
Enabling multi‑hop remote method
invocation in device‑to‑device networks
Minh Le1, Stephen Clyde1 and Young‑Woo Kwon2*

Introduction
Resource sharing or computation offloading on mobile networks can bring a lot of ben-
efits, the approaches in this domain if possible, can be widely applied to IoT networks
or ubiquitous cities. In this section, we will go through the several limitations of cur-
rent technologies, as well as our motivation to build a middleware that overcomes these
obstacles by extending Remote Method Invocation method and multi-hop capability to
enable resource sharing over mobile networks.

Low-end devices always have trouble running intensive resource-consuming appli-
cations such as image or video processing, which remarkably slow down its speed and
drain energy. One well-known solution is having the device participate in a collabo-
ration in which it can offload or migrate intensive code portions [1–3] onto another
device or cloud server with copious resource capacity, have them execute the code
and wait for responses [4, 5]. Although the idea is straightforward, code offloading
has not been widely applied in the mobile industry due to several issues: it requires

Abstract

To avoid shrinking down the performance and preserve energy, low‑end mobile
devices can collaborate with the nearby ones by offloading computation intensive
code. However, despite the long research history, code offloading is dilatory and
unfit for applications that require rapidly consecutive requests per short period. Even
though Remote Procedure Call (RPC) is apparently one possible approach that can
address this problem, the RPC‑based or message queue‑based techniques are obsolete
or unwieldy for mobile platforms. Moreover, the need of accessibility beyond the limit
reach of the device‑to‑device (D2D) networks originates another problem. This article
introduces a new software framework to overcome these shortcomings by enabling
routing RPC architecture on multiple group device‑to‑device networks. Our framework
provides annotations for declaring distribution decision and out‑of‑box components
that enable peer‑to‑peer offloading, even when a client app and the service provider
do not have a direct network link or Internet connectivity. This article also discusses
the two typical mobile applications that built on top of the framework for chatting and
remote browsing services, as well as the empirical experiments with actual test‑bed
devices to unveil the low overhead conduct and similar performance as RPC in reality.

Keywords: Android RPC, Method invocation routing, WiFi‑Direct, Group‑to‑group,
Mobile network

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20
https://doi.org/10.1186/s13673‑019‑0182‑9

*Correspondence:
ywkwon@knu.ac.kr
2 Department of Computer
Science and Engineering,
Kyungpook National
University, Daegu, South
Korea
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-019-0182-9&domain=pdf

Page 2 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

radical changes to the system core (e.g. OS rooting) and originates high latency,
making it inapplicable for the category of applications that send a huge number of
requests in a short period (e.g. real-time).

Remote Method Invocation (RMI) is a distributed architecture in which methods of
remote Java objects can be invoked from other Java virtual machines possibly located
on different hosts [6]. One of its strengths is that it provides a degree of location trans-
parency by having servers add services to a registry and requiring clients to use the
registry for binding. Having RMI enabled on mobile platforms can bring several ben-
efits, which the best of those is device resource transparency when multiple resources
can be allocated for one function call. However, the original RMI technology does not
support any routing other than what the underlying network layers support, if there is
no inter-network (network-layer routing) between two devices, an object on the first
device cannot invoke a method for an object on the second device. Moreover, RMI
is an obsolete technology that heavily relies on the javax package from the Java SDK
library; therefore, it is not supported on mobile platforms like Android.

Technology based on object brokers, like CORBA [7], can support remote method
invocations. However, they rely on middleware processes (or threads) to instantiate
or re-hydrate objects and then bind method calls to the target objects. Although there
have been attempts to support CORBA on mobile platforms [8], they require the
underlying layers to handle inter-networking and therefore do not directly support
inter-group communications. In addition, the authors believe that its middleware is
too heavy for most mobile devices and that its language-neutral approach to distribu-
tion is unnecessarily complex for most mobile apps.

RabbitMQ [9] or ActiveMQ [10] or the other current message queues are the fully
implemented middleware that is widely used in many different research and com-
mercial products; they can be deployed in distributed and federated configurations
to support high-scale and high-availability software architectures. However, the main
obstacle of these popular middleware systems is that the central server application
must be located on a stationary server not a mobile device because it requires con-
siderable system resources and platform dependencies [11, 12], and thus the entire
system is unable to deploy on a self-operating mobile network. Likewise, the same
problem also occurs for other publish-subscribe middleware systems in which a
developer needs to become familiar with the libraries that always overwhelm the
mobile platforms.

Most of the new generation phones feature closed-range, non-Internet communica-
tions such as Bluetooth, NFC and WiFi-Direct [13]. However, while WiFi-Direct can
allow handshake between two devices that are nearly 200 m apart, Bluetooth and NFC
can only work at small distances. While Bluetooth and NFC can only pair between two
devices, WiFi-Direct enables connections between an unlimited number of devices as
long as they are within the supported distance range. A WiFi-Direct network is a cli-
ent-server model in which one device is elected to become a group owner, and the oth-
ers connect to the owner as the clients. According to this model, once a device joined a
group, it is by default unable to be contacted by any other groups. There are some solu-
tions to address this limitation [5], but, these solutions lack a standard software model or
out-of-the-box library to quickly develop or integrate into a software system.

Page 3 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

To simplify the networking development of mobile applications and extend the limited
range of non-Internet communications such as WiFi-Direct, we introduce our new mid-
dleware system that enables remote method execution routing on device-to-device net-
works (D2D). Our library adopts a group-to-group network architecture that can extend
the range of communication, so that a device from one group can talk to a device from
another group through a virtual bridge. Firstly, the developer implements functions and
declares annotations on those he/she wants to publish to define the service. Then, during
the code compilation, the compiler will automatically generate the software components
that will be used to construct D2D networks. By integrating these constituent compo-
nents into the app, a user can initiate a network in any topology since these components
can flexibly switch between the devices. In “Evaluation” section we will demonstrate the
use of the software library to quickly build two applications, chat and remote browser,
that enable communications over multi-group device-to-device network. In this article,
we introduce our new middleware architecture that makes the following contributions:

• A flexible middleware architecture that is easy to use, and able to address multi-hop
D2D communications, as well as extendable to group-to-server, as long as the net-
work is available.

• A new routing mechanism to enable mobile RMI on both mobile and stationary server
platforms, adapted to the group-to-group communication through annotations.

• Introduction of real applications and empirical experiments with an actual-device
testbed through benchmarks and use cases to demonstrate the performance of our
middleware compared to the others.

Background
Although the research aims to extend the communication capacities of mobile devices in
all cases, this article only focuses on one network interface that is WiFi-Direct because of
its long range distance and availability (whenever a Wi-Fi network is active). We believe
the same system architecture can also be applied to the other network interfaces on the
same device such as NFC or Bluetooth.

WiFi‑Direct

Wi-Fi Direct is a new peer-to-peer (P2P) communication standard built on top of the
IEEE 802.11 to provide direct connections between Wi-Fi-enabled devices without
Internet connections [14]. In our prior research [4, 15, 16], we used Wi-Fi Direct to con-
struct P2P networks (i.e., groups) among the nearby devices, by letting them dynami-
cally discover and connect to each other. However, with WiFi Direct, a single device can
only belong to a single group at any time. It is still possible, though, for a device to use its
legacy WiFi client (LC) to connect to an Internet access point or any other peer device
directly.

Group‑to‑group in WiFi‑Direct

We discuss a solution to overcome the range limitation when executing mobile services
in a P2P network without an Internet connection. In short-range P2P networks formed

Page 4 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

by Wi-Fi-Direct, all connecting devices are summoned into one group led by a Group
Owner (GO). When the first two devices start the communication via Wi-Fi Direct, the
protocol will evaluate and designate one device to be a GO and the other will become
a client. These devices will be connected via the Client-Server model. When another
device joins the network, it is connect to the GO server as the client, and thus all the
participating devices form up a Wi-Fi Direct group with one GO working as the server.
Among the groups, the GOs from different groups are unable to connect to each other,
and so are the clients. This shortcoming makes it impossible for the devices to commu-
nicate over the distance of 200 m, which is the maximum range of Wi-Fi Direct. To over-
come this limitation, we leverage the original WiFi interface of the GO and make it a
bridge, or Legacy Client [14], to another group (Fig. 1).

When one device becomes GO, its virtual access point (i.e., soft AP) runs a DHCP
service to automatically assign private IP addresses (e.g., 192.168.xxx.yyy) to itself and
other clients its group. Being a GO, the device is also exposed to the others as a WiFi
access point, so that any nearby devices can find and connect to it on the original inter-
face. Therefore, a user can create an Legacy Client (LC) on the GO of another group to
connect to that GO through the original WiFi interface. After the LC is connected, it
is assigned an IP in the same range of the assigned IP address (e.g., 192.168.xxx.yyy).
A similar approach has been successfully applied in the content-centric routing domain
[17]. Finally, in this research, we assume that a mobile network is already formed up
before an application starts so as to focus on the application layer to evaluate our new
middleware architecture [18, 19].

Related work
Our system performs RMI by serializing a function call into a binary stream and dis-
patching over a wireless network. In the same domain, Android RMI [20] leverages the
original Binder to allow users to invoke system services as well as application services
between devices using a remote parcel format. Lin et al. introduces a cross-platform
IPC mechanism called XBinder [21] to enable remote processes among multi-user com-
munication for mobile applications to cooperate with local or remote services without
forming a complicate network. However, despite the remarkable improvements with

Fig. 1 Use of WiFi interface to create group‑to‑group communications

Page 5 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

respect to performance [22], these design choices only target mobile devices connected
in the same network, and thus they will not work when devices are moving to the other
networks. To address this issue, we adopted a group-to-group network architecture to
help flexibly switch the roles of devices during run-time and allow reconfiguring the net-
work in multiple topologies.

Nakao et al. [23] provides an RPC-based invocation mechanism between Android
devices using Intent, a message format used by the Android platform to realize trans-
parent remote service communications to other devices without any modifications to
the existing Android applications. Similarly, Nagahara et al. [24] proposed a distributed
intent framework in which Android applications collaborate with embedded devices by
sending serialized Intent messages through the network. Another approach for mobile
remote processes is making services public, so that other devices may invoke services
using remote call mechanisms [25, 26], but this approach incurs too much overhead for
the host device as well as posing risks of unavailability of services when the host moves
out of the communication range.

Our middleware contributes to the domain of WiFi-Direct multi-group communica-
tion in which one group connects to another using a legacy client and a special com-
ponent operating on the original Wi-Fi interface to serve as a bridge between the two
group owners [14, 27, 28]. Casetti et al. [17] leverages Wi-Fi Direct to support multiple
groups for a content-centric routing network in which data is transparently available to
users using content routing tables that collect and transport data over the content nodes.
Before the execution, routing tables are advertised and populated via a registration/
advertisement protocol. Our system extends the idea of the content-centric network to
bring the function-centric mobile network, in which any device can request for a func-
tion call regardless of knowing the actual location of the function (i.e., the requested
function can be hosted on a certain mobile device or a stationary server).

In the category of the wireless P2P communication before the Wi-Fi Direct technol-
ogy, several efforts utilized wireless communications in an add-hoc fashion to establish
P2P networks, such as media sharing systems on urban transportation using Bluetooth
[29], resource sharing using cellular networks [30], and radio resource sharing over
ultra-wideband [31]. Built on top of Wi-Fi P2P, Rio [32] leverages I/O devices to capture
and share contents and resources between the existing applications running on different
devices without any modification. Some of its applications are multi-system photogra-
phy and gaming, music and video sharing, and SIM card sharing for multiple devices.
GameOn [33] was also built on the same network infrastructure to establish non-Inter-
net connection between gamers within closed range networks like on public transporta-
tion. CAMEO [34], and GigaSight [35] are also the similar content sharing systems in
closed range network architectures.

Finally, although we used real devices and environments for our experiments, there is
a large gap between testing devices and the real world that contains hundreds of devices
and different situations. Therefore, we share the same vision with the network simula-
tion research, especially for multi-group WiFi-Direct networks to overcome following
two issues: (1) the high cost of the experiment deployment with a vast number of devices
and (2) the complexity of the network discovery and handshake phases. WiDiSi [6] is a
dedicated visual simulation extending the PeerSim library [36] to support WiFi-Direct,

Page 6 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

it can simulate and visualize a vast D2D network including the discovery and network
establishment of devices moving randomly within closed distances. However, the disad-
vantages of WiDiSi as well as PeerSim are being single-threaded, having less autonomy
and unsupported not supporting multiple groups. The new result of that work, called
MAGNET [8], is a novel self-organizing middleware infrastructure that aims to provide
reliable and stable P2P connectivity among large numbers of smart devices.

Approach
We built our middleware on top of the ZeroMQ (ZMQ) library [37], a flexible library for
message queues which is available on multiple platforms including Android. As a result,
our first version works on both Android and PC systems. Our middleware system can
be simply employed via two steps: a developer creates the service with full implementa-
tion and marks our service annotations (Code Snippet 4). After compiling the project,
the middleware’s processor will automatically generate extension classes for the service;
then, the developer uses these classes along with the other basic components such as
Broker and Bridge to construct their mobile networks (Code Snippet 5).

Middleware components

The middleware consists of six main components: the Broker, Worker, Client,
Requester, Responder and Bridge component; each has different functionality
but shares the same basic structure including ring buffers for incoming and outgoing
messages.

Figure 2 depicts the potential communications among the components. In the first
type, the Worker connects and registers its services to the Broker while the Broker
buffers the request messages sent from the Client, forwards each request to the cor-
responding Worker to resolve and forwards result back to the Client. The fourth type
introduces a more sophisticated strategy with the involvement of a Bridge, an interme-
diate between two Brokers. The Bridge comprises of a Client and Worker; one
connects to the left Broker and the other connects to the right. These two types will be
used for Peer-to-Peer and Group-to-Group modes.

Fig. 2 All middleware components

Page 7 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

The Bridge is simply a forwarder that starts after the Workers are settled. Firstly, it
sends a Service Request to the remote Broker to retrieve the list of available Worker
services. Then, it connects to the local Broker and registers the remote services as it is
going to forward, the local Broker will register those services under the Bridge’s ID.

{ "code":"REGISTER",
"id":"1",
"functions":[
{ "functionName":"greeting",
"inParams":["String"],
"outParam":"String[]"},

{ "functionName":"
getFolderList",

"inParams":["String"],
"outParam":"String[]"}]}

Code Snippet 1: Worker’s service definition in JSON format.

The second type involves a Requester and a Responder; one sends a request and
the other responds in the synchronous mode like in the Client-Server model. One exten-
sion of this type called BridgeX which involves a Client and Requester on one
side and a Responder and Worker on the other side. In reality, while the Bridge
model needs four steps to establish a connection between two Brokers, BridgeX
needs just three steps. The detailed usage of Bridge and BridgeX will be discussed in
“Group-to-group communication” section (Figs. 6, 7).

Fig. 3 Sequences of the initialization process and message requests

Page 8 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

These components do not start at the same time. Generally, Broker always starts first,
right after network establishment to either host services for its current group or interface
with the other groups. Workers start after the Broker to register their services, when it
starts, it sends the service definition in JSON format (Code Snippet 1) to the Broker, the
Broker will extract the function list and store them in its FunctionMap table where keys
are function names and values are Worker IDs. Later, the Broker will use FuncName from
a request message to find the according Worker and forward the request. When Worker
leaves the network, it sends the Broker an instruction message with code UNREGISTER
to remove all of its services from the Broker’s group map. Figure 3 describes the sequences
of the initialization process and message requests between a client and remote workers.

In our library, only Broker and Bridge from the other software are used in their
original forms original forms. To generate the other components, developers have to fol-
low their interface prototypes to define the implementation. These components will be
created during the code compilation by annotations.

Function calls to messages

The middleware serializes a function call into a request message and dispatches the
request to an appropriate device. The RequestMessage object holds request content
that was sent from the Client. To this end, it has functionName to keep the name
of the function, InParams to contain types and values of input parameters and Out-
Param to describe the type of output parameter; the parameter type can be a single
value or an array of primitives or any user-defined object, as long as the relative classes
exist in the classpath during the compilation and execution on all sides.

During the compilation, the AnnotationProcessor examines the service function
prototypes marked with ServiceMethod annotations and generates the Client class.
The processor automatically fills each function with three different portions: (1) create
a RequestMessage to wrap up input and output parameters of the function, (2) seri-
alize the request to binary data and (3) use the default send function to dispatch the
binary message to the Broker (see Code Snippet 2).

public void getFolderList(String path) {
String functionName = "getFolderList";
String outType = "java.lang.String[]";
RequestMessage reqMsg = new RequestMessage(

functionName, outType);
reqMsg.inParams = new InParam[1];
reqMsg.inParams[0] = new InParam("path",

"java.lang.String", path);
byte[] reqBytes = NetUtils.serialize(reqMsg);
this.client.send(functionName, reqBytes);

}

Code Snippet 2: Function in Client class for the service in Code Snippet 4.

At the generated Worker, each request is deserialized to a Java object and categorized
by functionName. Inside each method handler, input parameters collected from the
RequestMessage are passed to the actual function call of the service instance with

Page 9 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

the output type is defined by OutParam. Finally, the result of the call is wrapped within
a ResponseMessage along with the name and type and is sent back to the Broker
(Code Snippet 3).

switch (functionName) {
[...]
case "getFolderList": {
/∗ variable ”path” ∗/
String[] paths = new String[req.inParams[0].values.length];
for (int i = 0; i < req.inParams[0].values.length; i++)
paths[i] = (String) req.inParams[0].values[i];

String path = paths[0];
/∗ start calling function ” getFolderList ” ∗/
String[] rets = serviceA.getFolderList(path);
String retType = "String[]";
ResponseMessage resp = new ResponseMessage(req.messageId,

req.functionName, retType, rets);
/∗ convert to binary array ∗/
respBytes = NetUtils.serialize(resp);
break;

}

Code Snippet 3: Function in Worker class for the service in Code Snippet 4.

Message flows

In this section, we describe the design of low-level message flows on top of ZMQ from
Client to Worker through Brokers and Bridges and vise versa. In ZMQ, a message trave-
ling between the two sockets needs at least two parameters: the identity of the destination
and the message content. To avoid overheads of message transit on the intermediates, we
design message format with the following fields: ReceiverID—the identity of the des-
tination, ClientIDs—the ID chain of Clients, FuncName and Message—a serialized
Message object. Specifically, ClientIDs keeps a series of Client IDs which it passes
along to the Worker. For example, in Fig. 4, when the message arrives at the Worker the
value of ClientIDs is “1/100/200” where 1 is the ID of Client #1, 100 is the ID of the
Bridge’s Client #1 and 200 is the ID of Bridge’s Client #2. ClientIds is filled during the
request process and consumed in the response.

Sending a request

We describe the Request Flow using a typical example in Fig. 4: a message to a Broker
does not need an address, so the first message’s ReceiverID is EMPTY and Clien-
tIDs is “1,” since the message came out from Client with ID is 1. When Broker receives
the request, it looks up FuncName in the FunctionMap to find the relative Bridge and
forwards the message. The Bridge concatenates ClientIDs with the ID of its Client
and forwards the request to the next Broker. This process repeats until the request even-
tually meets a Worker and gets resolved. If for any reasons the request cannot find a
Worker, a denial message with the flag WOKRER_NOT_FOUND will be sent back to the
Client as a response.

Page 10 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

Sending a response

Figure 5 illustrates a return flow from the Worker to the requesting Client. When the
response arrives at the Broker, the Broker will extract the first ID in the ClientIDs
and put it to the ReceiverID so that the response can find the next destination.
This process repeats until the ClientIDs is EMPTY, in other words the response
arrives at the requesting Client. If for any reasons the response can’t find the way back
to the Client (when ReceiverID not found or ClientIDs is EMPTY), the Client
will wait until timeout to report an UNAVAILABLE_SERVICE error.

Service definition

A developer indicates a class as a service by declaring the @MobileService anno-
tation at the class scope (Code Snippet 4). We support two communication models:
Client-Server—using Requester and Responder objects, and P2P—using Client and
Worker objects, defined by the commModel option. A user can change transmit-
Type to switch transmission type to either binary or JSON format, the default value
is TransmitType.Binary.

A function is part of a service if it comes with the @ServiceMethod annotation;
those without this annotation will be excluded. The developer can choose syncMode
to be either Async or Sync. In the case of Sync, the requesting Client will wait
until the arrival of the response or timeout to end the transaction. The last parameter
suffix annotates the indexes of the overload functions.

Fig. 4 Message flow from a Client to the a Worker

Page 11 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

@MobileService(
commModel = CommModel.P2P,
transmitType = TransmitType.Binary)

public class ServiceA {
@ServiceMethod(syncMode = SyncMode.Async)
public String[] greeting(String msg) {

return new String[] { msg, msg.toUpperCase()
};

}
@ServiceMethod(

syncMode = SyncMode.Async,
suffix = "2")

public String[] getFolderList(String path) {
File folder = new File(path);
File[] files = folder.listFiles();
String[] res = new String[files.length];
for (int i = 0; i < files.length; i++)

res[i] = files[i].getAbsolutePath();
return res;

}
}

Code Snippet 4: Service definition example.

When the developer compiles the code, the Annotation Processor will automatically
generate Client and Worker objects for the service with additional suffixes, for example
ServiceAClient and ServiceAWorker for the ServiceA service (see “Function

Fig. 5 Message flow from a Worker back to the Client

Page 12 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

calls to messages” section). The developer can utilize these objects to construct a mobile
network along with the Broker and Bridge in many ways. the Code Snippet 5 shows an
example with two Brokers on two different devices, one middle Bridge, a Client and a
Worker. When implementing the Client code, since syncMode is Async, a developer
needs to override the received() method to handle incoming responses, so as to
check the responses with label BROKER_INFO. In addition, error messages returning
from the Broker should be handled in this method.

/∗ start a Broker and a Worker on the remote device ∗/
new Broker(remoteBrokerIp, clientPort, workerPort);
new ServiceAWorker(remoteBrokerIp, workerPort);
[...]
/∗ start a Broker and a Worker on local device ∗/
new Broker(localBrokerIp, clientPort, workerPort);
/∗ start a Bridge to bridge between the local and remote Brokers ∗/
new Bridge(localBrokerIp, workerPort, remoteBrokerIp, clientPort);
/∗ start a Client at local ∗/
ServiceAClient client = new ServiceAClient(localBrokerIp,

clientPort, new ReceiveListener() {
@Override
public void received(String idChain, String funcName,

byte[] data){
ResponseMessage resp = NetUtils.deserialize(data);
if (resp.functionName.equals(NetUtils.BROKER_INFO)){
/∗ a denied message from the Broker ∗/
Log.v("Error: " + resp.outParam.values[0]);

}else if (resp.functionName.equals("greeting")){
/∗ results from the ” greeting ” function ∗/
Log.v("Received: " + resp.outParam.values[0]);

}else if (resp.functionName.equals("getFolderList")){
/∗ results from the ” getFolderList ” function ∗/
String[] files = (String[]) resp.outParam.values;
for (int i = 0; i < files.length; i++)
Log.v("File: " + files[i]);

}
}});
client.getFolderList("/");

Code Snippet 5: Adopt components and construct a mobile network.

Group‑to‑group communications

In the previous section, we discussed the idea of leveraging the original Wi-Fi inter-
face to enable group-to-group communication. In this section we will detail the
deployment of the middleware. Figure 6 illustrates a typical case of two groups 1 and
2, in which each group has two devices: one takes the role of GO with a Broker and
another starts a Client.

To implement a LC, we first let the Group 1’s GO connect to the Wi-Fi Access Point
(AP) created by Group 2’s GO. As aforementioned, when a device becomes a GO, it
also becomes a WiFi AP, and the other devices can connect to it via the Wi-Fi inter-
face. Then, we start a new Broker on the Group 2’s GO to host on the IP address of
the Wi-Fi interface, which is completely irrelevant to the Wi-Fi Direct network estab-
lished before. A new Bridge will start on the Group 2’s GO to connect the two Brokers

Page 13 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

on Group 2, in the meantime, a new Bridge will start on the Group 1’s GO to connect
its Broker with the one on Group 2’s GO over the Wi-Fi interface (Fig. 6). From this
moment, the system operates exactly the same way as the one described in “Message
flows” section.

To simplify the complexity of the system, we can also use BridgeX to replace one
Broker on Group 2’s GO device (Fig. 7), so that the two BridgeXs on each group
will establish a pair connection. As we described before, our system can work on both
Android and PC platforms, the developer can easily bridge a communication from
a device to PC by deploying a Broker on a PC to host the connections from devices
(Fig. 8). On a mobile device, we can use a Bridge to relay messages back and forth
from mobile Brokers to the PC.

Applicability
Since the middleware system addresses the issue of extending the limited communica-
tion range of mobile networks, especially when there is no need of Internet, it can be
used across many different applications. In this section, to show the ease of a software
development, we further discuss two mobile applications that utilize the proposed mid-
dleware system.

Remote browser

In this application, a user can access WWW without an Internet connection. In order
to realize this idea, we developed a simple function getUrl to download contents of an
URL and return in binary format, using OkHttp library.1

public byte[] getUrl(String url) {
if (client == null) {
client = new OkHttpClient.Builder().build();

}
try {
Request request = new Request.Builder().url(url).build();
Response response = client.newCall(request).execute();
if (!response.isSuccessful()) {
throw new IOException("unexpected code " + response);

}
return reponse.body().bytes();

} catch(IOException e) {
return new byte[0];

}
}

Code Snippet 6: Sample code for getUrl function.

To load webpages, a browser first calls getUrl() to download the contents of the
page and find the inner links which could be other HTML pages, CSS or JavaScript or

1 OkHttp: http://squar e.githu b.io/okhtt p.

http://square.github.io/okhttp

Page 14 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

multimedia resources. Then the browser recursively downloads the contents of the
inner links using that getUrl function. To automatically fetch an URL this way, we
use the NanoHttpD library as the local web server to handle loading and extracting

Fig. 6 Multi‑group communication with 4 devices using Bridge

Fig. 7 Multi‑group communication with 4 devices using BridgeX

Page 15 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

sub links from the page contents. For each getUrl function call, the local server cre-
ates a request, distribute it to nearby peers, then collects and merges the results in
reverse back to the WebView (Fig. 9), in the same way that a browser loads a web
page locally.

Chat App

The Chat App simply sends and receives messages between nearby devices with-
out any Internet connections. Figure 10 shows the architecural overview of the Chat
App. The application wraps each message by a UserMessage object, each containing
a message string, user info including userId and username, and a function named
createAt(time). Finally, we designed the sendMessage method as follows

• The Client sends a new message to Worker with a timestamp.
• The Worker first stores the new message inside a Message Circular Buffer.
• Then Worker searches for all the messages that newer than the recvTime. This

searching process takes O(n) time because the newest messages are always at the
front of the buffer.

• The sendMessage method returns a list of the latest messages.
• The Client loads the received list of the latest messages.

Fig. 8 A simple way to bridge device to PC

Fig. 9 Design of the remote browser app

Page 16 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

public UserMessage[] sendMessage(UserMessage msg, long recvTime) {
if (messageList == null) {
messageList = new ArrayList<>();

}
// insert the new message to Message List
if (!msg.message.equals(EMPTY)) {
if (messageList.size() >= MESSAGELIST_MAX_SIZE) {
messageList.remove(0);

}
messageList.add(msg);

}
// get the newest messages
List<UserMessage> cMsgList = new ArrayList<>();
for (int i = messageList.size() - 1; i >= 0; i--) {
UserMessage cMsg = messageList.get(i);
if (cMsg.createAt > recvTime) {
cMsgList.add(0, cMsg);

} else {
break;

}
}
return cMsgList.toArray(new UserMessage[] {});

}

Code Snippet 7: Sample code for sendMessage function.

Figure 11 shows the final results of the two applications

Evaluation
For the evaluation, we built a testbed with Wi-Fi Direct featured by Android devices to
evaluate the performance of the developed middleware system. A personal computer is
also included to examine the bridge between mobile devices and stationary computers
(Table 1).

Micro benchmarks

We designed a simple service with one function accepting a binary array as an input
parameter and returning the size of the array. When forwarding a function call, a com-
ponent (e.g. Client) packs and send the function message with parameter values out to
another one. For this benchmark, we gradually increased the size of the binary array
from 1KB to 1MB in order to figure out the network performance of the components.
The measured time T[Total] will be estimated at the Client following the Eq. 1, with T[Net]
being the total network round-trip time of all components.

For the overhead measurement of each component, we isolated the network usage by
running all components on a single device. Fig. 12-1 shows the promising result in which
the Broker only spends 5 to 30 ms to store and forward a request while the Client and
Worker steadily increase the processing time as the message size dilates over time, 18 to

(1)T[Total] = T[Broker] + T[Bridge] + T[Worker] + T[Net]

Page 17 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

240 ms and 5 to 90 ms respectively. When more devices join the collaboration, the mes-
sage dispatching over the network significantly degrades the performance from 10 to 15
times slower (Fig. 12-2).

Devices to PC

An arbitrary device in a group may by chance be connectable with a stationary server,
which enriches the group with more powerful resources. To make the server avail-
able, one Broker will be installed there along with the Worker(s) to receive requests
and forward responses as in Fig. 8. The device contacting server will hold one Broker
and a Bridge to forward requests from its Broker to the server’s Broker.

We, then compare the speed of Device(s)-to-PC over Wi-Fi with D2D over WiFi-
Direct in the same network, Fig. 13 shows two cases: (1) the performance of one device
to a PC is always better by from 2.2 to 4.5 times depending on message sizes; likewise,
(2) two devices to a PC also performs 1.9 to 2.7 times faster.

Our middleware vs. RMI

Because the Android platform has limited APIs and does not support RMI, we pro-
ceeded the comparison between our middleware system and RMI on a typical server
environment in which two servers periodically execute remote procedure calls on each
platform. This experiment relies on the T[Total] value measured on the Client for four dif-
ferent tasks: (1) sending messages with empty function returning only the message size
and gradually-increasing message sizes, (2) blurring an image, (3) detecting motions in
two images using OpenCV2 and (4) counting the most frequent words in a document.

Figure 14 depicts the differences between the two technologies. In the first test case,
since the empty function returns the result immediately, the T[Total] is accumulated by
mostly the network time and system overhead. In general, Java RMI has the less over-
head which performs 70.8% faster than our middleware, but these overheads are

Fig. 10 Architecture design of the Chat App

2 OpenCV for Java: http://openc v-java-tutor ials.readt hedoc s.io.

http://opencv-java-tutorials.readthedocs.io

Page 18 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

neglectful because it takes 10 to 35 ms by our middleware system and 3 to 10 ms by RMI
for message sizes from 1 K to 1 MB. In the next experiment, we tested with two image
processing test cases. Because the image processing task takes approximately 100 to
200 ms, the impact of overheads becomes trivial. The results of forty attempts (Fig. 14-2,
3) show slightly better performance of RMI compared with our middleware: 7.4% better
for the image blurring and 11.2% for the motion detection.

Regarding the word counting service, the average time to examine each 1 MB doc-
ument takes 2000 to 2500 ms which literally makes them futile. The results of forty
attempts of word counting show the RMI is 0.4% faster than our middleware system, and
thus the overall performance of our system is comparable with the Java RMI.

Fig. 11 The final results of the two Apps

Table 1 Specifications of the testing devices

CPU RAM Battery

LG Volt Quad‑core 1.2 GHz 1 GB 3000 mAh

ZTE Maven 3 Quad‑core 1.1 GHz 1 GB 2115 mAh

Moto G4 Octa‑core 1.5 GHz 2 GB 3000 mAh

BLU R1 Quad‑core 1.3 GHz 2 GB 2500 mAh

Dell PC Intel i7‑4790 3.6 GHz 8 GB Wall‑plugged

Page 19 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

Conclusion
In this article, we introduced a new middleware architecture to enable routing remote
method invocation over multiple group device-to-device networks. Our work modu-
larizes its architecture by the functional components using annotations, which makes
it flexible to apply and adaptive with either D2D or device-to-server networks. Our
case-study applications and empirical experiments tested on the actual testbed and real
mobile devices unveil the ease of using the library in mobile software development, the
low overhead conduction and high performance. In the future, we will consider these fol-
lowing directions (1) optimize the selection algorithm at Broker side to fairly distribute a
request to a number of Workers for higher availability of mobile execution resources and
better performance. (2) Secondly, to aim for large-scaled IoT networks, the middleware
must comply with multiple criteria and test scenarios from a huge number of devices
and different specifications, as well as rapid changes of device location and environment.

Fig. 12 Benchmarks: (1) run all components on one device. (2) Performance with multiple devices

Fig. 13 Benchmarks: (1) run all components on one device. (2) Performance with multiple devices

Page 20 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

This requirement can be resolved by a simulation where device specs and mobility are
simulated in a predefined environment with several prerequisite conditions. Finally, (3)
we will extend middleware library with respect to streamlining and easiness to target a
larger scope of applications, by simplifying the APIs to reduce the cost of integration and
development.

Authors’ contributions
ML wrote the initial manuscript and developed the main system. SC co‑wrote the manuscript and helped design the
system and Y‑WK is the principal investigator of the project and revised the manuscript. All authors read and approved
the final manuscript.

Funding
This research was supported by Basic Science Research Program through the National Research Foundation of Korea
(NRF) grant funded by the Ministry of Education (NRF‑2017R1C1B5075658).

Availability
The dataset and source code used in this research are available from the first author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, Utah State University, Logan, UT, USA. 2 Department of Computer Science and Engi‑
neering, Kyungpook National University, Daegu, South Korea.

Received: 24 December 2018 Accepted: 6 May 2019

References
 1. Cuervo E, Balasubramanian A, Cho D‑K, Wolman A, Saroiu S, Chandra R, Bahl P (2010) MAUI: making smartphones

last longer with code offload. In: MobiSys, New York, NY, USA, pp 49–62

Fig. 14 Our middleware vs. RMI: (1) sending simple packages, (2) image blurring (3) motion detection, (4)
word counting

Page 21 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

 2. Gordon MS, Jamshidi DA, Mahlke S, Mao ZM, Chen X (2012) COMET: code offload by migrating execution transpar‑
ently. In: 10th USENIX symposium on operating systems design and implementation (OSDI), Hollywood, CA, pp
93–106

 3. Calice G, Mtibaa A, Beraldi R, Alnuweiri H (2015) Mobile‑to‑mobile opportunistic task splitting and offloading. In:
11th WiMob, pp 565–572

 4. Le M, Kwon YW (2017) Utilizing nearby computing resources for resource‑limited mobile devices. In: Proceedings of
the symposium on applied computing (SAC), Marrakech, Morocco, pp 572–575

 5. Shi C, Habak K, Pandurangan P, Ammar M, Naik M, Zegura E (2014) COSMOS: computation offloading as a service
for mobile devices. In: Proceedings of the 15th ACM international symposium on mobile ad hoc networking and
computing 2014, Philadelphia, USA

 6. Baresi L, Derakhshan N, Guinea S (2016) WiDiSi: a wi‑fi direct simulator. In: IEEE wireless communications and net‑
working conference, pp 1–7

 7. Vinoski S (1997) CORBA: integrating diverse applications within distributed heterogeneous environments. IEEE Com‑
mun Mag 35(2):46–55

 8. Baresi L, Derakhshan N, Guinea S, Arenella F (2017) Mag‑net: a middleware for the proximal interaction of devices
based on wi‑fi direct. In: IEEE international conference on communications, pp 1–7

 9. Rostanski M, Grochla K, Seman A (2014) Evaluation of highlyavailable and fault‑tolerant middleware clustered archi‑
tecturesusing RabbitMQ. In: 2014 federated conference on computer science and information systems, pp 879–884

 10. Henjes R, Schlosser D, Menth M, Himmler V (2007) Throughput performance of the ActiveMQ JMS server. Kommuni‑
kation in Verteilten Systemen (KiVS). Springer, Berlin, pp 113–124

 11. Kim YG, Kim DH, Lee EK (2017) Designing test methods for IT‑enabled energy storage system to evaluate energy
dynamics. J Inf Process Syst 13(6):1487–1495

 12. Kaur J, Kaur K (2017) A fuzzy approach for an IoT‑based automated employee performance appraisal. CMC Comput
Mater Continua 53(1):23–36

 13. Vanus J, Belesova J, Martinek R, Nedoma J, Fajkus M, Bilik P, Zidek J (2017) Monitoring of the daily living activities in
smart home care. Hum Centric Comput Inf Sci 7(1):30

 14. Funai C, Tapparello C, Heinzelman W (2016) Supporting multi‑hop device‑to‑device networks through wifi direct
multi‑group networking. arXiv :1601.00028

 15. Le M, Song M, Kwon Y (2017) Enabling flexible and efficient remote execution in opportunistic networks through
message‑oriented middleware. In: 2017 IEEE 41st annual computer software and applications conference (COMP‑
SAC), pp 979–984

 16. Le M, Song Z, Kwon Y, Tilevich E (2017) Reliable and efficient mobile edge computing in highly dynamic and volatile
environments. In: Second international conference on fog and mobile edge computing (FMEC) 2017, pp 113–120

 17. Casetti C, Chiasserini C, Pelle LC, Valle CD, Duan Y, Giaccone P Content‑centric routing in wi‑fi direct multi‑group
networks. In: 2015 IEEE 16th international symposium on a world of wireless, mobile and multimedia networks
(WoWMoM), pp 1–9

 18. Phunchongharn P, Hossain E, Kim DI (2013) Resource allocation for device‑to‑device communications underlaying
LTE‑advanced networks. IEEE Wirel Commun 20(4):91–100

 19. Boabang F, Nguyen H‑H, Pham Q‑V, Hwang W‑J (2016) Network‑assisted distributed fairness‑aware interference
coordination for device‑to‑device communication underlaid cellular networks. Mobile Inf Syst. 2017(2017):1821084.
https ://doi.org/10.1155/2017/18210 84

 20. Kang HE, Jeong K, Lee K, Park S, Kim Y (2016) Android RMI: a user‑level remote method invocation mechanism
between android devices. J Supercomput 72(7):2471–2487

 21. Lin TY, Chen J, Liu JH (2016) Enabling cooperative computing for android‑based mobile platforms. In: 2016 interna‑
tional symposium on computer, consumer and control (IS3C), pp 763–766

 22. Kim HW, Jeong YS (2018) Secure authentication‑management human‑centric scheme for trusting personal resource
information on mobile cloud computing with blockchain. Hum Centric Comput Inf Sci 8(1):1–12

 23. Nakao K, Nakamoto Y (2012) Toward remote service invocation in android. In: 2012 9th international conference on
ubiquitous intelligence and computing and 9th international conference on autonomic and trusted computing, pp
612–617

 24. Nagahara Y, Oyama H, Azumi T, Nishio N (2013) Distributed intent: android framework for networked devices opera‑
tion. In: 2013 IEEE 16th international conference on computational science and engineering, pp 651–658

 25. Choi J, Park J (2013) A framework for remote service invocation of android services to communicate with external
services in java environment. J Inf Technol Serv 12(2):349–359

 26. Toyama M, Kurumatani S, Heo J, Terada K, Chen EY (2011) Android ASA server platform. In: 2011 IEEE consumer com‑
munications and networking conference, pp 1181–1185

 27. Teófilo A, Remédios D, Paulino H, Lourenço J (2015) Group‑to‑group bidirectional wi‑fi direct communication with
two relay nodes. In: MOBIQUITOUS 2015, Coimbra, Portugal, pp 275–276

 28. Jeong M, Ahn S (2017) A network coding‑aware routing mechanism for time‑sensitive data delivery in multi‑hop
wireless networks. J Inf Process Syst 13(6):1544–1553

 29. McNamara L, Mascolo C, Capra L (2008) Media sharing based on colocation prediction in urban transport. In:
Proceedings of the 14th ACM international conference on mobile computing and networking, MobiCom ’08, San
Francisco, California, USA, pp 58–69

 30. Yu CH, Doppler K, Ribeiro CB, Tirkkonen O (2011) Resource sharing optimization for device‑to‑device communica‑
tion underlaying cellular networks. IEEE Trans Wirel Commun 10:2752–2763 8 pages

 31. Cuomo F, Martello C, Baiocchi A, Capriotti F (2006) Radio resource sharing for ad hoc networking with UWB. IEEE J
Sel Areas Commun 20(9):1722–1732 11 pages

 32. Amiri Sani A, Boos K, Yun MH, Zhong L (2014) Rio: a system solution for sharing I/O between mobile systems. In:
Proceedings of the 12th annual international conference on mobile systems, applications, and services (MobiSys),
New Hampshire, pp 259–272

http://arxiv.org/abs/1601.00028
https://doi.org/10.1155/2017/1821084

Page 22 of 22Le et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:20

 33. Zhang N, Lee Y, Radhakrishnan M, Balan RK (2015) GameOn: P2P gaming on public transport. In: Proceedings of the
13th annual international conference on mobile systems, applications, and services (MobiSys), Florence, Italy, pp
105–119

 34. Khan AJ, Jayarajah K, Han D, Misra A, Balan R, Seshan S (2013) CAMEO: a middleware for mobile advertisement
delivery. In: Proceeding of the 11th annual international conference on mobile systems, applications, and services
(MobiSys), Taipei, Taiwan, pp 125–138

 35. Simoens P, Xiao Y, Pillai P, Chen Z, Ha K, Satyanarayanan M (2013) Scalable crowd‑sourcing of video from mobile
devices. In: Proceeding of the 11th annual international conference on mobile systems, applications, and services
(MobiSys), Taipei, Taiwan, pp 139–152

 36. Montresor A, Jelasity M (2009) Peersim: a scalable p2p simulator. In: IEEE nineth international conference on peer‑to‑
peer computing 2009, pp 99–100

 37. Hintjens P (2013) ZeroMQ: messaging for many applications. O’Reilly Media Inc., Newton

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Enabling multi-hop remote method invocation in device-to-device networks
	Abstract
	Introduction
	Background
	WiFi-Direct
	Group-to-group in WiFi-Direct

	Related work
	Approach
	Middleware components
	Function calls to messages
	Message flows
	Sending a request
	Sending a response

	Service definition
	Group-to-group communications

	Applicability
	Remote browser
	Chat App

	Evaluation
	Micro benchmarks
	Devices to PC
	Our middleware vs. RMI

	Conclusion
	References

