size of the target domain actually equals the size of the domain
of information words (of the ECC) multiplied by the number of information words
used to represent a single genomic sequence or in general an element that should
be used for comparison. After decoding, each ECC returns m+ 1 = 11 bits as an
information word, which results in a total of 11 · 22 = 242bits to represent each
genomic sequence. We can thus at a maximum distinguish between 2242 differ-
ent genomic sequences, or following the birthday paradox [GB08] approximately√

2 · 2242 ≈ 2121 different sequences, which should still be enough in practice.
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Figure 5.14.: Distribution of Hamming distances for combinations of decoded in-
formation words out of the “Human Mitochondiral genome Database”
[LWY07].

1. No permutation We start with the intuitive mapping, which takes the first
2m bits of the Bloom filter and decodes them to retrieve an information word,
then the next 2m bits for the second information word and so on for all r = 22
ECC invocations. So this mapping applies the identity permutation (or no per-
mutation) and uses the first 2m · r bits of the Bloom filter. All Bloom filters of
the genome database were decoded this way and all possible combinations of de-
coded information words were then compared. Figure 5.14 shows the pair-wise
Hamming distance distribution of an all-to-all comparison over the received infor-
mation words. Recall that if within these combinations the same information word
appears, it implies that also both related genomic sequences are mapped to the
same fuzzy commitment and thus the query for the second of these two genomes
would be rejected as possible inference attack. This is equivalent to a Hamming
distance of 0 between any of the information words.

The analysis for the probability of decoding into a different combined information
word over the whole Bloom filter b given a certain normalized Hamming weight
w̄(b) and a number of flipped bits (Hamming distance to the compared Bloom
filter), assumes that all used ECCs have the same normalized Hamming weight.
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Figure 5.15.: Distribution of normalized Hamming weights w̄(b) per Error-Correct-
ing Code for all Bloom filters generated over the whole database. The
indices used for the Error-Correcting Codes are selected sequentially
over the Bloom filter.

This might be correct on average for truly random strings, but it will most certainly
not be true for a single use case. This use case follows from converting genomic
sequences into Bloom filters. As described above, assume that the first ECC out of
the 22 used for a single Bloom filter uses all bits with an index in the range [1, 2m],
the second ECC uses the directly follow bits with indices [2m+1, 2 ·2m] and so on.
So the ECCs are dividing the Bloom filter into 22 equally sized parts of sequential
bits. The distribution of normalized Hamming weights of the ECC words for all
Bloom filters of the complete database using such a sequential mapping from Bloom
filter bits to ECCs words is depicted in Figure 5.15.

One can easily see that the distribution distinctly differs from the desired one
depicted in Figure 5.10, which shows the distribution of normalized Hamming
weights over the complete Bloom filters. Furthermore, Figure 5.15 shows that a
large number of bit strings exhibit a normalized Hamming weight closely around
0.5, which means that already a slight change on the string (a single bit flip) will
very likely change the result of the decoding, as indicated by Figure 5.9. As a
result, most slight changes made to a request to compare genomic sequences will
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result in at least one of the ECCs decoding to another information word and thus
to another fuzzy commitment. We would see a very low number of false-positives
in comparing genuine genomic sequences, but on the other side nearly all inference
attack queries would go undetected — even if only a small number of bits would
be different between the inference attack query and a previously genuine query.

If this setting is applied to the used database, utilizing the parameters mentioned
above and a sequential selection of the ECC bits, then the total number of false-
positives found via a complete all-to-all comparison is 850. Therefore — there
are 12064 unique genomic sequences in the mtDNA database, yielding a total of(

12064
2

)
= 72764016 overall pair-wise combinations — approximately 99.999% of

all these comparisons will succeed without raising an inference attack alarm. In
other words, the false-positive rate of detecting two genuine mitochondrial genomic
sequences as an inference attack is below 0.000012. However, detecting inference
attacks also supports only a few changed bits. In other words, changing a single
character in the genomic sequence changes more grams and thus more bits in the
Bloom filter than the ECC is capable of identifying as identical, which leads to
virtually no detection capability when changing the genomic sequence — even by
a single character.

2. Normalized Hamming weight of 0.5 To solve the before mentioned issue and
increase the inference detection capability, we must ensure a better error-correction
capability of the ECC given our constraints. Looking at the results of the previous
(sequential) mapping, it strikes that the normalized Hamming weight distribu-
tions of the Bloom filters and that of the derived ECC words (compare Figure 5.15
and 5.10) are very different. An improved second mapping therefore tries to match
the normalized Hamming weight ECC word distribution to the Bloom filter dis-
tribution of normalized Hamming weights. In other words, a mapping should be
found which results in a more uniform bit distribution for the ECC words.

To solve this issue, the bits for each ECC are not selected sequentially, but in
such a way that we get a more similar normalized Hamming weight distribution.
Of course the actual mapping of bits from Bloom filters to ECCs words must be
fixed ahead of the first comparison and be identical for all queries that should be
comparable. If the mapping — or actually the permutation — would be chosen
based on the compared sequences, the resulting information words and thus also
commitments (see Section 5.4.2) could not be compared and furthermore, the
description of the permutation would leak information about the input sequence(s).

The issue of finding a good permutation or index selection which is independent
on the actual private input is dealt with bye making use of the property that all
input sequences and thus also their binary Bloom filter representations are very
similar in general. Therefore, the bit distribution of a publicly known reference
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sequence, the “revised Cambridge Reference Sequence” rCRS is used to derive a
permutation or mapping from bits of the Bloom filter to the ECCs words.

It selects 2m = 1024 random bits from the Bloom filter generated out of the rCRS
and checks if its normalized Hamming weight is close to the overall normalized
Hamming weight of the reference Bloom filter. If this is not the case random bits
are sampled again. Close to refers to a distance that can be chosen depending on
the actual context of the comparison. In this thesis a threshold of 0.5% between
both normalized weights was used. This number was chosen, as it narrows the
possible pair-wise difference between the normalized weights of the single ECCs
for that Bloom filter down well enough (compare with Figure 5.9) and it is still
possible to actually find such a mapping over the rCRS Bloom filter for all r = 22
ECC words.
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Figure 5.16.: Distribution of normalized Hamming weights w̄(b) per Error-Cor-
recting Code for all Bloom filters generated over the whole database.
The indices used for the Error-Correcting Codes are selected ran-
domly over the rCRS Bloom filter to match the normalized Hamming
weight of the overall Bloom filter.

Figure 5.16 shows that the normalized Hamming weights over all ECC words
selected this way is much closer to the desired distribution shown in Figure 5.10.
This implies that less queries are identified as different and thus a larger number is
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classified as a possible inference attack. This might also lead to a larger number of
false-positives, but also a better actual matching of close queries to detect ongoing
inference attack queries. As a result, the complete database all-to-all comparison of
fuzzy commitments using the uniform mapping algorithm revealed 970 identically
decoded strings, which is still a very low false-positive attack detection rate of
0.000013 and did therefore not significantly change the results compared to the
consecutive (or sequential) ECC selection over the Bloom filter.

Before coming to the third permutation algorithm or mapping technique from
Bloom filters to ECC words, we will describe and analyze possible attacks on a
privacy-preserving comparison scheme, a method to simulate such an attack and
how the simulation is used to determine the attack detection capability of our
inference attack detection algorithm.

5.8.1. Matching attacks

Up to now we analyzed how well genuine queries were preserved without raising
false alarms — as represented by the entries in the DNA database. However,
it is also necessary to give performance results on how well ongoing attacks are
matched. Therefore a description of an attack is needed. An attacker that performs
an inference attack is very likely to query rather similar queries, with a low distance
between them. The distance can either be measured as Hamming distance over the
submitted Bloom filter, or as the edit distance over the original genomic sequence or
character string. In the end, we want queries that are too close to previously issued
queries (having a minimum pair-wise edit distance below dElow) to be detected
and rejected with high probability, while queries with a rather high distance to
all previously issued requests to go through undetected (minimum pair-wise edit
distance above dEhigh), also with high probability.

To simulate such an attacker, the sampled distance results from the protocol in
Chapter 4, as they are visualized in Figure 4.4 are fitted to a Gaussian function for
each edit distance value in the range [1, 100]. Let Gi denote the fitted Gaussian
for edit distance i ∈ 1, . . . , 100. The actual simulated attack then works like this:
select a random element from the database, translate it into a Bloom filter b and
perform an edit operation (with edit distance dE) on it by sampling from the fitted
Gaussian GdE and flipping the returned number of bits at random positions b to
create the attack query b′.

Both queries b, b′ are mapped to a fuzzy commitment via error-correction and
decoding using the Error-Correcting Code. For small values dE ≤ dElow the queries
should be mapped to the same commitment, or equivalently to the same informa-
tion words after decoding. On the opposite, larger distances dE ≥ dEhigh should
produce a mapping to different information words and thus commitments.
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Evaluating this attack over some database entries (> 100), different edit dis-
tances and involving several repetitions (> 100), produced an unsatisfying attack
detection performance. As shown above, nearly all genuine queries passed, but
also very close queries were not detected satisfyingly. Even requests with just a
single bit change in the Bloom filter were detected as attacks for only half of the
queries. This behavior of not detecting close queries with high probability and
thus the inability of detecting attacks based on the query similarity is not suited
to detect inference attacks in our scenario. As even very close requests passed the
system 50% of the time the root cause of the detection problems must be found.

The reason for the bad performance lies in the decoding of random bit strings
for the ECCs. Even though the distribution of normalized Hamming weights was
balanced using sampled indices from the Bloom filter to map bits to an ECC — as
depicted in Figure 5.16, the to-be-decoded bit strings are still random. Recall that
the used Reed-Muller code with a configuration of m = 10 and thus a dHmin =

2m−1 = 512 can correct up to t = b
dHmin

−1

2 c = 2m−2 − 1 = 255 bit errors upon
a codeword of length 2m = 1024 bits. Each codeword has a Hamming weight of
2m−1 and thus a uniformly random bit string of length 2m will have on average a
Hamming distance of 2m−2 from each codeword. Except for the two codewords,
which are composed of only 0’s and only 1’s, here the Hamming distance is 2m−1.

However, if the random bit string has a Hamming distance of 2m−2 from any
codeword, and the code can correct up to 2m−2 − 1 errors, then the ECC words
reside just on the edge to decode into different information words. In case only
a few bits are changed upon these pseudo-random bit strings a decoding into a
different information word is highly probable. This is not the desired behavior, as
decoding should be identical for two bit string with a low Hamming distance.

5.8.2. Close to Codeword Mapping

So, the issue of the bad detection performance lies in the random distribution of
ECC word bits, resulting in a bit string which lies between codewords (geometri-
cally speaking). The logical consequence is to derive ECC words, which are closer
to a codeword than random strings and thus can tolerate more bit flips before
decoding into different information words.

3. Close to codeword To correct this phenomena, we no longer sample indices for
the ECCs words randomly or choose them to fit a desired distribution of normalized
weights, but instead select indices to get a bit string with a certain Hamming
distance to a pre-selected codeword. This way we are sure that the ECCs can
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decode also bit strings within a certain Hamming distance to the strings selected
by the indices.

The index selection works like this:

• Select the number r of ECC words that are used to represent and decode the
Bloom filter b. (r = 22 in our case.)
• Generate r random information words xi = {0, 1}m+1 : 1 ≤ i ≤ r.
• Encode xi to codewords yi.
• Select a vector idxi containing 2m indices from b for each codeword yi such
that the concatenation of all bits bidxi selected by the index vector idxi equals
the codeword yi.

Depending on the actually chosen Error-Correcting Code, some special cases
must be avoided. One of them is that for a Reed-Muller ECC, there exist the
codewords {1}m (a bit sequence of 1’s with length mbits) and {0}m, which should
be avoided. Due to drawing many ones or zeroes from the Bloom filter b there
are possibly not enough values left to select the indices for the remaining ECC
words. In any case, index selection might run out of 1’s or 0’s in the Bloom
filter, in which case the selection must be run again on new “random information
words” xi. To reduce the chance of running out of bit values, the number of
ECC words was reduced from r = 22 down to r = 20, giving a reduced length of
lr = 2m · r = 20480bits. This still allows to differentiate 2220 (2110 respecting the
birthday paradox) input sequences, which should be enough in practice.

The reference Bloom filter b used to select the k vectors of indices is constructed
from the rCRS reference sequence. As mentioned before, a reference sequence
is used to not leak any information about the input of the client or the server
and to be able to compare results. It follows directly from the used ECC and
its configuration (first-order Reed-Muller with m = 10) and the mapping of the
reference Bloom filter to codewords, that other Bloom filters with a Hamming
distance of up 2m−2 − 1 = 255 bits from the reference Bloom filter are decoded
identically and always generate the same fuzzy commitment. Furthermore, as not
all bits of the Bloom filter are used and decoded using an ECC, a change in these
l − lr = 2356 unused bits will not be detected.

Recalling the Distribution of Hamming distances over all Bloom filters generated
from the database, plotted in Figure 5.12, showed that a majority of the occurring
distances for genuine sequences can be found in the range [400, 1000] for a Bloom
filter length of 22836 bits. Each ECC therefore receives on average a Hamming
distance between 17.9 and 44.8 bits between two correct queries, which should be
decoded into different information words each with high probability. It would be
enough if one of the ECCs would decode into a different information word with
high probability for two genuine (non-inference attack) requests.
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However, as each of the r ECCs corrects 2m−2−1 = 255 flipped bits, all genuine
requests will be mapped to the same information word. This removes the utility
of the scheme as all genuine queries are detected as identical and thus cannot be
differentiated from smaller distances. Luckily this behavior can be nicely balanced
and adopted to the error-correction and therefore similarity detection requirements
defined through the underlying data. In the setup process of the inference control
scheme, a error-correction capability of the scheme must be fixed, which influences
the final detection capability and the accuracy of detecting attacks, as well as
the false-positive rate in doing so. If each ECC instance should be able to group
strings with a Hamming distance of o around the reference bit string generated by
the rCRS, its error-correcting capabilities must be restricted according to o. This
can easily be done by a simple adaptation of the aforementioned steps.

Instead of selecting the indices so that the resulting bit mapping to ECC words
resembles codewords exactly, only 2m−

((
2m−2 − 1

)
− o
)
bits are chosen to exactly

match the Bloom filter. The remaining
(
2m−2 − 1

)
− o bits are chosen deliberately

wrong. By this construction, ECC word bit string that differ in o′ > o bits from
the reference are not guaranteed to be corrected to the same information word
anymore. The higher the difference o′ − o with o′ > o, the higher is the chance to
fall into another information word after decoding.

From the distribution of Hamming distances over all possible Bloom filter gener-
ated out of the database (Figure 5.12), we chose o = 20 for testing and generated
information words over the database, as well as ran the described attack simula-
tion by sampling the Gaussian functions and perform decoding comparisons (just
as described above). The actual value o = 20 was chosen as this allows for a total
Hamming distance of up to 400 bits to be changed over the whole Bloom filter
without changing the commitment. This roughly equals an edit distance of up to
19 to be mapped to the same commitment, in theory.

Generating all commitments for the whole database and checking them pair-wise
yields a false-positive rate of 0.017 to detect genuine queries as inference attack.
Figure 5.17 puts the distributions of pair-wise Hamming weight distances into re-
lation. The distributions were generated using sequential mapping of Bloom filter
bits to each ECC, a uniform random index selection to derive Bloom filter to ECC
mappings and close to codeword mappings. The Hamming distance between infor-
mation words over the database varies depending on the actually used mapping
scheme.

Following these results, the above described inference attack scenario is run.
Figure 5.18 presents the results obtained from comparing information words of
many similar queries and different values o ∈ {10, 15, 20}. Looking at o = 20 for
example, the scheme is able to detect close strings with an edit distance of 1 with
a probability of 0.7498, however strings with an edit distance of about 20 — which
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Figure 5.17.: Distribution of Hamming distances between all decoded Bloom fil-
ters generated from the “Human Mitochondiral genome Database”
[LWY07].

should probably not count as an inference attack — are only detected as similar
with a probability of 0.0143. The steep curve indicates a quick transition from
the range of distances that exhibit a high probability of being detected as similar
over to the range of distances, which is unlikely to be identified as similar. Such a
behavior is highly desired, as it allows a separation between attacks and genuine
queries.
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Figure 5.18.: Probability of mapping two close queries to the same commitment.
Closeness is defined as edit distance between the underlying strings.
The edit distance to Hamming distance mappings are sampled from
fitted Gaussians as described above.

5.9. Conclusion

We investigated how to mitigate inference attacks on privacy-preserving genome
matching. Since randomization approaches, such as differential privacy, cannot
work, we employ a detection technique using an ECC and a one-way function. A
novel zero-knowledge proof ensures honesty on part of the querier. This zero-knowl-
edge proof is more efficient than generic techniques by using somewhat homomor-
phic encryption and also more efficient than directly proofing the error-correction
by introducing the codeword.

We show an analysis that our framework (in combination with limiting the
number of queries) is able to differentiate between similar and non-similar queries
regarding the Hamming distance. As such it is able to detect and mitigate inference
attacks that use similar queries to quickly derive a solution. The scheme can be
adopted easily to be more restrictive against inference attacks by increasing the
offset parameter o or by lowering the normalized Bloom filter weight via increasing
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the Bloom filter length. Furthermore, the false-positive detection rate could be
reduced — to allow highly similar queries to go through — by choosing a smaller
m for the ECC and thus a possibly larger input domain, at the price of having
a lower accuracy for detecting queries for inference attacks. A strong measure to
influence the detection performance is the possibility to describe a custom selection
of bit string indices for mapping towards the ECCs.

The scheme works best when similar elements, regardless if these might be strings
or something else, are of rather similar size, or have a similarly weighted feature
vector, which can be used as input instead of the Bloom filter. Future work might
include the adoption of ECCs of different sizes to utilize nearly all Bloom filter
bits and thus reduce sampling distortion. Furthermore, it is of interest how far
different algorithms from coding theory and parameter variations influence the
detection capability for similar elements. Applying the presented techniques to
other domains apart genome or even string matching from other domains would
be interesting.
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6. Homomorphic Chipertext
Compression

Parts of this chapter are published in [Bec15].

6.1. Introduction

As reasoned during the requirement discussion in Section 1.2, a client using the
comparison scheme described in Chapter 4 and 5 might be resource-constrained or
connected via a low bandwidth (wireless) channel. In either case it is necessary to
waste as few resources as possible for encryption or transmission.

Efficient encryption, storage and communication while still being able to use
secure operations (e.g. via a Homomorphic Encryption (HE) systems) is needed.
What comes to mind is a combination of symmetric and asymmetric cryptography
— similar to the construction of a hybrid cryptographic system as often used by
integration of [Cal+07] and [Kal98]. In the hybrid cryptographic system case, an
asymmetric system is used to encrypt a symmetric key ks, which is again used
for a symmetric cryptographic system to encrypt the actual data. Through such
a construction, properties from the asymmetric system are combined with the
efficiency of symmetric cryptographic.

Combining a symmetric cryptosystem with an HE system for increased transmis-
sion and storage efficiency was mentioned in several papers, as already discussed
in Section 2.4. Data is encrypted using a symmetric transmission-cipher before
sending it to a remote server for further processing under a compute-cipher. A
transition function transforms data encrypted under the transmission-cipher into
data encrypted under the compute-cipher. The relevant literature uses semanti-
cally secure symmetric encryption schemes as transmission ciphers and evaluate
their respective decryption functions homomorphically for transmission- to com-
pute-cipher transition.

Such combinations are either proposed to increase transmission efficiency di-
rectly [BGV11], or to compare HE schemes regarding their performance [GHS12b;
DHS14; LCT14; Che+13].
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We describe a much more efficient construction in which a stream cipher is used
to generate a pseudo-random keystream that encrypts the plaintext using a sin-
gle operation. As a result, our transition function has a much improved runtime,
which is several orders of magnitude lower than for the related work, while achiev-
ing similar goals for encryption, transmission and storage efficiency. The huge
efficiency gain comes from the minimal decryption circuit, a single homomorphic
operation, required for homomorphic transition from the transmission-cipher to
the compute-cipher. Homomorphic evaluation of this single-operation circuit is
of course much faster than evaluating a decryption circuit of a symmetric block
cipher (e.g. Advanced Encryption Standard (AES)).

The next Section 6.2 describes the prerequisites needed further on in the con-
struction of the scheme, which is then given in Section 6.3. Section 6.4 describes
a security proof by reducing the assumptions to the ones used by the underlying
Pseudo-Random Bit Generator (PRBG) and HE system, while Section 6.5 presents
performance results and comparisons to previous proposals.

6.2. Preliminaries

Several pseudo-random generators will be used throughout the next sections. These
are separated by their use or co-domain in which they pseudo-randomly generate
values or elements. A short list will introduce the different generators for dis-
ambiguation. The exact definition including the domain and co-domain is given
later.

PRBG Pseudo-Random Bit Generator. A function generating a stream of pseudo-
random bits (see Section 6.2.1).

PRNG Pseudo-Random Number Generator. A function generating a stream of
pseudo-random real values (in this scheme the interval [0, 1] is used) (see
Definition 6.4.1).

PREG Pseudo-Random Element Generator. A function generating a stream of
pseudo-random elements from a specific group — used to generate random
ciphertext elements (see Definition 6.4.1).

PRKG Pseudo-Random Key-Stream Generator. A function generating a stream
of pseudo-random values used as key-stream for symmetric encryption in
the presented scheme (see Section 6.3.1).
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6.3. Design

6.2.1. Pseudo-Random Bit Generator (PRBG)

Let g: {0, 1}l → {0, 1}m be a cyptographically strong PRBG that produces pseudo-
random bit values, which cannot be differentiated from a independent and identi-
cally distributed (i.i.d.) uniform random bit stream by a deterministic polynomial
time (PTIME) restricted attacker. Let x = g(s0) with s0 ∈ {0, 1}l being the
seed with length l bits and x being the pseudo-random bit sequence of length
m. As most such algorithms are designed to efficiently run on processors with
a certain word size, they most often use, process and output pseudo-random bit
sequences at the word size (or a multiple of it) of the underlying processor. Let
f : {0, 1}l × Z → Z2w be a function defined by f(s0, i) = g(s0)[i·w:(i+1)w−1], which
returns w bits for each i. The w bits can be mapped via a bijection to an element
in Z2w .

6.2.2. Homomorphic Encryption (HE)

The notation introduced in 3.5 is used, with a brief recall of the important as-
pects. A HE scheme is a quadruple H = (KeyGenH,EncH,DecH,EvalH) of PTIME
algorithms. KeyGenH:Z → KS ×KP is the key generation function, which takes
a security parameter κ ∈ Z and outputs the secret key sk ∈ KS and public key
pk ∈ KP . EncH:KP × PH → CH describes the probabilistic encryption function
with EncH(pk,m) = c and equivalently DecH:KS × CH → PH the decryption
function with DecH(sk, c) = m′, m,m′ ∈ PH being plaintexts, c ∈ CH being a
ciphertext. EvalH:KP × F × C∗H × P ∗H → CH describes a function that performs
homomorphic operations upon the given ciphertexts to evaluate a certain function-
ality. It is given by EvalH(pk, F, c̄, p̄) for a function F ∈ F given some ciphertexts
c̄ ∈ C∗H, and some plaintexts p̄ ∈ P ∗H.

It is sufficient to use a Partly Homomorphic Encryption (PHE) system for the
purposes in this chapter. In particular we will base the following descriptions on a
Additive Homomorphic Encryption (AHE) scheme, but Multiplicative Homomor-
phic Encryption (MHE) schemes are equally usable. Further details on the actual
choice of HE system will follow in Section 6.5.

6.3. Design

We describe the construction of our stream cipher after recalling the use case. A
client wants to outsource computation to a server and uses a HE system to hide the
sensitive data from the less trusted compute server. He chooses a cryptographic
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system that can evaluate the desired functionality homomorphically, however in-
stead of encrypting the sensitive data using the HE system directly, a corresponding
stream cipher is constructed as described in this section and used instead to en-
crypt all the sensitive data. All necessary (public) plaintext data together with the
symmetrically encrypted private input is send to the compute server. The server
translates the symmetrically encrypted data into homomorphically encrypted data
and performs the actual calculation. All results are transferred back to the client
for decryption. As the stream cipher depends on the actual HE scheme H, the
definition of such a scheme is taken from Section 3.5.

Alice on input sA Bob on input sB

Generate grams Generate grams

gA = VGRAM(sA) gB = VGRAM(sB)

Build Bloom filter Build Bloom filter
bA[h(gA[i])] = 1 bB[h(gB[i′])] = 1

Generate key-stream

k[i] = PRKGSH(s0, sk)[i]

Encrypt Bloom filter

a[j] = EncSH(k[j], bA[j]) Send a, s0 Transition to HE

E(bA[j]) = TransSH(s0, pk, a[j])

Encrypted XOR

E(bA[j]⊕ bB[j]) =

E(bB[j]) · a[i]2bB [j]−1

Encrypted distance

E(d) = E(dh(bA, bB)) =∏l
j=1E(bA[j]⊕ bB[j])

...
Figure 6.1.: Extension for privacy-preserving distance measure protocol presented

in Chapter 4. The client generates a key-stream, which is used as a
pseudo one-time pad. At the server side, this key-stream can be effi-
ciently generated within an HE scheme to transform the symmetrically
encrypted data into homomorphically encrypted data.
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6.3. Design

Figure 6.1 depicts the described protocol in between the red dashed lines and
embeds it in the string matching scheme designed in Chapter 4.

We define the stream cipher, which is simply a modular subtraction or addition of
a pseudo-random key-stream with the actual data. The contained Pseudo-Random
Element Generator (PREG) is the most important part of the construction, but
will be skipped for now and defined later for ease of presentation. Likewise the
definition of the transition function, based upon the PREG, will be given later.

Definition 6.1: Randomized Homomorphic Stream Cipher

A stream cipher SH for a Homomorphic Encryption (HE) system H is a
quadruple of PTIME algorithms SH = (PRKGSH ,EncSH ,DecSH ,TransSH).
PRKGSH :Z2n × KS → P ∗H is the Pseudo-Random Key-Stream Generator
(PRKG), which generates the pseudo-random key-stream used for encryp-
tion. EncSH :PH×PH → PH is used to encrypt data with EncSH(uPH ,m) = d
and uPH ∈ PH being a uniform random variable. Likewise DecSH :PH ×
PH → PH is used to decrypt the ciphertext DecSH(uPH , d) = m′. Further-
more, DecSH(uPH ,EncSH(uPH ,m)) = m must be fulfilled for correct decryp-
tion with uPH being the same (pseudo-) random value for encryption and
decryption. The function TransSH :Z2n ×KP ×PH → CH translates a value
m encrypted under the described stream cipher SH with EncSH(uPH ,m)
into an encryption under the HE system H as EncH(pk,m).

As PH is countable for cryptographic systems, all elements pi ∈ PH for 1 ≤
i ≤ |PH| can be indexed. This way a modular addition for pi, pj ∈ PH over
PH is defined as pi + pj = pi+j mod |PH|. Modular subtraction is defined equiv-
alently. Using addition and subtraction we define EncSH(pi, pj) = pj − pi and
DecSH(pi, pj) = pj + pi.

6.3.1. Pseudo-Random Key-Stream Generator (PRKG)

We construct a function PRKGSH , that generates pseudo-random ciphertexts uCH ∈
CH using a Pseudo-Random Element Generator (PREG), decrypts the pseudo-ran-
dom elements and returns the resulting plaintexts (DecH(sk, uCH) ∈ PH) with the
goal of using the plaintext values as a key-stream for the stream cipher. Therefore
a PREG to generate random ciphertexts is necessary. Let GenCH : {0, 1}∗ → C∗H be
a PTIME function generating ciphertexts uniform in CH given a seed s0 ∈ {0, 1}∗
as input. Furthermore, let GenCH(s0)[i] and similar PRKGSH(s0, sk)[i] denote the
ith element generated with PRKGSH(s0, sk)[i] = DecH(sk,GenCH(s0)[i]).
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Encryption of plaintext values mj ∈ PH under the stream cipher SH is defined
as dj = EncSH(PRKGSH(s0, sk)[j],mj), using the public seed s0 ∈ {0, 1}∗ for the
PRKG and the secret key sk of the HE system H.

The transition function TransSH (translating a symmetrically encrypted value
dj ∈ PH into an homomorphically encrypted one cj ∈ CH) is then defined as

cj = TransSH(s0, pk, dj) (6.1)
= EvalH(pk,⊕, (EncH(pk, dj),GenCH(s0)[j]))). (6.2)

As such TransSH takes the public seed s0 also used in the symmetric encryption
algorithm EncSH , the public key pk ∈ KP of the HE system H and the symmetri-
cally encrypted value dj to construct the asymmetric encryption of the underlying
plaintext value mj . ⊕ defines the function that evaluates addition over PH and
thus resembles the decryption function of the cryptosystem SH.

We introduced in this chapter a private-key encryption scheme that is tightly
bound to a chosen homomorphic encryption system, has no ciphertext expansion
and the property of allowing efficient transition for an untrusted party from symma-
trically encrypted data into an encryption under the homomorphic cryptosystem.
Decryption can therefore be performed in two different ways. Either by conversion
to the inherent homomorphic encryption scheme and its decryption function, or
similarly to the actual encryption through the evaluation of the PRKG without
the use of the transition function.

6.3.2. Encryption Efficiency

For the client to encrypt data using the stream cipher, it evaluates a PREG GenCH ,
the decryption function DecH and the encryption function of the stream cipher
EncSH . The computationally largest part of the encryption is the evaluation of
the decryption function DecH. Depending on the cryptosystem H, computing
EncH may be easier than computing DecH. However, in our setting everything
except EncSH can be pre-computed by the client. That is, the expensive functions
DecH and to a lesser extend also GenCH can be evaluated while there is no power
constraint for the client (e.g. during charging the battery), or by a trusted more
powerful system from the same party (e.g. a laptop that the device is synced with
occasionally). The client then only stores the key-stream generated by PRKGSH
and the seed s0.

This way a power- and resource-constrained client must not evaluate any func-
tion from H during encryption. Devices previously incapable of producing homo-
morphic encryptions due to resource constraints can be used to outsource secure
computation. Pre-computation of the key-stream will further greatly reduce en-
cryption latency.
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6.3.3. Key-Stream Pre-Computation

Having a threshold homomorphic encryption scheme allows to even outsource the
pre-comuptation of the key-stream to n untrusted parties and is secure against
collusion as long as only a minority, that is up to b(n−1)/2c parties are collud-
ing [CDN01]. In a threshold HE scheme the secret key can be split into n parts
to have a distributed decryption of a ciphertext. Thus the pre-computation of a
key-stream is given to n parties and the results are combined at the client side for
further usage.

6.4. Security Analysis

To analyze the security of the proposed cryptographic system, we consider relevant
parts of the construction, prove their security and combine obtained results.

The encryption function EncSH :PH×PH → PH of the stream cipher SH is a ver-
nam cipher, which means that if the used key-stream consists of elements chosen
uniform, independent and randomly from PH, the encryption is information-the-
oretically secure. However, as the key-stream is generated pseudo-randomly, we
have to analyze the generator. According to Section 6.3, key-stream elements are
decryptions of elements from CH and a computationally restricted adversary must
not be able to tell them apart from independently chosen uniform random elements
from PH using any algorithm with runtime polynomially bound in the size of the
seed s0 of the generator.

As EncSH must use uniformly distributed key-stream values, it is necessary and
sufficient for DecH:KS×CH → PH to return uniformly distributed elements in PH.
Let γ denote the necessary input distribution over CH for DecH, and π the output
distribution over PH given γ as input. π should be computationally indistinguish-
able from the uniform distribution υ. Furthermore, the asymmetric decryption
key sk ∈ KS must be independent from γ and indistiguishability between π and υ
must hold for all possible secret keys sk.

However, it might not always be trivial, even if the distribution γ together with
the domain of DecH is known, to generate γ-distributed values within CH. In
Section 6.3 a cryptographically secure PREG is used to generate uniform input
for DecH. This is fine as long as γ is computationally indistinguishable from the
uniform distribution, which is true for many partially homomorphic encryption
schemes like [Pai99; NS98; RSA78; ElG84; GM82; Ben94; DJ01; BGN05; OU98],
which are group-homomorphic as given by Armknecht, Katzenbeisser, and Peter
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[AKP13], or more specifically, that use modular exponentiation over a residue class.
A simplified security proof is given at the end of this section.

For homomorphic cryptosystems with γ not being the uniform distribution, one
way of generating γ-distributed random values, using a cryptographically secure
Pseudo-Random Number Generator (PRNG) that outputs uniformly distributed
values, is to use inverse transform sampling [Dev86]. This means that one must be
able to construct an inverse distribution function (also called inverse cumulative
distribution function, quantile function, or percent point function) GH: [0, 1] →
CH. Let a discrete random variable x replace the homomorphic encryption function
EncH. Given a uniform input x ∈ R with 0 ≤ x ≤ 1, GH(x) produces γ-distributed
elements in CH.

If the Cumulative Distribution Function (CDF) FH:CH → [0, 1] for EncH has a
closed form, the inverseGH = F−1

H can be found using root-finding algorithms [Dev86;
Pre+07]. If there exists no closed form inverse, approximations using numerical
methods [Pre+07] satisfying Assumption 6.4.1 can be used.

6.4.1. Arbitrarily Distributed Random Ciphertexts

We will prove the security of our proposed stream cipher in a general setting
using Assumption 6.4.1. This is done by showing that breaking the stream cipher
encryption implies breaking either the Homomorphic Encryption (HE) scheme, or
the Pseudo-Random Bit Generator (PRBG).

First we introduce definitions for the security of pseudo-random generators and
indistinguishability upon their output. A PTIME algorithm A:S → {0, 1} is used
to describe the advantage AdvA = |P[A(x) = 1]−P[A(y) = 1]| with x, y ∈ S that
exists in distinguishing two inputs x and y.

Definition 6.2: Computationally Secure PRNG

A PRNG g: {0, 1}m → K is called computationally secure if AdvA ≤ ε to
distinguish x = g(uS) from y = uK for uniform random variables uS ∈
{0, 1}m, uK ∈ K for any PTIME algorithm A.

For the rest of the chapter algorithms are assumed to run in deterministic poly-
nomial time (PTIME), even if it is not made explicit. Following Definition 6.4.1,
there exists no PTIME algorithm that can distinguish the output of a computation-
ally secure Pseudo-Random Number Generator (PRNG) g from uniform random
values with probability higher than ε. Observe that the co-domain K of g used
in Definition 6.4.1 may be a sequence of elements from another set, e.g. Rm̂. The
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length of this sequence is polynomially bounded in the logarithm of the cardinality
of the domain of g (the seed in S) [GB08]. The size of each element is equivalently
polynomially bounded.

To include HE systems that have no closed form inverse of their EncH CDF,
we introduce an assumption about an indistinguishable approximation. Whether
this assumption is too strong in general is subject to further research, however it
allows us to include certain somewhat, leveled and fully homomorphic asymmetric
cryptographic systems in the security proof.

Assumption 6.1: Approximate Quantile Function

It exists a PTIME function G≈: [0, 1]→ CH with a uniform random variable
uR ∈ [0, 1] as input, which approximates the quantile functionG: [0, 1]→ CH
with input being also a uniform random variable u′R ∈ [0, 1]. G≈ is called
computationally indistinguishable by a polynomially-bounded adversary A
from the result of G given a uniform i.i.d. random variable as input if the
probability of distinguishing the output of G(u′R) from G≈(uR) is bounded
by ε.

This assumption is easily fulfilled for encryption functions, which generate uni-
formly distributed ciphertexts when encrypting a uniform random variable. In such
cases, the quantile function G can directly be constructed and evaluated in PTIME
and as such G≈ would be identical (and thus indistinguishable) to G. In fact, the
use of G or G≈ together with a generator of elements in R in the interval [0, 1] can
also be simplified by using a secure Pseudo-Random Element Generator (PREG)
to directly generate elements in the ciphertext space CH

The definition of a computationally secure PREG is similar to, and follows the
definition of the computationally secure PRNG. It just differs in the co-domain
and output distribution.

Definition 6.3: Computationally Secure PREG

GenCH : {0, 1}k → C lH is a computationally secure PREG, if AdvA ≤ ε to dis-
tinguish x = Gen(r{0,1}k) from y = rCH for uniform, random and indepen-
dent values r{0,1}l ∈ {0, 1}l and random γ-distributed variables rCH ∈ C lH
for any PTIME algorithm A.

GenCH takes a bit string as input and generates ciphertext elements. We differ-
entiate two cases, with π always being the uniform distribution and g: {0, 1}m →
[0, 1]m̂ a PRNG that outputs a sequence of real values in the interval [0, 1]. The
bit string s ∈ {0, 1}m is used as a seed for the pseudo-random generators. The

147



6. Homomorphic Chipertext Compression

length of each real value in the output sequence is polynomially-bounded in m,
as is the length of the output sequence m̂. In case γ is distinguishable from the
uniform distribution, we define the PREG as follows:

GenCH(s) = G≈(g(s)) (6.3)

In the other case, when γ is computationally indistinguishable from the uniform
distribution, it suffices to let GenCH expand the input bit sequence using a crypto-
graphically strong PRBG: {0, 1}k → {0, 1}l (with k < l and l polynomially-bounded
in k) and map fresh, unused subsequences of the expanded bit sequence to elements
in CH. Such a mapping is performed sequentially by BitToElem: {0, 1}∗ → C∗H,
which can be defined as described by Hsieh [Hsi08]. In this second case, GenCH is
defined as:

GenCH(s) = BitToElem(PRBG(s)) (6.4)

Proving the generic construction For now we skip the case that γ is indistin-
guishable from the uniform distribution and prove the generic case. The proof
is split into two parts. First we show that a PTIME function to generate γ-
distributed elements in CH exists, if there exists an efficient approximation of the
quantile function and a secure Pseudo-Random Number Generator (PRNG). This
part is later simplified for the special case that γ is indistinguishable from the
uniform distribution.

Second, we show that if there is a) a PTIME algorithm to generate γ-distributed
values in CH for the cryptographic encryption system H, b) its decryption function
DecHsk

is computable in PTIME and c) the homomorphism property of the cryp-
tographic scheme H holds for all sampled elements in CH, then a secure Pseudo-
Random Key-Stream Generator (PRKG) can be defined.1

Theorem 6.1: Indistinguishable Quantile Function Approx.

Given a uniform distribution π, an arbitrary distribution γ, a uniform ran-
dom variable s ∈ {0, 1}m and a computationally secure PRBG g, if Assump-
tion 6.4.1 holds, it implies a quantile function approximation G≈(g(s)) com-
putationally indistinguishable from G(u[0,1]) with u[0,1] ∈ R, 0 ≤ u[0,1] ≤ 1
being a uniform random variable.

1The BGN system [BGN05] is excluded through the requirement that DecHsk is a PTIME
algorithm.
Lattice-based crypto is excluded by the requirement that the homomorphism holds for every
ciphertext element. Special non-uniform encryptions as used in [KLG13] are supported or
excluded depending on the existence of a PTIME algorithm to sample γ-distributed elements
from CH, such that their decryption yields uniformly distributed elements from PH.
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The triangle inequality over statistical distances is used to derive bounds on com-
putational indistinguishability for two combined computationally indistinguisha-
bility results.

Proof. Assumption 6.4.1 describes a computationally indistinguishable approxi-
mation of the quantile function G given uniform random variables u[0,1] ∈ R, 0 ≤
u[0,1] ≤ 1 as input. It follows for any adversary A:

|P[G≈(u[0,1]) = 1]− P[G(u[0,1]) = 1]| ≤ εI .

From the computationally secure PRBG g follows that an adversaryA′ is bounded
by:

|P[u[0,1] = 1]− P[g(s) = 1]| ≤ εg.

AsG≈ is a deterministic function, it follows for an adversary A′′ with a maximum
runtime identical to the runtime of A′:

|P[G≈(u[0,1]) = 1]− P[G≈(g(s)) = 1]| ≤ εg.

The terms of the triangle inequality over statistical distances then allow us
to combine both inequalities, that is the probability of distinguishing between
G≈(u[0,1]) and G(u[0,1]) as given in Assumption 6.4.1, as well as the probability of
distinguishing between G≈(g(s)) and G≈(u[0,1]), as given above.

|P[G(u[0,1]) = 1]− P[G≈(g(s)) = 1]| ≤ εg + εI .

Thus, if there exists a computationally secure PRBG g and a computationally
indistinguishable approximation G≈ of G, then G≈(g(s) is a computationally in-
distinguishable quantile function for EncH with an arbitrary output distribution γ
and a uniform input distribution π. �

Using the result of having an indistinguishable approximation of the quantile
function give a pseudo-random input, we prove the construction computationally
secure regarding the underlying PRBG and call it PREG.

Theorem 6.2: Secure Pseudo-Random Element Generator
If G≈ is a PTIME algorithm and a computationally indistinguishable ap-
proximation of G, and g is a computationally secure Pseudo-Random Num-
ber Generator (PRNG) — generating uniformly distributed elements from
R in the interval [0, 1] —, then GenCH = G≈(g(s)) is a computationally
secure PREG.
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A proof by contradiction is used to show that a computationally secure PRNG
combined with a computationally indistinguishable quantile function approxima-
tion yields a computationally secure PREG, or otherwise one of the assumptions
does not hold.

Proof. Assume there exists a PTIME adversary A′, which has advantage AdvA′ >
eg to distinguish G≈(g(s)) from G≈(u[0,1]), with u[0,1] ∈ R being a uniform, in-
dependent random variable in the interval [0, 1] as given in Section 6.3. Let A′′

be an adversary, that first evaluates G≈ and then A′ in time tḠ + (tg − tḠ) = tg
upon inputs g(s) and u[0,1]. Furthermore, as G≈ is a deterministic function, with
no other argument than a (pseudo-)random number, A′′ also has AdvA′′ > eg in
distinguishing g(s) from u[0,1].

Following this, A′′ would be a distinguisher for g(s) and break the assumption
that g(s) is computationally secure. �

We have proven GenCH = G≈(g(s)) to be computationally secure and are going
to provide a proof for the second part, the secure PRKG based on the previous
result.

Theorem 6.3: Secure Pseudo-Random Key-Stream Generator

If GenCH is a computationally secure Pseudo-Random Element Genera-
tor (PREG), DecHsk

is a PTIME algorithm, DecHsk
(GenCH(s)) generates

uniform random values in PH and the image of EncHsk
is closed under the

evaluation function EvalHsk
, then PRKGSH(s) = DecHsk

(GenCH(s)) is a com-
putationally secure PRKG for input value s ∈ {0, 1}∗.

A proof by contradiction is used to show that the decryption function DecH
upon indistinguishable input produces computationally indistinguishable output,
or otherwise the used PREG is not cryptographically secure.

For ease of presentation and without loss of generality we fix the secret key for
a decryption function as DecHsk

. This is possible as sk is independent from the
input. The final Pseudo-Random Key-Stream Generator (PRKG) is then described
by PRKGSH(s) = DecHsk

(G≈(GenCH(s))).

Following the first proof by contradiction for Theorem 6.4.1, the final application
of the homomorphic decryption function finishes the construction of a computa-
tionally secure PRKG.
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Proof. Assume that PRKGSH(uS) gives A an advantage |P[A(PRKGSH(uS)) = 1]−
P[A(DecHsk

(uCH)) = 1]| > eG + eD̄ for a γ-distributed random variable uCH to
distinguish the outputs, then DecHsk

is a part of an adversary A′ that executes
first DecHsk

and then A:

|P[A′(G≈(GenCH(uS)) = 1]− P[A(uCH) = 1]| > eG

We therefore found a distinguisher for the PREG G≈(GenCH(uS)), which con-
tradicts our assumption about the PREG being computationally secure.

Thus, if there exists a computationally-secure PREG GenCH(uS), a computation-
ally indistinguishable approximation G≈ of G and a PTIME algorithm DecH, then
PRKGSH(uS)) is a computationally secure uniform PRKG for values in PH. �

For the generator to be secure given a public seed uS , it suffices to require DecH
to be computationally hard to be computed without a secret parameter (the secret
key sk). This requirement is met by all decryption functions of secure encryption
schemes.

6.4.2. Analysis of Partly Homomorphic Encryption (PHE) Schemes

Let’s consider instantiations of the construction outlined in Section 6.3 with partly
homomorphic asymmetric schemes which — upon input from a uniform random
variable into EncH — generate uniformly distributed ciphertexts. The inverse
transformation of a uniform random variable is trivially again a uniform random
variable and as such the proof of indistinguishability does not depend on the ap-
proximate inverse transform assumption. The inverse transformation can in fact
be skipped and the PRNG can be applied directly to generate elements uniform
in the domain of DecH.

Examples for appropriate PHE schemes are RSA [RSA78], Goldwasser-Micali
[GM82], ElGamal [ElG84], Benaloh [Ben94], Naccache-Stern [NS98], Okamoto-
Uchiyama [OU98], Paillier [Pai99], Damgard-Jurik [DJ01], BGN [BGN05].

Theorem 6.4: Secure PRKG from Uniform Ciphertexts

If GenCH is a computationally secure PRNG, EncH generates uniformly
distributed values upon uniformly distributed inputs, then PRNGSH =
DecHsk

(GenCH(uS)) is a computationally secure PRKG.

Proof. The proof is identical to the non-uniform γ-distribution proof for Theo-
rem 6.4.1 given above, without the application of an approximated quantile func-
tion and thus without the Assumption 6.4.1. Instead the definition given in Equa-
tion (6.4) is used. �
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6.5. Evaluation

The introduced ciphertext compression scheme is implemented for several PHE sys-
tems and evaluated regarding its performance. The selected HE systems are Pail-
lier [Pai99], RSA [RSA78], Goldwasser-Micali [GM82], ElGamal [ElG84], Okamoto-
Uchiyama [OU98], Benaloh [Ben94] and Naccache-Stern [NS98].

RSA is deterministic, but nether the less tested, however as it is not an in-
deterministic cipher, there is no ciphertext expansion and thus no benefit from
using compression with respect to transmission and storage efficiency. Also live
encryption speed using this scheme is comparable to ECB-mode usage.

Table 6.1 already specifies the factors achieved in terms of storage and com-
munication efficiency. The largest gains are generated for cryptographic systems
with a relatively small plaintext group order. An example: choosing Naccache-
Stern [NS98] or Benaloh [Ben94] to encrypt 32 bit numbers, and a security pa-
rameter of size 1536 bit, we save 1536 − 32 = 1504 bit on each encrypted value
on storage and traffic. That is an increase of about 98% memory and bandwidth
efficiency.

Encryption time is also affected, as the encryption function is replaced by the de-
cryption function of H as shown in Section 6.3. Some cryptographic systems need
more time evaluating their decryption function than for their encryption function,
i.e. [GM82; Ben94; NS98], while others are even faster in decryption [RSA78;
ElG84; OU98; Pai99]. Table 6.1 gives average factors for encryption time divided
by decryption time under the HE systems. Therefore, if performance is > 1, com-
pression speeds up encryption (even without offloading) and vice versa. The given
results are mean values over different security parameter settings (between 768 and
4096 bit) and a plaintext group order of size 32 bit (where applicable). Pseudo-
random number generation and asymmetric decryption was measured together for
the compression scheme encryption performance. As pre-computation of the key-
stream (offloading) is possible, the actual time evaluating EncSH is reduced by
several orders of magnitude in such a setting.

The initial setup at the server side is also influenced. Namely, the server has to
evaluate the TransSH function before homomorphic operations can be performed,
as described in Section 6.3. This includes generating a pseudo-random ciphertext
for the homomorphic system H using the seed s0, encrypting the received value
dj ∈ PH and calculating the homomorphic sum of both values. From these steps,
the slowest part is again the homomorphic encryption, which does however not
need to be indeterministic — it is enough to perform ciphertext randomization once
during output — and can therefore be constructed faster on the server side, than
at the client. Furthermore, all plaintext additions, subtractions and inversions can
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Cryptographic Scheme Encode (ms) Decode (ms) Factor

RSA [RSA78] 133.53 34.12 3.17
Goldwasser-Micali [GM82] 0.1 2.54 0.05
ElGamal [ElG84] 43.23 0.01 241.24
Okamoto-Uchiyama [OU98] 92.59 10.94 6.91
Benaloh [Ben94] (16Bit) 0.65 12.13 0.05
Naccache-Stern [NS98] (32Bit) 1.21 85.66 0.02
Paillier [Pai99] 160.35 81.15 2
JoyeLibert [JL13] (32Bit) 1.14 6.76 0.07

Table 6.1.: Measured encryption and decryption times of selected HE systems at
1536Bit security level. Factor represents encryption divided by time
taken for decryption. Factors above 1 describe a speed up, numbers
below a slow down when replacing the encryption by the decryption
function.

be performed directly on the symmetrically encrypted vales dj (in their respective
plaintext group) before evaluation of TransSH , leading to possibly higher efficiency
gains depending on the protocol.

The performance of this scheme scales much better in the security parameter
compared to the related work. This is depicted in Figure 6.2, note that the y-axis is
in logarithmic scale and our scheme (without specific performance optimizations for
the compression) is at least two orders of magnitude faster than previous ciphertext
compression techniques. The perfromance gap between a FHE+AES setup and
this scheme grows significantly with an increased security parameter and reaches
over three magnitudes of difference at the 80 bit security parameter setting. The
relevant literature on FHE AES decryption typically does not give performance
values for higher security parameters, as the runtime is much too long for being
relevant. Our proposal easily scales to the typical 128 bit security level. Even at
this security level, our presented scheme is much faster than previous ciphertext
compression schemes at their lowest security setting.

Figure 6.3 presents a few recommendations for the size of keys for asymmetric
encryption schemes and its relation to the probably achieved symmetric security
eqivalent — i.e. a 2000 bits asymmetric key is believed to offer equivalent security
as a symmetric key between 90 and 110 bits.

To have a more complete comparison between typically used, applicable AHE
schemes and their performance characteristics within compression, Figure 6.4, as
well as Figure 6.5 and Table 6.1 show what performance to expect from any of
these schemes.
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Scaling of LHE System
Depending on Security Parameter
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Figure 6.2.: Plot on performance progression with increasing security parameter for
best AES decryption performance using Fully Homomorphic Encryp-
tion (FHE) and our compression mode as presented in this chapter.
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Figure 6.3.: Choice of asymmetric key length based on a desired symmetric secu-
rity parameter. Recommendations from Lenstra [Len04], NIST Spe-
cial Publication 800-57 [BKD12], Orman and Hoffman [OH04] and
ECRYPT II [GN12]
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Encryption Times for Selected
Homomorphic Encryption Schemes (32Bit)
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Figure 6.4.: Average Encryption times for a 32Bit plaintext modules, where appli-
cable. Encryption is performed at the server side and the use of the
transition scheme as introduced in Section 6.3
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Decryption Times for Selected
Homomorphic Encryption Schemes (32 Bit)
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Figure 6.5.: Average Decryption times for a 32Bit plaintext modules, where ap-
plicable. Decryption is performed at the client side and anticipates
symmetric encryption under the stream cipher defined in Section 6.3
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6.6. Conclusion

As semantically secure homomorphic encryption always entails ciphertext expan-
sion due to the included randomness parameter, certain overheads as storage size
and increased transmission bandwidth are inherent. We therefore analyzed in this
chapter how ciphertext expansion can be reduced or even completely removed.
The resulting scheme is a resource-efficient symmetric stream cipher, which offers a
highly efficient transition function from the symmetrically encrypted ciphertext to
a homomorphically encrypted ciphertext. The symmetric stream cipher is proven
secure based on the underlying PRBG and the homomorphic encryption scheme.
Furthermore, an experimental evaluation shows the significant performance gains
between the transition function of our scheme and the relevant literature, which
uses a classical symmetric (lightweight) cipher as transmission cryptographic sys-
tem and the corresponding decryption function as transition function for homo-
morphic conversion.

For resource and power-constrained client devices, the option to have pre-com-
puted key-streams for the stream cipher can be important, as no asymmetric op-
erations need to be performed for encryption of input data. The offline generation
of the key-stream can be done on less resource-constrained or high-performance
personal (trusted) devices, or shared across non-colluding servers through the use
of threshold homomorphic encryption schemes.
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The goal of this thesis is to design and analyze a comparison framework under
which confidential elements from a certain domain can be compared between two
parties. One of the most important requirements for such a framework is the abil-
ity to preserve the privacy of user inputs under reasonable assumptions. That is,
the use of an external trusted third party is explicitly excluded. Further require-
ments include the efficient scaling in the size of compared elements (in our case:
in the length of the compared strings), an approximate matching for finding sim-
ilar elements, detection of inference attacks and support for resource-constrained
clients.

Before going deeper into the requirements, Section 7.1 will discuss the open re-
search questions, which were explored and for which contributions were published.
The discussion showing the fulfillment of the introduced requirements from Sec-
tion 1.2 follows in Section 7.2. The propositions and results from this thesis are
then put into perspective by setting them in relation with other research fields in
Section 7.3. Section 7.4 finally discribes possible further research directions for
which open questions were identified and thus proposes relevant future work.

7.1. Answering Research Questions

Section 1.3 identified several open questions, which guided research like a common
thread. These will be recalled and answered using the results from the main
chapters of this thesis.

How can an efficient, privacy-preserving comparison scheme be constructed?
A main endeavor of all of the proposed protocols is to combine privacy-preserva-
tion with efficiency and functionality and balance them at a rather high security
level. Regarding the achieved privacy and security level, we proved our proto-
cols secure within the Honest-But-Curious (HBC) model, with parts of them even
withstanding malicious adversaries — especially when the protocol is enhanced
with customized Zero Knowledge Proofs (ZKPs) (Section 5.5). The security proof
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of the transition scheme described in Chapter 6, reduces the problem of break-
ing the proposed scheme to breaking any of the cryptographic primitives used for
construction.

As for the efficiency, our protocol scales linearly in the size of the largest input,
which is optimal for a secure computation based comparison, for which no infor-
mation about any (other than its own) input is leaked to the executing party. The
constants regarding the performance overhead are also low and the performance
evaluations in the main chapters 4,5,6 show the practicability of the proposed
protocols.

The combination of described techniques within the previous chapters leads to
schemes which offer a better performance compared to proposed protocols from
the related work, while offering a similar or higher security and feature level.

How can an inference attack be detected and limited, given encrypted inputs?
Inference attacks typically try to interleave related information gathered about
confidential data in order to reconstruct parts or even all of it. In a privacy-
preserving comparison scheme such an attack could be performed by requesting
a larger number of comparisons against the same element and use the returned
similarities to narrow down the number of possible elements. Of course, a party
wants to limit (in terms of detect and mitigate) such an inference attack to control
leakage of confidential information.

This issue is approached in two different ways. First, the extended protocol in
Chapter 4 reduces the amount of returned information as much as possible — only
a single bit of output can be returned as the result of a comparison. Second, a
mechanism that detects similar queries regarding some metric is used to detect
and prevent too close queries from being answered. As a result, inference attacks
are much less effective.

By using fuzzy commitments together with error-correcting codes from coding
theory, the detection can be efficiently performed with minimal information leakage
towards the server. The only leakage that occurs is whether a similar request was
seen before or not, which is optimal for an efficient inference detection scheme
that does plaintext equation testing. We gave a construction of such a scheme in
Chapter 5 together with a protocol secure against malicious users. A thorough
security analysis, involving novel ZKPs and an extensive evaluation on how such a
scheme could be instantiated is presented. Furthermore, its effectiveness is studied
analytically and emperically using a database composed of human mitochondrial
genomic sequences.
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How can a client reduce cryptographic overheads? Homomorphic cryptographic
schemes are typically based on asymmetric cryptography and therefore inherit
also their drawbacks. Rather low performance and ciphertext expansion are two of
them, which affects especially small, mobile devices. With limited amounts of main
memory and computational capacity it might be infeasible to perform expensive
asymmetric, homomorphic cryptographic operations — typically over large prime-
or composite-order groups — upon them. Therefore we present a scheme that al-
lows a mobile client to store a pre-computed keystream for symmetrical on-the-fly
encryption of data in Chapter 6. The special property of this keystream lies in
the way it was generated. The result of this construction is a trivially convert-
ible stream cipher, which can be very efficiently transformed into an homomorphic
encryption of the same data without the need for plaintext decryption.

Therefore the client does not need to perform expensive asymmetric operations,
reducing its power drain and latency. Furthermore, ciphertext expansion that is
introduced using the asymmetric cryptographic schemes is removed, which also
reduces the transmission size, time and again the necessary power for the radio
frequency transmission. This scheme improves performance over similar current
schemes by several orders of magnitude and is the first symmetric to homomor-
phic encryption transition scheme which can be practically used. Even more, the
related work on ciphertext compression is restricted to rather low security levels
typically between 56 bit and 80 bit security due to their impractical performance.
Our scheme can easily use typical security levels of 128 bit security and more.

7.2. Fulfillment of Requirements

Chapter 1 introduced a detailed problem description together with a desired so-
lution — namely a comparison scheme, which should fulfill certain requirements.
These requirements are recalled and discussed regarding their achievement.

Privacy-Preservation One of the most important design goals of the comparison
scheme is to preserve the input privacy of both parties. As such, the scheme should
neither require a trusted third party to protect confidentiality of inputs, nor rely
on obfuscation or anonymization techniques, which may give only weak privacy
guarantees. Following these requirements, unnecessary leakage of information is
equally unwanted. As a result the server should learn nothing about the input
from the client, while the client only learns the computed distance. However, for
efficiency and thus practicability reasons the adversary is said to follow the HBC
model, as introduced in Section 1.5.1.
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The security and privacy related part of the basic schemes presented in Chapter 4
is analyzed in Section 4.3 and shown to follow the guarantees of the underlying
cryptographic homomorphic encryption scheme. The extension towards a privacy-
preserving detection of inference attack queries presented in Chapter 5 also has
a thorough security analysis in Section 5.6. It further includes a novel ZKP con-
structions to enable the usage of the inference control framework when a malicious
client is involved. In this extension the server has to get the information whether
two strings are similar or not to be able to make decisions based on this. As the
server learns something about the input of the client, the possible leakage is ana-
lyzed in Section 5.6. It was shown that the only leaked information is if queries are
pair-wise close to each other, nothing else. In particularly no distance is leaked.

Last but not least, the extension to reduce transmission and storage bandwidth
in Chapter 6 features a detailed security analysis, which proves the introduced
stream cipher as secure as the underlying cryptographic system and the Pseudo-
Random Number Generator (PRNG). It does not leak any information to the
server.

Following these analyses, the overall framework incorporating the inference con-
trol and transmission efficiency extension, gives very high input privacy guarantees
for both participating parties. Furthermore, the confidentiality of the client input
is even preserved in the presence of an malicious server.

Efficiency for Long Strings The design goal of input privacy can be achieved us-
ing standard building blocks for the complete functionality, like Secure Multi-Party
Computation (SMPC) or homomorphic encryption. Such generic construction can
also include a similar inference control algorithm as presented in Chapter 5. How-
ever, the resulting scheme will not be practical, as secure dynamic programming
and inference control inside secure computation are both inherently inefficient and
lead to protocols, which do not scale (see Section 2.1.2 and 5.1).

Therefore an embedding from the string edit distance into Hamming space is
used to reduce the quadratic complexity of the edit distance dynamic program-
ming algorithm to the linear complexity of calculating the xor-cardinality of two
binary vectors. The solution further involves only low constant overhead and was
evaluated using human mitochondrial DNA sequences, which could be compared
in the order of about 1 minute on commodity hardware.

As long as the HBC model is used, also the inference control extension describes
a very efficient scheme for detecting and mitigating inference attacks. However,
once the client is not believed to follow the HBC model anymore, a rather large
constant overhead is introduced by the need to validate the clients input and
computation. The complexity of checking the commitment in order to detect an
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inference attack, is in the naïve setting linear in the number of previous requests,
but can be performed via a hashset lookup having complexity O(1).

Following the motivation and design goals, the extension for higher transmission
and storage efficiency is of course especially designed with efficiency in mind. It
allows for faster transmission of queries to the server and a very simple and fast
conversion of the transmitted data into homomorphic encryptions on the server
side. The total workload of the client might be increased by the use of the asym-
metric decryption instead of the encryption function, but then again decryption
can be outsourced to be either pre-computed or being shared using a threshold
encryption scheme — or both.

Experimental evaluations support the theoretical complexity analysis in the dif-
ferent chapters. Further related to the efficiency of the protocol is the choice of
the homomorphic encryption scheme. All presented protocol variants, extensions
and algorithms only need an Additive Homomorphic Encryption (AHE) scheme,
except for the ZKPs in Chapter 5 which will work given the efficient BGN sys-
tem [BGN05]. So the most performant additive scheme can be picked. Regarding
the transmission efficiency of the proposed stream cipher in Chapter 6, systems
with a rather small plaintext space are preferred over systems having a large plain-
text group size.

The protocols mainly work on vectors within Hamming space, but also sum up
combinations of them. As the proposed Bloom filter length n for the discussed
use case of comparing mitochondrial genomes is 214 < n < 215, which equals the
dimension of the used Hamming space, summing up all elements of combinations
of such vectors in euclidean space can never exceed n. Therefore the plaintext
domain can be restricted to contain up to 215 elements without overflowing. Con-
sequently the plaintext is represented by 15Bit integers, allowing for large gains in
transmission efficiency, i.e. if the cryptographic scheme by Joye and Libert [JL13]
is used.

Approximate Matching Data stored in different places might not always be ac-
curate or identical due to sequencing errors for genomic data, typographical errors
or spelling mistakes via manual input or data corruption during transmission. Out
of this follows the requirement to not only match identical elements, but also cal-
culate distances between them and possibly return if they are in a certain range.

The two different meanings of “approximate matching” in the relevant literature
are both covered. One usage is to find elements, which have a low distance regard-
ing some metric. The other meaning simply implies calculating and returning a
distance between two elements. The algorithms specified in Chapter 4 cover both
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definitions. The basic comparison protocol depicted in Figure 4.1 returns the dif-
ference between compared elements, while the extended protocol (see Figure 4.2)
returns whether both compared elements are within a certain distance range. The
approximate matching property of the protocol versions introduced in Chapter 4
is not influenced by the extensions described in Chapters 5 and 6.

The actual distance computation is solved via an approximation by embedding
the edit distance into Hamming space and have the Hamming distance returned.
This embedding is not isometric, as there exists no isometric embedding from the
edit distance metric to a metric over the Hamming space. From this follows that
the embedding introduces distortion, which leads to the field of fuzzy matching.
Chapter 4 shows a low distortion during the empirical evaluation, especially for
comparisons of low-distance sequences.

Non-Interactive Protocol Designing a protocol that has a high degree of interac-
tivity between participating parties most certainly introduces network overheads
due to latency or time used for transmission. It further makes it harder to use
the protocol when the connection between both parties is unstable or has a high
latency. This might be true when the client is a mobile, resource- and power-con-
strained device, which uses radio communication to connect to the other party.
Another positive effect of a non-interactive protocol is that if the execution of the
protocol takes a rather long time, all parties can perform all necessary calculations
offline after the initialization of the protocol and upload the results for later re-
trieval. In such a protocol both parties must never be online at the same time, as
also the protocol initialization can be done asymmetrically.

All of the presented protocols are non-interactive and can be easily adopted
to use an always online storage system like a bulletin board to post comparison
requests and results in a completely asymmetric way. The only protocol that
doesn’t work like this is the inference control protocol under the assumption of a
malicious user. In such a case the protocol will be interactive by requiring several
Zero Knowledge Proofs (ZKPs) between the parties.

Two-Party If a protocol that uses input from two parties also only requires those
two to calculate the desired result, then there is no need to care about any other
party, its intentions or whether it might collude with one of the two input parties.
All our protocols work in such a setting and never require an external party to
join the protocol. However, a party might outsource calculations and data to any
external party as he likes. This case is covered by the definition of the Honest-
But-Curious (HBC) adversary model.
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Resource-Constraint Clients As the Internet of Things (IoT), together with
ubiquitous computing and Cyber-Physical Systems (CPSs) gains traction and
spawns (as well as fuels) areas like mobile sensor networks, mHealth1, smart homes
and wearables, we are going to look at and deal with large quantities of small, mo-
bile, battery-powered devices. These devices must be as power efficient as possible,
which includes controlled and minimized use of the compute capacity, as well as
limited use of radio-frequency communications.

Out of these constraints evolves a transmission efficient protocol extension as
described in Chapter 6. It allows to send encrypted data only expanded to the
size of the plaintext domain, not the size of the ciphertext domain. Following the
example given in the efficiency paragraph above: using a plaintext size of 16 bits
suffices for computing the desired functionality, while expanding all homomorphi-
cally transmitted plaintexts to these 16 bits instead of the typical ciphertext sizes
between 1536 and 3072bits. As such, two orders of magnitude in communication
size can be saved for the discussed example.

Furthermore, utilizing the pre-computation and outsourcing the offline compu-
tation step at the client side to more powerful devices decreases encryption latency,
live encryption time and power usage at the thin client notably.

Size-Hiding The system comparison parameters are chosen in the beginning inde-
pendent from the actual input of the participating parties. The size of the private
input, the string length in our case, is equally well handled. None of the algorithms
and protocols makes assumptions about the length of the input and thus they also
do not use this parameter inside the proposed schemes.

Inference Control No related work exists on performing inference detection and
control upon encrypted or otherwise secured data, so it is not possible to evaluate
against existing solutions. However, inference attacks are simulated by issuing
low distance requests and evaluating the probability to detect them as similar —
which finally leads to a detection and rejection. It was shown in the evaluation
of Chapter 5 that the probability of detecting two queries as similar depending
on the distance between them, renders a steep curve, which nicely separates pair-
wise distances with a high detection probability from distances that show a low
detection probability.

1mobile eHealth: describing the remote observation and possibly limited remote treatment of
patients
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7.3. Relation to Other Research Fields

Starting with the basic comparison schemes described in Chapter 4, an efficient
string comparison scheme was developed, analyzed and evaluated. Of course the
scheme as it was presented can easily be adopted to compare elements from other
domains — replacing the strings or sequences. This includes using the underlying
homomorphic scheme directly to compare and compute the Manhattan distance
(l1-norm). This can be valuable as finding an embedding into l1 might be easier
or better described than finding an embedding into Hamming space. Arbitrary
other metrics that have embeddings into the Manhattan or Hamming distance can
therefore be effectively approximated using to described schemes.

The work on inference control over encrypted input data is of independent in-
terest and can be used for arbitrary other privacy-preserving protocols, which
allow approximations of element distances to steers inference control algorithms.
The detection scheme is similarly flexible in the choice of actual elements and
used embeddings, as the comparison scheme is. Furthermore, the presented ZKPs
cover a proof for correct error-correction and decoding of the Reed-Muller decoding
equations, which might also come handy for other protocols that include Error-
Correcting Codes (ECCs) within the malicious or covert adversary model. An
example would be a malicious decoder of a noisy channel, which sends corrected
and decoded messages homomorphically encrypted to further recipients.

Similarly, the presentation of a highly efficient transition scheme from a sym-
metric to an homomorphic scheme is also of independent interest, as this extension
can be used to potentially speed up many privacy-preserving protocols that utilize
transmission or storage of homomorphically encrypted information.

7.4. Future Work

The previous chapters described a comparison scheme that is efficient for long input
strings, preserves a high level of privacy, can identify inference attacks, can be made
efficient for resource-constraint clients and fulfills also all the other requirements
mentioned in Section 1.2. However, once a comparison scheme exists to compare
one element to another and evaluate its similarity, it will be used to compare
an element against many others and select a desired element depending on the
resulting similarity. When this comparison scheme is thus used for searching a
large database, it has to be applied once for every entry in the database resulting
in a search time linear in the size of the database, which does not scale for very
large databases.
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To actually perform a search more efficiently, some requirements emerge. First
of all, the search itself must obviously be more efficient than the one-to-all com-
parison sketched above. It must also not leak information about the actual query,
as such leakage would defeat the strong security and privacy properties of the
presented comparison scheme. A notion for the probability of false-positives and
false-negatives similar to Locality-Sensitive Hashing (LSH) should be described
(Section 2.1.1).

Such a search scheme could make use of an index built over the database, which
groups different entries together regarding some properties or distance. A “privacy-
preserving set intersection with data transfer” protocol would then reveal which
entry IDs represent entries, which are most similar to the own element. A detailed
comparison between those elements and the own one could then be performed
using our proposed comparison scheme.
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A. Edit Distance Embedding

A.1. VGRAM Intersection Cardinality

The string distance approximation scheme proposed in Chapter 4 describes the use
of set operation. Specifically, strings are transformed into a set and the difference
set (A ⊕ B = (A ∪ B) \ (A ∩ B) — the union minus the intersection for two sets
A,B) is used to approximate the edit distance. Another primitive set operation to
approximate the distance would be to simply take the set intersection as a measure
for similarity and transform it into a distance.

Intersection Cardinality using Vgram
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Figure A.1.: Intersection cardinality between sets of variable length grams gen-
erated out of genomic sequences from the “Human Mitochondiral
Genome Database” [IG06] using the VGRAM algorithm [LWY07].
Minimum, Mean, Maximum, as well as 0.85- and 0.98-Quantiles for
the intersection cardinality are plotted depending on the edit distance
between the underlying genomes.

Figure A.1 plots the measured intersection cardinality for human mitochondrial
genomic sequences depending on the edit distances. Mininum, maximum, mean,
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0.85- and 0.98-quantile values are given. One can especially see that the minimum
values titled “lower bound” in Figure A.1 closely resembles a linear function, which
can be useful in cases edit distances above some threshold need to be excluded.

A.2. Edit Distance Prediction

Another, related issue regarding the edit distance approximation described in Sec-
tion 4.2 and A.1 is the prediction of the edit distance between two character se-
quences given their VGRAM [LWY07] (see Section 3.3) intersection cardinality.
We test the accuracy of predicting the edit distance between two strings by build-
ing a table T that stores the mean intersection cardinality between VGRAM sets
for a specific edit distance. Let TdE denote the mean intersection cardinality for
edit distance dE . For this purpose we generate 100 pairs of character sequences
for each edit distance dE , compute their VGRAM sets and finally the intersection
cardinality c upon them. For prediction we select the closest t = Td′E ∈ T such
that the difference between c and t is minimal: min

t∈T
|c− t|. Let d′E be the predicted

edit distance given the intersection cardinality c and let |x| be the absolute value
of x. Following this we define the prediction error in terms of edit distance offset:
d′E − dE . Figure A.2 depicts for all evaluated edit distances dE the percentage of
an edit distance offset that occurred during prediction.

Negative error values are thus predicted edit distances, which are smaller than
the correct edit distance between the compared character sequences.
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A.3. Bloom Filter False-Positive Rate
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Figure A.2.: Percentages of edit distance errors that occurred during predic-
tion of the edit distance between two character strings given their
VGRAM intersection cardinality. The mean intersection cardinality
over VGRAM sets for a specific edit distance dE is used for selecting
the predicted edit distance d′E .

A.3. Bloom Filter False-Positive Rate

The accuracy of approximating the edit distance is slightly affected by the choice
of false-positive rate. Figure 4.3 shows the difference between a configuration
pfp = 0.1 and pfp = 0.5 in terms of resulting Hamming distance given a certain edit
distance. Figure A.3 makes the difference between the configurations more explicit,
by plotting the ratio between Hamming distances in both configurations. Basically
the Hamming distance results are compressed by a factor ≈ 1.7 for pfp = 0.5, which
means that adjacent Hamming distance distributions, as depicted in Figure 4.4
are a bit less overlapping for pfp = 0.1 than shown in the actual Figure 4.4.
The pearson correlation between the edit distance of the original strings and our
distance measure remains also very high at cp = 0.997 for pfp = 0.5.
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A. Edit Distance Embedding
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edit distance is cp = −0.957.
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B. Configuration of the
Error-Correcting Code

Chapter 5 proposes to detect similar inputs by having a function that produces
collisions given similar input. Similarity is defined by the Hamming distance on
bit strings. Mapping the elements of the actual comparison to bit strings is not
part of this chapter, but was discussed for character strings — especially genomic
sequences — in Chapter 4. The task of producing collisions depending on the
Hamming distance of bit strings is proposed to be solved using Error-Correcting
Codes. Specifically the Reed-Muller [Mul54; Ree54] codes are interesting, because
they use a simple decoding function and inhibit a strong error-correction capability.
Using this code family, we choose to only select first-order codes represented as
R(1,m), due to their linear decoding equations and simple structure. The codes
can be completely specified with a single parameter m. This parameter influences
the length of the information and codewords, as well as the overall capabilities of
the code. Selecting different values form will result in different error correction and
therefore inference detection performance. The next sections will present results
on different possible choices of the parameter m.

B.1. Bloom Filter Mapping Depending on Reed-Muller
Configuration

Selecting a specific value for m fixes the length of the codewords, as well as the
length of the information words generated by decoding codewords. As the input
bit strings for the Error-Correcting Codes (ECCs) are in their length more or less
independent of the configuration of the ECC, we can calculate the ratio between
the codeword length and the input bit string length. Also depending on the actual
configuration are the number of correctable bits and other variables. The generated
codes have codeword lengths which are only a fraction of the input length, an thus
need to be applied several times to use and decode as much as possible from the
input. The use of several identical instantiations of an ECC scheme is called a
“combined” ECC scheme.

173



B. Configuration of the Error-Correcting Code

Reed-Muller Configuration Comparison
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Figure B.1.: Properties of combined Reed-Muller schemes to reach a total length
close to 22836 bits.

Figure B.1 gives properties of combined ECC schemes to reach a minimum com-
bined length of 22836 bits, as estimated in Chapter 5. “Repetitions” denotes the
number r of codes combined to reach the overall length. “Message Information
(Bits)” describes how many bits can be distinguished after decryption of all ECCs,
this equals the length of the information word times the number of ECCs rep-
etitions r: (m + 1) · r. “Final length (Bits)” equals the codeword length times
the repetitions 2m · r, “Single ECC correctable” presents the performance of a sin-
gle Reed-Muller code with configuration m, while “Combined ECC correctable”
represents the maximal performance of the combined scheme.

It can be seen easily that with larger values for m the number of codes (repeti-
tions r) combined to decode the maximum amount of input bits gets smaller, while
obviously the number of bits decoded per ECC increases. However, it can also be
seen that the overall number of usable bits stays in the same order of magnitude,
similar to the number of total correctable bits over all ECC repetitions.
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B.2. Decoding Probability Depending on Reed-Muller Configuration

B.2. Decoding Probability Depending on Reed-Muller
Configuration

In Section 5.7.4 we presented a framework for analytic evaluation of the first-order
Reed-Muller ECC given different values for m, the mapping offset o introduced
in Section 5.8.2, as well as different Hamming distance between two inputs. The
probability of decoding both input bit strings to the same value is analytically
evaluated and plotted in Figure B.2.

Figure B.2.: Theoretical analysis: Probabilities to decode two different Bloom
filters into different commitments using the Reed-Muller codes
R(1,m) for m ∈ [6, 14]. Probabilities depend on the Hamming dis-
tance k between the Bloom filters, as depicted on the y-axis of the
plots and the offset o of the initial Bloom filter from a codeword,
depicted on the x-axis.
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B. Configuration of the Error-Correcting Code

Next to the analytic analysis using a description of the Reed-Muller decoding
function, we performed an empirical evaluation actually instantiating first-order
Reed-Muller codes with different parameters, applying close-to-codeword mappings
given different values for o and using different Hamming distance input strings. The
results are plotted in Figure B.3.

Figure B.3.: Empirical analysis: Probabilities to decode two different Bloom fil-
ters into different commitments using the Reed-Muller codes R(1,m)
for m ∈ [6, 14]. Probabilities depend on the Hamming distance k be-
tween the Bloom filters, as depicted on the y-axis of the plots and the
offset o of the initial Bloom filter from a codeword, depicted on the
x-axis.
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