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Introduction
Resource sharing or computation offloading on mobile networks can bring a lot of ben-
efits, the approaches in this domain if possible, can be widely applied to IoT networks 
or ubiquitous cities. In this section, we will go through the several limitations of cur-
rent technologies, as well as our motivation to build a middleware that overcomes these 
obstacles by extending Remote Method Invocation method and multi-hop capability to 
enable resource sharing over mobile networks.

Low-end devices always have trouble running intensive resource-consuming appli-
cations such as image or video processing, which remarkably slow down its speed and 
drain energy. One well-known solution is having the device participate in a collabo-
ration in which it can offload or migrate intensive code portions [1–3] onto another 
device or cloud server with copious resource capacity, have them execute the code 
and wait for responses [4, 5]. Although the idea is straightforward, code offloading 
has not been widely applied in the mobile industry due to several issues: it requires 
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radical changes to the system core (e.g. OS rooting) and originates high latency, 
making it inapplicable for the category of applications that send a huge number of 
requests in a short period (e.g. real-time).

Remote Method Invocation (RMI) is a distributed architecture in which methods of 
remote Java objects can be invoked from other Java virtual machines possibly located 
on different hosts [6]. One of its strengths is that it provides a degree of location trans-
parency by having servers add services to a registry and requiring clients to use the 
registry for binding. Having RMI enabled on mobile platforms can bring several ben-
efits, which the best of those is device resource transparency when multiple resources 
can be allocated for one function call. However, the original RMI technology does not 
support any routing other than what the underlying network layers support, if there is 
no inter-network (network-layer routing) between two devices, an object on the first 
device cannot invoke a method for an object on the second device. Moreover, RMI 
is an obsolete technology that heavily relies on the javax package from the Java SDK 
library; therefore, it is not supported on mobile platforms like Android.

Technology based on object brokers, like CORBA [7], can support remote method 
invocations. However, they rely on middleware processes (or threads) to instantiate 
or re-hydrate objects and then bind method calls to the target objects. Although there 
have been attempts to support CORBA on mobile platforms [8], they require the 
underlying layers to handle inter-networking and therefore do not directly support 
inter-group communications. In addition, the authors believe that its middleware is 
too heavy for most mobile devices and that its language-neutral approach to distribu-
tion is unnecessarily complex for most mobile apps.

RabbitMQ [9] or ActiveMQ [10] or the other current message queues are the fully 
implemented middleware that is widely used in many different research and com-
mercial products; they can be deployed in distributed and federated configurations 
to support high-scale and high-availability software architectures. However, the main 
obstacle of these popular middleware systems is that the central server application 
must be located on a stationary server not a mobile device because it requires con-
siderable system resources and platform dependencies [11, 12], and thus the entire 
system is unable to deploy on a self-operating mobile network. Likewise, the same 
problem also occurs for other publish-subscribe middleware systems in which a 
developer needs to become familiar with the libraries that always overwhelm the 
mobile platforms.

Most of the new generation phones feature closed-range, non-Internet communica-
tions such as Bluetooth, NFC and WiFi-Direct [13]. However, while WiFi-Direct can 
allow handshake between two devices that are nearly 200 m apart, Bluetooth and NFC 
can only work at small distances. While Bluetooth and NFC can only pair between two 
devices, WiFi-Direct enables connections between an unlimited number of devices as 
long as they are within the supported distance range. A WiFi-Direct network is a cli-
ent-server model in which one device is elected to become a group owner, and the oth-
ers connect to the owner as the clients. According to this model, once a device joined a 
group, it is by default unable to be contacted by any other groups. There are some solu-
tions to address this limitation [5], but, these solutions lack a standard software model or 
out-of-the-box library to quickly develop or integrate into a software system.
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To simplify the networking development of mobile applications and extend the limited 
range of non-Internet communications such as WiFi-Direct, we introduce our new mid-
dleware system that enables remote method execution routing on device-to-device net-
works (D2D). Our library adopts a group-to-group network architecture that can extend 
the range of communication, so that a device from one group can talk to a device from 
another group through a virtual bridge. Firstly, the developer implements functions and 
declares annotations on those he/she wants to publish to define the service. Then, during 
the code compilation, the compiler will automatically generate the software components 
that will be used to construct D2D networks. By integrating these constituent compo-
nents into the app, a user can initiate a network in any topology since these components 
can flexibly switch between the devices. In “Evaluation” section we will demonstrate the 
use of the software library to quickly build two applications, chat and remote browser, 
that enable communications over multi-group device-to-device network. In this article, 
we introduce our new middleware architecture that makes the following contributions:

• A flexible middleware architecture that is easy to use, and able to address multi-hop 
D2D communications, as well as extendable to group-to-server, as long as the net-
work is available.

• A new routing mechanism to enable mobile RMI on both mobile and stationary server 
platforms, adapted to the group-to-group communication through annotations.

• Introduction of real applications and empirical experiments with an actual-device 
testbed through benchmarks and use cases to demonstrate the performance of our 
middleware compared to the others.

Background
Although the research aims to extend the communication capacities of mobile devices in 
all cases, this article only focuses on one network interface that is WiFi-Direct because of 
its long range distance and availability (whenever a Wi-Fi network is active). We believe 
the same system architecture can also be applied to the other network interfaces on the 
same device such as NFC or Bluetooth.

WiFi‑Direct

Wi-Fi Direct is a new peer-to-peer (P2P) communication standard built on top of the 
IEEE 802.11 to provide direct connections between Wi-Fi-enabled devices without 
Internet connections [14]. In our prior research [4, 15, 16], we used Wi-Fi Direct to con-
struct P2P networks (i.e., groups) among the nearby devices, by letting them dynami-
cally discover and connect to each other. However, with WiFi Direct, a single device can 
only belong to a single group at any time. It is still possible, though, for a device to use its 
legacy WiFi client (LC) to connect to an Internet access point or any other peer device 
directly.

Group‑to‑group in WiFi‑Direct

We discuss a solution to overcome the range limitation when executing mobile services 
in a P2P network without an Internet connection. In short-range P2P networks formed 
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by Wi-Fi-Direct, all connecting devices are summoned into one group led by a Group 
Owner (GO). When the first two devices start the communication via Wi-Fi Direct, the 
protocol will evaluate and designate one device to be a GO and the other will become 
a client. These devices will be connected via the Client-Server model. When another 
device joins the network, it is connect to the GO server as the client, and thus all the 
participating devices form up a Wi-Fi Direct group with one GO working as the server. 
Among the groups, the GOs from different groups are unable to connect to each other, 
and so are the clients. This shortcoming makes it impossible for the devices to commu-
nicate over the distance of 200 m, which is the maximum range of Wi-Fi Direct. To over-
come this limitation, we leverage the original WiFi interface of the GO and make it a 
bridge, or Legacy Client [14], to another group (Fig. 1).

When one device becomes GO, its virtual access point (i.e., soft AP) runs a DHCP 
service to automatically assign private IP addresses (e.g., 192.168.xxx.yyy) to itself and 
other clients its group. Being a GO, the device is also exposed to the others as a WiFi 
access point, so that any nearby devices can find and connect to it on the original inter-
face. Therefore, a user can create an Legacy Client (LC) on the GO of another group to 
connect to that GO through the original WiFi interface. After the LC is connected, it 
is assigned an IP in the same range of the assigned IP address (e.g., 192.168.xxx.yyy). 
A similar approach has been successfully applied in the content-centric routing domain 
[17]. Finally, in this research, we assume that a mobile network is already formed up 
before an application starts so as to focus on the application layer to evaluate our new 
middleware architecture [18, 19].

Related work
Our system performs RMI by serializing a function call into a binary stream and dis-
patching over a wireless network. In the same domain, Android RMI [20] leverages the 
original Binder to allow users to invoke system services as well as application services 
between devices using a remote parcel format. Lin et  al. introduces a cross-platform 
IPC mechanism called XBinder [21] to enable remote processes among multi-user com-
munication for mobile applications to cooperate with local or remote services without 
forming a complicate network. However, despite the remarkable improvements with 

Fig. 1 Use of WiFi interface to create group‑to‑group communications



Page 5 of 22Le et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:20 

respect to performance [22], these design choices only target mobile devices connected 
in the same network, and thus they will not work when devices are moving to the other 
networks. To address this issue, we adopted a group-to-group network architecture to 
help flexibly switch the roles of devices during run-time and allow reconfiguring the net-
work in multiple topologies.

Nakao et  al. [23] provides an RPC-based invocation mechanism between Android 
devices using Intent, a message format used by the Android platform to realize trans-
parent remote service communications to other devices without any modifications to 
the existing Android applications. Similarly, Nagahara et al. [24] proposed a distributed 
intent framework in which Android applications collaborate with embedded devices by 
sending serialized Intent messages through the network. Another approach for mobile 
remote processes is making services public, so that other devices may invoke services 
using remote call mechanisms [25, 26], but this approach incurs too much overhead for 
the host device as well as posing risks of unavailability of services when the host moves 
out of the communication range.

Our middleware contributes to the domain of WiFi-Direct multi-group communica-
tion in which one group connects to another using a legacy client and a special com-
ponent operating on the original Wi-Fi interface to serve as a bridge between the two 
group owners [14, 27, 28]. Casetti et al. [17] leverages Wi-Fi Direct to support multiple 
groups for a content-centric routing network in which data is transparently available to 
users using content routing tables that collect and transport data over the content nodes. 
Before the execution, routing tables are advertised and populated via a registration/
advertisement protocol. Our system extends the idea of the content-centric network to 
bring the function-centric mobile network, in which any device can request for a func-
tion call regardless of knowing the actual location of the function (i.e., the requested 
function can be hosted on a certain mobile device or a stationary server).

In the category of the wireless P2P communication before the Wi-Fi Direct technol-
ogy, several efforts utilized wireless communications in an add-hoc fashion to establish 
P2P networks, such as media sharing systems on urban transportation using Bluetooth 
[29], resource sharing using cellular networks [30], and radio resource sharing over 
ultra-wideband [31]. Built on top of Wi-Fi P2P, Rio [32] leverages I/O devices to capture 
and share contents and resources between the existing applications running on different 
devices without any modification. Some of its applications are multi-system photogra-
phy and gaming, music and video sharing, and SIM card sharing for multiple devices. 
GameOn [33] was also built on the same network infrastructure to establish non-Inter-
net connection between gamers within closed range networks like on public transporta-
tion. CAMEO [34], and GigaSight [35] are also the similar content sharing systems in 
closed range network architectures.

Finally, although we used real devices and environments for our experiments, there is 
a large gap between testing devices and the real world that contains hundreds of devices 
and different situations. Therefore, we share the same vision with the network simula-
tion research, especially for multi-group WiFi-Direct networks to overcome following 
two issues: (1) the high cost of the experiment deployment with a vast number of devices 
and (2) the complexity of the network discovery and handshake phases. WiDiSi [6] is a 
dedicated visual simulation extending the PeerSim library [36] to support WiFi-Direct, 
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it can simulate and visualize a vast D2D network including the discovery and network 
establishment of devices moving randomly within closed distances. However, the disad-
vantages of WiDiSi as well as PeerSim are being single-threaded, having less autonomy 
and unsupported not supporting multiple groups. The new result of that work, called 
MAGNET [8], is a novel self-organizing middleware infrastructure that aims to provide 
reliable and stable P2P connectivity among large numbers of smart devices.

Approach
We built our middleware on top of the ZeroMQ (ZMQ) library [37], a flexible library for 
message queues which is available on multiple platforms including Android. As a result, 
our first version works on both Android and PC systems. Our middleware system can 
be simply employed via two steps: a developer creates the service with full implementa-
tion and marks our service annotations (Code Snippet 4). After compiling the project, 
the middleware’s processor will automatically generate extension classes for the service; 
then, the developer uses these classes along with the other basic components such as 
Broker and Bridge to construct their mobile networks (Code Snippet 5).

Middleware components

The middleware consists of six main components: the Broker, Worker, Client, 
Requester, Responder and Bridge component; each has different functionality 
but shares the same basic structure including ring buffers for incoming and outgoing 
messages.

Figure  2 depicts the potential communications among the components. In the first 
type, the Worker connects and registers its services to the Broker while the Broker 
buffers the request messages sent from the Client, forwards each request to the cor-
responding Worker to resolve and forwards result back to the Client. The fourth type 
introduces a more sophisticated strategy with the involvement of a Bridge, an interme-
diate between two Brokers. The Bridge comprises of a Client and Worker; one 
connects to the left Broker and the other connects to the right. These two types will be 
used for Peer-to-Peer and Group-to-Group modes.

Fig. 2 All middleware components
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The Bridge is simply a forwarder that starts after the Workers are settled. Firstly, it 
sends a Service Request to the remote Broker to retrieve the list of available Worker 
services. Then, it connects to the local Broker and registers the remote services as it is 
going to forward, the local Broker will register those services under the Bridge’s ID.

{ "code":"REGISTER",
"id":"1",
"functions":[
{ "functionName":"greeting",
"inParams":["String"],
"outParam":"String[]"},

{ "functionName":"
getFolderList",

"inParams":["String"],
"outParam":"String[]"}]}

Code Snippet 1: Worker’s service definition in JSON format.

The second type involves a Requester and a Responder; one sends a request and 
the other responds in the synchronous mode like in the Client-Server model. One exten-
sion of this type called BridgeX which involves a Client and Requester on one 
side and a Responder and Worker on the other side. In reality, while the Bridge 
model needs four steps to establish a connection between two Brokers, BridgeX 
needs just three steps. The detailed usage of Bridge and BridgeX will be discussed in 
“Group-to-group communication” section (Figs. 6, 7).

Fig. 3 Sequences of the initialization process and message requests
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These components do not start at the same time. Generally, Broker always starts first, 
right after network establishment to either host services for its current group or interface 
with the other groups. Workers start after the Broker to register their services, when it 
starts, it sends the service definition in JSON format (Code Snippet 1) to the Broker, the 
Broker will extract the function list and store them in its FunctionMap table where keys 
are function names and values are Worker IDs. Later, the Broker will use FuncName from 
a request message to find the according Worker and forward the request. When Worker 
leaves the network, it sends the Broker an instruction message with code UNREGISTER 
to remove all of its services from the Broker’s group map. Figure 3 describes the sequences 
of the initialization process and message requests between a client and remote workers. 

In our library, only Broker and Bridge from the other software are used in their 
original forms original forms. To generate the other components, developers have to fol-
low their interface prototypes to define the implementation. These components will be 
created during the code compilation by annotations.

Function calls to messages

The middleware serializes a function call into a request message and dispatches the 
request to an appropriate device. The RequestMessage object holds request content 
that was sent from the Client. To this end, it has functionName to keep the name 
of the function, InParams to contain types and values of input parameters and Out-
Param to describe the type of output parameter; the parameter type can be a single 
value or an array of primitives or any user-defined object, as long as the relative classes 
exist in the classpath during the compilation and execution on all sides.

During the compilation, the AnnotationProcessor examines the service function 
prototypes marked with ServiceMethod annotations and generates the Client class. 
The processor automatically fills each function with three different portions: (1) create 
a RequestMessage to wrap up input and output parameters of the function, (2) seri-
alize the request to binary data and (3) use the default send function to dispatch the 
binary message to the Broker (see Code Snippet 2).

public void getFolderList(String path) {
String functionName = "getFolderList";
String outType = "java.lang.String[]";
RequestMessage reqMsg = new RequestMessage(

functionName, outType);
reqMsg.inParams = new InParam[1];
reqMsg.inParams[0] = new InParam("path",

"java.lang.String", path);
byte[] reqBytes = NetUtils.serialize(reqMsg);
this.client.send(functionName, reqBytes);

}

Code Snippet 2: Function in Client class for the service in Code Snippet 4.

At the generated Worker, each request is deserialized to a Java object and categorized 
by functionName. Inside each method handler, input parameters collected from the 
RequestMessage are passed to the actual function call of the service instance with 
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the output type is defined by OutParam. Finally, the result of the call is wrapped within 
a ResponseMessage along with the name and type and is sent back to the Broker 
(Code Snippet 3).

switch (functionName) {
[...]
case "getFolderList": {
/∗ variable ”path” ∗/
String[] paths = new String[req.inParams[0].values.length];
for (int i = 0; i < req.inParams[0].values.length; i++)
paths[i] = (String) req.inParams[0].values[i];

String path = paths[0];
/∗ start calling function ” getFolderList ” ∗/
String[] rets = serviceA.getFolderList(path);
String retType = "String[]";
ResponseMessage resp = new ResponseMessage(req.messageId,

req.functionName, retType, rets);
/∗ convert to binary array ∗/
respBytes = NetUtils.serialize(resp);
break;

}

Code Snippet 3: Function in Worker class for the service in Code Snippet 4.

Message flows

In this section, we describe the design of low-level message flows on top of ZMQ from 
Client to Worker through Brokers and Bridges and vise versa. In ZMQ, a message trave-
ling between the two sockets needs at least two parameters: the identity of the destination 
and the message content. To avoid overheads of message transit on the intermediates, we 
design message format with the following fields: ReceiverID—the identity of the des-
tination, ClientIDs—the ID chain of Clients, FuncName and Message—a serialized 
Message object. Specifically, ClientIDs keeps a series of Client IDs which it passes 
along to the Worker. For example, in Fig. 4, when the message arrives at the Worker the 
value of ClientIDs is “1/100/200” where 1 is the ID of Client #1, 100 is the ID of the 
Bridge’s Client #1 and 200 is the ID of Bridge’s Client #2. ClientIds is filled during the 
request process and consumed in the response.

Sending a request

We describe the Request Flow using a typical example in Fig. 4: a message to a Broker 
does not need an address, so the first message’s ReceiverID is EMPTY and Clien-
tIDs is “1,” since the message came out from Client with ID is 1. When Broker receives 
the request, it looks up FuncName in the FunctionMap to find the relative Bridge and 
forwards the message. The Bridge concatenates ClientIDs with the ID of its Client 
and forwards the request to the next Broker. This process repeats until the request even-
tually meets a Worker and gets resolved. If for any reasons the request cannot find a 
Worker, a denial message with the flag WOKRER_NOT_FOUND will be sent back to the 
Client as a response.
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Sending a response

Figure 5 illustrates a return flow from the Worker to the requesting Client. When the 
response arrives at the Broker, the Broker will extract the first ID in the ClientIDs 
and put it to the ReceiverID so that the response can find the next destination. 
This process repeats until the ClientIDs is EMPTY, in other words the response 
arrives at the requesting Client. If for any reasons the response can’t find the way back 
to the Client (when ReceiverID not found or ClientIDs is EMPTY), the Client 
will wait until timeout to report an UNAVAILABLE_SERVICE error.

Service definition

A developer indicates a class as a service by declaring the @MobileService anno-
tation at the class scope (Code Snippet 4). We support two communication models: 
Client-Server—using Requester and Responder objects, and P2P—using Client and 
Worker objects, defined by the commModel option. A user can change transmit-
Type to switch transmission type to either binary or JSON format, the default value 
is TransmitType.Binary.

A function is part of a service if it comes with the @ServiceMethod annotation; 
those without this annotation will be excluded. The developer can choose syncMode 
to be either Async or Sync. In the case of Sync, the requesting Client will wait 
until the arrival of the response or timeout to end the transaction. The last parameter 
suffix annotates the indexes of the overload functions.

Fig. 4 Message flow from a Client to the a Worker 
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@MobileService(
commModel = CommModel.P2P,
transmitType = TransmitType.Binary)

public class ServiceA {
@ServiceMethod(syncMode = SyncMode.Async)
public String[] greeting(String msg) {

return new String[] { msg, msg.toUpperCase()
};

}
@ServiceMethod(

syncMode = SyncMode.Async,
suffix = "2")

public String[] getFolderList(String path) {
File folder = new File(path);
File[] files = folder.listFiles();
String[] res = new String[files.length];
for (int i = 0; i < files.length; i++)

res[i] = files[i].getAbsolutePath();
return res;

}
}

Code Snippet 4: Service definition example.

When the developer compiles the code, the Annotation Processor will automatically 
generate Client and Worker objects for the service with additional suffixes, for example 
ServiceAClient and ServiceAWorker for the ServiceA service (see “Function 

Fig. 5 Message flow from a Worker back to the Client 
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calls to messages” section). The developer can utilize these objects to construct a mobile 
network along with the Broker and Bridge in many ways. the Code Snippet 5 shows an 
example with two Brokers on two different devices, one middle Bridge, a Client and a 
Worker. When implementing the Client code, since syncMode is Async, a developer 
needs to override the received() method to handle incoming responses, so as to 
check the responses with label BROKER_INFO. In addition, error messages returning 
from the Broker should be handled in this method.

/∗ start a Broker and a Worker on the remote device ∗/
new Broker(remoteBrokerIp, clientPort, workerPort);
new ServiceAWorker(remoteBrokerIp, workerPort);
[...]
/∗ start a Broker and a Worker on local device ∗/
new Broker(localBrokerIp, clientPort, workerPort);
/∗ start a Bridge to bridge between the local and remote Brokers ∗/
new Bridge(localBrokerIp, workerPort, remoteBrokerIp, clientPort);
/∗ start a Client at local ∗/
ServiceAClient client = new ServiceAClient(localBrokerIp,

clientPort, new ReceiveListener() {
@Override
public void received(String idChain, String funcName,

byte[] data){
ResponseMessage resp = NetUtils.deserialize(data);
if (resp.functionName.equals(NetUtils.BROKER_INFO)){
/∗ a denied message from the Broker ∗/
Log.v("Error: " + resp.outParam.values[0]);

}else if (resp.functionName.equals("greeting")){
/∗ results from the ” greeting ” function ∗/
Log.v("Received: " + resp.outParam.values[0]);

}else if (resp.functionName.equals("getFolderList")){
/∗ results from the ” getFolderList ” function ∗/
String[] files = (String[]) resp.outParam.values;
for (int i = 0; i < files.length; i++)
Log.v("File: " + files[i]);

}
}});
client.getFolderList("/");

Code Snippet 5: Adopt components and construct a mobile network.

Group‑to‑group communications

In the previous section, we discussed the idea of leveraging the original Wi-Fi inter-
face to enable group-to-group communication. In this section we will detail the 
deployment of the middleware. Figure 6 illustrates a typical case of two groups 1 and 
2, in which each group has two devices: one takes the role of GO with a Broker and 
another starts a Client.

To implement a LC, we first let the Group 1’s GO connect to the Wi-Fi Access Point 
(AP) created by Group 2’s GO. As aforementioned, when a device becomes a GO, it 
also becomes a WiFi AP, and the other devices can connect to it via the Wi-Fi inter-
face. Then, we start a new Broker on the Group 2’s GO to host on the IP address of 
the Wi-Fi interface, which is completely irrelevant to the Wi-Fi Direct network estab-
lished before. A new Bridge will start on the Group 2’s GO to connect the two Brokers 
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on Group 2, in the meantime, a new Bridge will start on the Group 1’s GO to connect 
its Broker with the one on Group 2’s GO over the Wi-Fi interface (Fig. 6). From this 
moment, the system operates exactly the same way as the one described in “Message 
flows” section.

To simplify the complexity of the system, we can also use BridgeX to replace one 
Broker on Group 2’s GO device (Fig.  7), so that the two BridgeXs on each group 
will establish a pair connection. As we described before, our system can work on both 
Android and PC platforms, the developer can easily bridge a communication from 
a device to PC by deploying a Broker on a PC to host the connections from devices 
(Fig.  8). On a mobile device, we can use a Bridge to relay messages back and forth 
from mobile Brokers to the PC.

Applicability
Since the middleware system addresses the issue of extending the limited communica-
tion range of mobile networks, especially when there is no need of Internet, it can be 
used across many different applications. In this section, to show the ease of a software 
development, we further discuss two mobile applications that utilize the proposed mid-
dleware system.

Remote browser

In this application, a user can access WWW without an Internet connection. In order 
to realize this idea, we developed a simple function getUrl to download contents of an 
URL and return in binary format, using OkHttp library.1

public byte[] getUrl(String url) {
if (client == null) {
client = new OkHttpClient.Builder().build();

}
try {
Request request = new Request.Builder().url(url).build();
Response response = client.newCall(request).execute();
if (!response.isSuccessful()) {
throw new IOException("unexpected code " + response);

}
return reponse.body().bytes();

} catch(IOException e) {
return new byte[0];

}
}

Code Snippet 6: Sample code for getUrl function.

To load webpages, a browser first calls getUrl() to download the contents of the 
page and find the inner links which could be other HTML pages, CSS or JavaScript or 

1 OkHttp: http://squar e.githu b.io/okhtt p.

http://square.github.io/okhttp
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multimedia resources. Then the browser recursively downloads the contents of the 
inner links using that getUrl function. To automatically fetch an URL this way, we 
use the NanoHttpD library as the local web server to handle loading and extracting 

Fig. 6 Multi‑group communication with 4 devices using Bridge 

Fig. 7 Multi‑group communication with 4 devices using BridgeX 
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sub links from the page contents. For each getUrl function call, the local server cre-
ates a request, distribute it to nearby peers, then collects and merges the results in 
reverse back to the WebView (Fig.  9), in the same way that a browser loads a web 
page locally.

Chat App

The Chat App simply sends and receives messages between nearby devices with-
out any Internet connections. Figure 10 shows the architecural overview of the Chat 
App. The application wraps each message by a UserMessage object, each containing 
a message string, user info including userId and username, and a function named 
createAt(time). Finally, we designed the sendMessage method as follows

• The Client sends a new message to Worker with a timestamp.
• The Worker first stores the new message inside a Message Circular Buffer.
• Then Worker searches for all the messages that newer than the recvTime. This 

searching process takes O(n) time because the newest messages are always at the 
front of the buffer.

• The sendMessage method returns a list of the latest messages.
• The Client loads the received list of the latest messages.

Fig. 8 A simple way to bridge device to PC

Fig. 9 Design of the remote browser app
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public UserMessage[] sendMessage(UserMessage msg, long recvTime) {
if (messageList == null) {
messageList = new ArrayList<>();

}
// insert the new message to Message List
if (!msg.message.equals(EMPTY)) {
if (messageList.size() >= MESSAGELIST_MAX_SIZE) {
messageList.remove(0);

}
messageList.add(msg);

}
// get the newest messages
List<UserMessage> cMsgList = new ArrayList<>();
for (int i = messageList.size() - 1; i >= 0; i--) {
UserMessage cMsg = messageList.get(i);
if (cMsg.createAt > recvTime) {
cMsgList.add(0, cMsg);

} else {
break;

}
}
return cMsgList.toArray(new UserMessage[] {});

}

Code Snippet 7: Sample code for sendMessage function.

Figure 11 shows the final results of the two applications

Evaluation
For the evaluation, we built a testbed with Wi-Fi Direct featured by Android devices to 
evaluate the performance of the developed middleware system. A personal computer is 
also included to examine the bridge between mobile devices and stationary computers 
(Table 1).

Micro benchmarks

We designed a simple service with one function accepting a binary array as an input 
parameter and returning the size of the array. When forwarding a function call, a com-
ponent (e.g. Client) packs and send the function message with parameter values out to 
another one. For this benchmark, we gradually increased the size of the binary array 
from 1KB to 1MB in order to figure out the network performance of the components. 
The measured time T[Total] will be estimated at the Client following the Eq. 1, with T[Net] 
being the total network round-trip time of all components.

For the overhead measurement of each component, we isolated the network usage by 
running all components on a single device. Fig. 12-1 shows the promising result in which 
the Broker only spends 5 to 30 ms to store and forward a request while the Client and 
Worker steadily increase the processing time as the message size dilates over time, 18 to 

(1)T[Total] = T[Broker] + T[Bridge] + T[Worker] + T[Net]
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240 ms and 5 to 90 ms respectively. When more devices join the collaboration, the mes-
sage dispatching over the network significantly degrades the performance from 10 to 15 
times slower (Fig. 12-2).

Devices to PC

An arbitrary device in a group may by chance be connectable with a stationary server, 
which enriches the group with more powerful resources. To make the server avail-
able, one Broker will be installed there along with the Worker(s) to receive requests 
and forward responses as in Fig. 8. The device contacting server will hold one Broker 
and a Bridge to forward requests from its Broker to the server’s Broker.

We, then compare the speed of Device(s)-to-PC over Wi-Fi with D2D over WiFi-
Direct in the same network, Fig. 13 shows two cases: (1) the performance of one device 
to a PC is always better by from 2.2 to 4.5 times depending on message sizes; likewise, 
(2) two devices to a PC also performs 1.9 to 2.7 times faster.

Our middleware vs. RMI

Because the Android platform has limited APIs and does not support RMI, we pro-
ceeded the comparison between our middleware system and RMI on a typical server 
environment in which two servers periodically execute remote procedure calls on each 
platform. This experiment relies on the T[Total] value measured on the Client for four dif-
ferent tasks: (1) sending messages with empty function returning only the message size 
and gradually-increasing message sizes, (2) blurring an image, (3) detecting motions in 
two images using OpenCV2 and (4) counting the most frequent words in a document.

Figure 14 depicts the differences between the two technologies. In the first test case, 
since the empty function returns the result immediately, the T[Total] is accumulated by 
mostly the network time and system overhead. In general, Java RMI has the less over-
head which performs 70.8% faster than our middleware, but these overheads are 

Fig. 10 Architecture design of the Chat App

2 OpenCV for Java: http://openc v-java-tutor ials.readt hedoc s.io.

http://opencv-java-tutorials.readthedocs.io
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neglectful because it takes 10 to 35 ms by our middleware system and 3 to 10 ms by RMI 
for message sizes from 1 K to 1 MB. In the next experiment, we tested with two image 
processing test cases. Because the image processing task takes approximately 100 to 
200 ms, the impact of overheads becomes trivial. The results of forty attempts (Fig. 14-2, 
3) show slightly better performance of RMI compared with our middleware: 7.4% better 
for the image blurring and 11.2% for the motion detection.

Regarding the word counting service, the average time to examine each 1  MB doc-
ument takes 2000 to 2500  ms which literally makes them futile. The results of forty 
attempts of word counting show the RMI is 0.4% faster than our middleware system, and 
thus the overall performance of our system is comparable with the Java RMI.

Fig. 11 The final results of the two Apps

Table 1 Specifications of the testing devices

CPU RAM Battery

LG Volt Quad‑core 1.2 GHz 1 GB 3000 mAh

ZTE Maven 3 Quad‑core 1.1 GHz 1 GB 2115 mAh

Moto G4 Octa‑core 1.5 GHz 2 GB 3000 mAh

BLU R1 Quad‑core 1.3 GHz 2 GB 2500 mAh

Dell PC Intel i7‑4790 3.6 GHz 8 GB Wall‑plugged
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Conclusion
In this article, we introduced a new middleware architecture to enable routing remote 
method invocation over multiple group device-to-device networks. Our work modu-
larizes its architecture by the functional components using annotations, which makes 
it flexible to apply and adaptive with either D2D or device-to-server networks. Our 
case-study applications and empirical experiments tested on the actual testbed and real 
mobile devices unveil the ease of using the library in mobile software development, the 
low overhead conduction and high performance. In the future, we will consider these fol-
lowing directions (1) optimize the selection algorithm at Broker side to fairly distribute a 
request to a number of Workers for higher availability of mobile execution resources and 
better performance. (2) Secondly, to aim for large-scaled IoT networks, the middleware 
must comply with multiple criteria and test scenarios from a huge number of devices 
and different specifications, as well as rapid changes of device location and environment. 

Fig. 12 Benchmarks: (1) run all components on one device. (2) Performance with multiple devices

Fig. 13 Benchmarks: (1) run all components on one device. (2) Performance with multiple devices
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This requirement can be resolved by a simulation where device specs and mobility are 
simulated in a predefined environment with several prerequisite conditions. Finally, (3) 
we will extend middleware library with respect to streamlining and easiness to target a 
larger scope of applications, by simplifying the APIs to reduce the cost of integration and 
development.
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