303 research outputs found

    Enaction as a Conceptual Framework for Developmental Cognitive Robotics

    Get PDF
    AbstractThis paper provides an accessible introduction to the cognitive systems paradigm of enaction and shows how it forms a practical framework for robotic systems that can develop cognitive abilities. The principal idea of enaction is that a cognitive system develops it own understanding of the world around it through its interactions with the environment. Thus, enaction entails that the cognitive system operates autonomously and that it generates its own models of how the world works. A discussion of the five key elements of enaction — autonomy, embodiment, emergence, experience, and sense-making — leads to a core set of functional, organizational, and developmental requirements which are then used in the design of a cognitive architecture for the iCub humanoid robot

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    Good Old-Fashioned Artificial Consciousness and the Intermediate Level Fallacy

    Get PDF
    Recently, there has been considerable interest and effort to the possibility to design and implement conscious robots, i.e., the chance that robots may have subjective experiences. Typical approaches as the global workspace, information integration, enaction, cognitive mechanisms, embodiment, i.e., the Good Old-Fashioned Artificial Consciousness, henceforth, GOFAC, share the same conceptual framework. In this paper, we discuss GOFAC's basic tenets and their implication for AI and Robotics. In particular, we point out the intermediate level fallacy as the central issue affecting GOFAC. Finally, we outline a possible alternative conceptual framework toward robot consciousness

    Introducing a Pictographic Language for Envisioning a Rich Variety of Enactive Systems with Different Degrees of Complexity

    Get PDF
    Notwithstanding the considerable amount of progress that has been made in recent years, the parallel fields of cognitive science and cognitive systems lack a unifying methodology for describing, understanding, simulating and implementing advanced cognitive behaviours. Growing interest in ’enactivism’ - as pioneered by the Chilean biologists Humberto Maturana and Francisco Varela - may lead to new perspectives in these areas, but a common framework for expressing many of the key concepts is still missing. This paper attempts to lay a tentative foundation in that direction by extending Maturana and Varela’s pictographic depictions of autopoietic unities to create a rich visual language for envisioning a wide range of enactive systems - natural or artificial - with different degrees of complexity. It is shown how such a diagrammatic taxonomy can help in the comprehension of important relationships between a variety of complex concepts from a pan-theoretic perspective. In conclusion, it is claimed that visual language is not only valuable for teaching and learning, but also offers important insights into the design and implementation of future advanced robotic systems

    Interaction Histories and Short-Term Memory: Enactive Development of Turn-Taking Behaviours in a Childlike Humanoid Robot

    Get PDF
    In this article, an enactive architecture is described that allows a humanoid robot to learn to compose simple actions into turn-taking behaviours while playing interaction games with a human partner. The robot’s action choices are reinforced by social feedback from the human in the form of visual attention and measures of behavioural synchronisation. We demonstrate that the system can acquire and switch between behaviours learned through interaction based on social feedback from the human partner. The role of reinforcement based on a short-term memory of the interaction was experimentally investigated. Results indicate that feedback based only on the immediate experience was insufficient to learn longer, more complex turn-taking behaviours. Therefore, some history of the interaction must be considered in the acquisition of turn-taking, which can be efficiently handled through the use of short-term memory.Peer reviewedFinal Published versio

    The Enactive Philosophy of Embodiment: From Biological Foundations of Agency to the Phenomenology of Subjectivity

    Get PDF
    Following the philosophy of embodiment of Merleau-Ponty, Jonas and others, enactivism is a pivot point from which various areas of science can be brought into a fruitful dialogue about the nature of subjectivity. In this chapter we present the enactive conception of agency, which, in contrast to current mainstream theories of agency, is deeply and strongly embodied. In line with this thinking we argue that anything that ought to be considered a genuine agent is a biologically embodied (even if distributed) agent, and that this embodiment must be affectively lived. However, we also consider that such an affective agent is not necessarily also an agent imbued with an explicit sense of subjectivity. To support this contention we outline the interoceptive foundation of basic agency and argue that there is a qualitative difference in the phenomenology of agency when it is instantiated in organisms which, due to their complexity and size, require a nervous system to underpin their physiological and sensorimotor processes. We argue that this interoceptively grounded agency not only entails affectivity but also forms the necessary basis for subjectivity

    Symmetry: a basis for sensorimotor reconstruction

    Get PDF
    technical reportGiven a set of unknown sensors and actuators, sensorimotor reconstruction is achieved by exploiting relations between the sensor data and the actuator control data to determine sets of similar sensors, sets of similar actuators, necessary relations between them, as well as sensorimotor relations to the environment. Several Author's have addressed this problem, and we propose here a principled approach that exploits various symmetries and that achieves more efficient and robust results. A theoretical position is defined, the approach shown more efficient than previous work, and experimental results given
    • …
    corecore