1,501 research outputs found

    Enabling Multi-Hop Remote Method Invocation in Device-To-Device Networks

    Get PDF
    To avoid shrinking down the performance and preserve energy, low-end mobile devices can collaborate with the nearby ones by offloading computation intensive code. However, despite the long research history, code offloading is dilatory and unfit for applications that require rapidly consecutive requests per short period. Even though Remote Procedure Call (RPC) is apparently one possible approach that can address this problem, the RPC-based or message queue-based techniques are obsolete or unwieldy for mobile platforms. Moreover, the need of accessibility beyond the limit reach of the device-to-device (D2D) networks originates another problem. This article introduces a new software framework to overcome these shortcomings by enabling routing RPC architecture on multiple group device-to-device networks. Our framework provides annotations for declaring distribution decision and out-of-box components that enable peer-to-peer offloading, even when a client app and the service provider do not have a direct network link or Internet connectivity. This article also discusses the two typical mobile applications that built on top of the framework for chatting and remote browsing services, as well as the empirical experiments with actual test-bed devices to unveil the low overhead conduct and similar performance as RPC in reality

    A Lightweight and Flexible Mobile Agent Platform Tailored to Management Applications

    Full text link
    Mobile Agents (MAs) represent a distributed computing technology that promises to address the scalability problems of centralized network management. A critical issue that will affect the wider adoption of MA paradigm in management applications is the development of MA Platforms (MAPs) expressly oriented to distributed management. However, most of available platforms impose considerable burden on network and system resources and also lack of essential functionality. In this paper, we discuss the design considerations and implementation details of a complete MAP research prototype that sufficiently addresses all the aforementioned issues. Our MAP has been implemented in Java and tailored for network and systems management applications.Comment: 7 pages, 5 figures; Proceedings of the 2006 Conference on Mobile Computing and Wireless Communications (MCWC'2006

    Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor Networks

    Get PDF
    Mobile ad hoc networks: MANETs) and wireless sensor networks: WSNs) are two recently-developed technologies that uniquely function without fixed infrastructure support, and sense at scales, resolutions, and durations previously not possible. While both offer great potential in many applications, developing software for these types of networks is extremely difficult, preventing their wide-spread use. Three primary challenges are: 1) the high level of dynamics within the network in terms of changing wireless links and node hardware configurations,: 2) the wide variety of hardware present in these networks, and: 3) the extremely limited computational and energy resources available. Until now, the burden of handling these issues was put on the software application developer. This dissertation presents three novel programming models and middleware systems that address these challenges: Limone, Agilla, and Servilla. Limone reliably handles high levels of dynamics within MANETs. It does this through lightweight coordination primitives that make minimal assumptions about network connectivity. Agilla enables self-adaptive WSN applications via the integration of mobile agent and tuple space programming models, which is critical given the continuously changing network. It is the first system to successfully demonstrate the feasibility of using mobile agents and tuple spaces within WSNs. Servilla addresses the challenges that arise from WSN hardware heterogeneity using principles of Service-Oriented Computing: SOC). It is the first system to successfully implement the entire SOC model within WSNs and uniquely tailors it to the WSN domain by making it energy-aware and adaptive. The efficacies of the above three systems are demonstrated through implementation, micro-benchmarks, and the evaluation of several real-world applications including Universal Remote, Fire Detection and Tracking, Structural Health Monitoring, and Medical Patient Monitoring

    Universal Mobile Service Execution Framework for Device-To-Device Collaborations

    Get PDF
    There are high demands of effective and high-performance of collaborations between mobile devices in the places where traditional Internet connections are unavailable, unreliable, or significantly overburdened, such as on a battlefield, disaster zones, isolated rural areas, or crowded public venues. To enable collaboration among the devices in opportunistic networks, code offloading and Remote Method Invocation are the two major mechanisms to ensure code portions of applications are successfully transmitted to and executed on the remote platforms. Although these domains are highly enjoyed in research for a decade, the limitations of multi-device connectivity, system error handling or cross platform compatibility prohibit these technologies from being broadly applied in the mobile industry. To address the above problems, we designed and developed UMSEF - an Universal Mobile Service Execution Framework, which is an innovative and radical approach for mobile computing in opportunistic networks. Our solution is built as a component-based mobile middleware architecture that is flexible and adaptive with multiple network topologies, tolerant for network errors and compatible for multiple platforms. We provided an effective algorithm to estimate the resource availability of a device for higher performance and energy consumption and a novel platform for mobile remote method invocation based on declarative annotations over multi-group device networks. The experiments in reality exposes our approach not only achieve the better performance and energy consumption, but can be extended to large-scaled ubiquitous or IoT systems

    Design and Implementation of a Measurement-Based Policy-Driven Resource Management Framework For Converged Networks

    Full text link
    This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.Comment: in Ictact Journal On Communication Technology: Special Issue On Next Generation Wireless Networks And Applications, June 2011, Volume 2, Issue 2, Issn: 2229-6948(Online

    Routing in Anhinga

    Get PDF
    Anhinga project with Many-to-Many Protocol (M2MP) takes fundamentally different approach to resolve dynamic network topology in ad hoc networks. Instead of trying host-address based networking and routing to make work in ad hoc network environment, M2MP removes device address and groups. All messages goes to all devices within proximal area and each device decides whether and how to process the message based on message s content. [1] This project expands on this infrastructure by delivering these messages beyond sender device s broadcast range. The project implements Dynamic Source Routing (DSR) protocol based controlled flooding techniques. It also provides functionality for node-to-node communication based on IETF draft for DSR [13] in Anhinga infrastructure

    Architecture Strategies for Cyber-Foraging: Preliminary Results from a Systematic Literature Review

    Get PDF
    Mobile devices have become for many the preferred way of interacting with the Internet, social media and the enterprise. However, mobile devices still do not have the computing power and battery life that will allow them to perform effectively over long periods of time or for executing applications that require extensive communication or computation, or low latency. Cyber-foraging is a technique to enable mobile devices to extend their computing power and storage by offloading computation or data to more powerful servers located in the cloud or in single-hop proximity. This paper presents the preliminary results of a systematic literature review (SLR) on architectures that support cyber-foraging. The preliminary results show that this is an area with many opportunities for research that will enable cyber-foraging solutions to become widely adopted as a way to support the mobile applications of the present and the future

    Web service control of component-based agile manufacturing systems

    Get PDF
    Current global business competition has resulted in significant challenges for manufacturing and production sectors focused on shorter product lifecyc1es, more diverse and customized products as well as cost pressures from competitors and customers. To remain competitive, manufacturers, particularly in automotive industry, require the next generation of manufacturing paradigms supporting flexible and reconfigurable production systems that allow quick system changeovers for various types of products. In addition, closer integration of shop floor and business systems is required as indicated by the research efforts in investigating "Agile and Collaborative Manufacturing Systems" in supporting the production unit throughout the manufacturing lifecycles. The integration of a business enterprise with its shop-floor and lifecycle supply partners is currently only achieved through complex proprietary solutions due to differences in technology, particularly between automation and business systems. The situation is further complicated by the diverse types of automation control devices employed. Recently, the emerging technology of Service Oriented Architecture's (SOA's) and Web Services (WS) has been demonstrated and proved successful in linking business applications. The adoption of this Web Services approach at the automation level, that would enable a seamless integration of business enterprise and a shop-floor system, is an active research topic within the automotive domain. If successful, reconfigurable automation systems formed by a network of collaborative autonomous and open control platform in distributed, loosely coupled manufacturing environment can be realized through a unifying platform of WS interfaces for devices communication. The adoption of SOA- Web Services on embedded automation devices can be achieved employing Device Profile for Web Services (DPWS) protocols which encapsulate device control functionality as provided services (e.g. device I/O operation, device state notification, device discovery) and business application interfaces into physical control components of machining automation. This novel approach supports the possibility of integrating pervasive enterprise applications through unifying Web Services interfaces and neutral Simple Object Access Protocol (SOAP) message communication between control systems and business applications over standard Ethernet-Local Area Networks (LAN's). In addition, the re-configurability of the automation system is enhanced via the utilisation of Web Services throughout an automated control, build, installation, test, maintenance and reuse system lifecycle via device self-discovery provided by the DPWS protocol...cont'd
    • …
    corecore