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ABSTRACT

UNIVERSAL MOBILE SERVICE EXECUTION FRAMEWORK FOR

DEVICE-TO-DEVICE COLLABORATIONS

by

Minh Le, Doctor of Philosophy

Utah State University, 2018

Major Professor: Stephen W. Clyde, Ph.D.
Department: Computer Science

There are high demands of effective and high-performance of collaborations between

mobile devices in the places where traditional Internet connections are unavailable, un-

reliable, or significantly overburdened, such as on a battlefield, disaster zones, isolated

rural areas, or crowded public venues. One solution is to form opportunistic networks

and distribute certain computations to peer devices with unused computational capacity.

To enable collaboration among the devices in opportunistic networks, code offloading and

Remote Method Invocation are the two major mechanisms to ensure code portions of ap-

plications are successfully transmitted to and executed on the remote platforms. Although

these domains are highly enjoyed in research for a decade, the limitations of multi-device

connectivity [1, 2], system error handling [3] or cross platform compatibility [4] prohibit

these technologies from being broadly applied in the mobile industry.

This dissertation addresses five critical technical problems that are blocking the way

of applying device-to-device communication to improve performance and preserve energy

in mobile industry: (1) lack of optimized algorithm for task division to efficiently split and

distribute tasks fairly to all nearby ones base on their resource availability at the moment

of request making, (2) integration of existing middleware architecture to edge platforms to
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detect system and network malfunctions, then backup and yield in-progress tasks to the

nearby mobile networks, (3) missing an universal code offloading infrastructure for task to

distribute and get resolved over heterogeneous mobile platform, (4) the essential limitations

of collaboration on mobile devices including: short distance connections: 200 meters for

WiFi-Direct or 10 meters for Bluetooth, high cost of service development : developer takes

a tremendous amount of time to develop an execution package following the middleware

template, slow response: inapplicable for real-time applications, finally (5) use of method

invocation for effective code distribution and offloading over multi-group device-to-device

networks.

To address the above problems, we designed and developed UMSEF – an Universal

Mobile Service Execution Framework, which is an innovative and radical approach for mobile

computing in opportunistic networks. Particularly, our solution comprises of the following

contributions: (1) a component-based mobile middleware architecture that is flexible and

adaptive with multiple network topologies, tolerant for network errors and compatible for

multiple platforms, (2) an effective algorithm to estimate the resource availability of a device

for higher performance and energy consumption, and (3) a novel platform for mobile remote

method invocation based on declarative annotations over multi-group device networks. The

experiments in reality exposes our approach not only achieve the better performance and

energy consumption, but can be extended to large-scaled ubiquitous or IoT systems.

This dissertation contains five conference papers, of which four are already published in

conference proceedings (SAC 2017 [5], FMEC 2017 [6], COMPSAC 2017 [7], iiWAS 2017 [8])

and one that has been submitted to MOBILESoft 2018 and is still under review.

(168 pages)
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PUBLIC ABSTRACT

UNIVERSAL MOBILE SERVICE EXECUTION FRAMEWORK FOR

DEVICE-TO-DEVICE COLLABORATIONS

Minh Le

There are high demands of effective and high-performance of collaborations between

mobile devices in the places where traditional Internet connections are unavailable, unre-

liable, or significantly overburdened, such as on a battlefield, disaster zones, isolated rural

areas, or crowded public venues. To enable collaboration among the devices in opportunistic

networks, code offloading and Remote Method Invocation are the two major mechanisms

to ensure code portions of applications are successfully transmitted to and executed on the

remote platforms. Although these domains are highly enjoyed in research for a decade, the

limitations of multi-device connectivity, system error handling or cross platform compati-

bility prohibit these technologies from being broadly applied in the mobile industry.

To address the above problems, we designed and developed UMSEF – an Universal

Mobile Service Execution Framework, which is an innovative and radical approach for mobile

computing in opportunistic networks. Our solution is built as a component-based mobile

middleware architecture that is flexible and adaptive with multiple network topologies,

tolerant for network errors and compatible for multiple platforms. We provided an effective

algorithm to estimate the resource availability of a device for higher performance and energy

consumption and a novel platform for mobile remote method invocation based on declarative

annotations over multi-group device networks. The experiments in reality exposes our

approach not only achieve the better performance and energy consumption, but can be

extended to large-scaled ubiquitous or IoT systems.
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CHAPTER 1

INTRODUCTION

Mobile-device users are continuously increasing their expectations relative to the func-

tionality and quality of mobile applications. Meeting these expectations requires making

use of sensory data, multimedia, and artificial-intelligence algorithms. Unfortunately, appli-

cations that incorporate these features tend to require inordinate amounts of computational

power, battery energy, and network traffic, as well as extensive utilization of sensory re-

sources. As a result, demands for new and more sophisticated functionality and higher

quality is exceeding what is currently feasible on individual mobile devices.

Mobile applications often use cloud-based services as a means of enhancing the capac-

ities of the mobile devices on which they run, both to improve the quality of service and to

extend their functionality. However, accessing cloud-based services is not always feasible,

beneficial, or safe [9, 10]. First, in many circumstances cloud-based services may not be

reachable via high-quality network connections, thus negating their potential benefits [11].

Second, network communications are energy intensive, so relying too heavily on cloud-based

services could unnecessarily drain battery power [12, 13]. Third, remote network connec-

tions can become overwhelmed in the presence of multiple concurrent users, as is often the

case in crowded public places like airports and large events. Finally, in some environments,

a user may not feel safe accessing any remote services by means of unsecured or unknown

access points [14–16].

With the rapid growth in number of mobile devices, their collective computational

power could provide an alternate solution for distributing heavy computational workloads.

For example, consider a mobile application that needs to run image processing on a series of

large-scaled images, each with a size of 4000× 5000 pixels. A device would have to allocate

approximately 60MB for one image and approximately twice that for temporary buffers and

the results. Currently, the Android system does not allow an application to allocate that
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amount of memory and will terminate any application that tries. A solution to this design

problem could be a middleware system that allows the mobile device to offload computation

to peers. However, offloading creates a new problem, namely how to select the most suitable

devices for offloading such that the system as a whole ensures high performance and low

energy consumption in opportunistic networks comprised of arbitrary mobile devices. The

challenge of selecting appropriate peers problem has been a fundamental research problem

for the last decade [17].

Large-scale or massive face recognition is another example. Detecting multiple faces

from a large population would require an application to load the subject image into memory,

identify each face, compute its characteristics, and then try to match those characteristics

with potentially hundreds of thousands of known face profiles. Furthermore, if the full

database of face profiles is too large to reside on the mobile device, the application would

have to download some or all of the profiles from a remote server on the fly. Even if the

subject image was small enough to fit load into memory, it would still take a mobile device

an unreasonable amount of time to complete the necessary computations and comparisons.

This design problem could be solved by employing an edge computing architecture where

edge servers are scattered and cache the profile database for handling matching compu-

tations of the nearest devices. Although this approach could significantly improve the

matching speed compare with the tradition clouds by caching profiles, it is still exposed to

high volatility, especially when the devices are moving out of contact range with the edge

servers.

A third example of when mobile applications could benefit from offloading computations

to peer devices occurs during disasters or disaster relief efforts. In a disaster area, the

network infrastructure can be severely damaged or completely destroyed, so devices cannot

access cloud-based services directly. This problem could be solved if mobile devices could

run a mobile application that creates an inter-network across ad-hoc peer networks and that

could span the disaster area until some devices on the edge establish Internet connections

[16]. Like the first example, this solution creates a new problem of selecting the most
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effective devices to act as routers between groups of peers.

This dissertation presents, through a series of scholarly articles, a middleware system

called, UMSEF – an Universal Mobile Service Execution Framework, that enables mobile

applications to establish opportunistic inter-networks and then transparently share compu-

tational tasks and network resources over those networks. In particular, in creating UMSEF

– an Universal Mobile Service Execution Framework, the research addresses the following

series of technical problems: (1) the effective partitioning and distribution of tasks to nearby

peers based on their current resource availability, (2) designing a software architecture for

edge platforms that is capable of detecting system malfunctions and network failures and

support a degree of self mending, (3) designing portable framework that enables the offload-

ing of general-format packages, (4) facilitating the use Remote Method Invocation in mobile

applications through code generator to reduce development time and improve distribution

over multi-group device-to-device networks, and (5) extending the limited range of tradi-

tional WiFi-Direct-based communication through inter-group connectivity, while optimizing

the speed of dispatching requests for real-time applications.

1.1 Task Partitioning And Distribution

For the first problem, we developed a middleware framework, based on WiFi-Direct,

that allows a mobile application to distribute jobs to nearby devices based on their current

resource capacity and availability. A mobile application can use this framework to effec-

tively partition large tasks into jobs and offload them to peers, without having to directly

deal with the peer selection and communication issues. Specifically, before dispatching job

requests that comprise a large task, a framework sends resource request messages to the

other devices in the group, then collects resource feedback messages from them. Each re-

source feedback message contains percentages that represent the availability of peer device’s

CPU, RAM, battery and sensors, as well as a responsiveness level that represents its overall

responsiveness via the connecting network. Then, the framework compares those values

with the same kinds of value for host device and filters out those peer devices that do not

currently have sufficient availability or responsiveness to participate in the task. The frame-
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work then distributed the jobs that comprise the task to the remaining peers. According

to our experiments using a testbed with real devices and a variety of mobile applications,

when the framework was used to distribute the workload across multiple devices, most of

applications exhibited better performance than when they were run on a single device. De-

pending on the application, i.e., the type of task being distributed, and number of peer

devices, the speedup was as high as 70% and reduction in energy consumption as high as

50%. (See Chapters 2 and 4).

1.2 Highly Dynamic And Volatile Edge Systems

The second problem deals with edge computing, which tries to exploit data locality

by processing massive amounts of sensory data collected by IoT and mobile devices ”at

the edge of the network.” Edge servers process data collected from nearby devices and

transmit only results to the cloud [18, 19]. They can also cache data from the cloud for

use by nearby devices and can coordinate at-the-edge computation by assigning tasks to

the available connected devices [20]. To date, most systems that utilize edge computing

operate under the assumption the network connections are stable, both between the edge

servers and the cloud and between local devices and the edge servers. In our research,

we only consider edge-computing environments that are highly dynamic and volatile [21].

These environments are characterized by intermittent network connectivity, device mobility,

and the presence of partial failure. In other words, the network connections both within

the edge cloud and to the Internet are unstable or even non-existent. Users carrying the

mobile devices move at will, thus potentially affecting their devices’ reachability to the edge

cloud. Also, any other devices involved, including the edge servers, can crash or become

unreachable at any time.

For example, consider a large-scale agriculture system that uses autonomous tractors to

gather multi-spectral imagery on multiple fields and then processes those images to detect

areas damaged by destructive insects, insufficient watering, toxins, or poor soil composition.

Assume that each field has an edge server and that tractors have intermittent WiFi con-

nections to these edge servers. Also, assume that the edge servers periodically have cellular
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data connections to the Internet. When a tractor has a connection to an edge server, it

can dump its imagery data to that server, which can then process that data and send the

results to a central server when it has an Internet connection. In this system, there is a high

probably that the tractor may enter area without WiFi coverage for any extended period

of time and could, therefore, fill up its local memory and start to lose data. Similarly, it is

possible that an edge server is unable to establish an Internet connection for an extended

period of time, so the central server may have gaps its data. Both of these problems could

be addressed by middleware that enables inter-networking between tractors and edge server,

or between edge servers, over opportunistic ad hoc networks comprised of tractors.

Fig. 1.1: Image stitching service

Another example is communications among first responders in disaster area, consider

Figure 1.1. Each responder is supported by a suite of personal devices, both mobile and

wearable. These devices are heterogeneous, in the sense that they differ in terms of their

hardware resources, operating systems, and platform versions. A recovery vehicle hosts an

edge server that also provides a WiFi access point (AP). Assume that the edge server’s
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processing power is vastly superior to those of the personal devices and the device’s cellular

signal is intermittent or non-existent. Enabling the mobile devices and the edge server to

cooperate as an edge cloud can greatly assist the responders in their mission, which is to

assess the situation and come up with a recovery strategy (Figure 1.2).

Fig. 1.2: Solution for dynamic and volatile edge computing.

For these and other systems, to realize the vision of enabling the heterogeneous mobile

devices and the edge server to collaborate as a coordinated edge cloud, it is necessary to

address two key technical challenges: device mobility and partial failure. Mobility is an

inherent requirement for many applications, like the two mentioned above. Even when

devices remain within signal range, communications are likely to exhibit a high degree

of volatility, latency, and packet loss rates. The more serious problem is that they can

move out of signal range, thus network partitioning or partial failure – which is the second

key technical challenge. With an appropriate middleware solution, partial failures can be

addressed by automatically re-routing communications over over peer-to-peer connections

and reassigning the execution of certain jobs to reachable devices.

To support highly dynamic and volatile edge-computing environments, we provide a

service infrastructure for reliable and efficient mobile edge computing that includes adaptive

facilities to dynamically restructure a distribution pattern in response to partial failure.
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Fig. 1.3: The combination of edge computing and mobile networks.

The primary service-execution model is a client-server model with micro-services at the

edge server, as long as it is reachable (Figure 1.3). Clients maintain two communication

channels with an edge server and a Cluster Head. By exchanging a heartbeat message

between an edge server and clients, each client can check the availability of the edge server

and network status to both the edge server and nearby devices. If a client does not receive an

acknowledgement from the edge server due to the network disconnection, it informs nearby

clients of the network failure through a cluster head. Then, clients immediately switch

their service execution model to the P2P mode and continue the failed service execution

through a peer-to-peer network. Then, as soon as the network connection between the edge

server and mobile devices is restored, the service execution model is switched back to the

client-server model. (Chapter 3 and Chapter 5).

1.3 Offloading Of General-Format Packages

The third problem addresses the ease with which mobile application developers can

create distributed systems and the systems’ portability across common mobile platforms,
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e.g., Android, iOS, and Windows. Ideally, developers should not have to deal with any

details related to forming opportunistic networks, identifying and selecting peers, managing

the distribution of jobs and collecting responses. In fact, the use of remote computational

resources should be entirely transparent to application developer.

Fig. 1.4: Offload code in multiple mobile platforms

Although, it is valid to assume that peer devices may have some middleware installed

and running, it is critically important that they are not required to download and install

specific applications in advance of their use in offloading. This means that job distribution

needs to include both the code to be executed and the data that the job requires. Further-

more, these jobs need to be portable across platforms so any mobile device may participate

in the system.

Although code offloading in device-to-device networks has been researched for years

[22,23], its use in the industry is still modest. One reason for its slow adoption is difficulty

of cross-platform support. Consider a camera-sharing application that collects images from

nearby devices in real time, then stitches those images together to create a 3D image. The
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application may not know the type of devices (and their camera characteristics) ahead of

time, nor will it be able to detect them due to privacy issues. So, the application must

be able to work with generic and portable camera or image interfaces. To date, many

code offloading architectures have been proposed but they only targeted a single specific

platform [3,4].

A straightforward solution for the cross-platform problem is using JavaScript to write

code and distribute to the peers. For example, Migratom.js [24] is a code migration sys-

tem that uses a flow-based paradigm to accelerate mobile web applications by offloading

compute-intensive tasks to the superpower servers. JSCloud [9] invokes the code analysis

and instrumentation phases to decide whether to start offloading and which code partitions

to offload to the cloud. JSCloud supports a wide range of devices and computers, but

the estimation relies on interpolation which incurs more computation cost. Another ap-

proach [25] analyzes offloadable code, written in JavaScript, to enhance performance of web

applications. However, improvements in speed with this approach are limited to JavaScript

parts of web applications and the offloaded code must run in a cloud environment [25, 26].

In opportunistic networks where cloud servers are not available, the native app must equip

itself with an appropriate JavaScript engine to receive and execute the JavaScript code, be

able to inject data into JavaScript environment, and bubble up responses from there to the

native layer.

The paper presented in Chapter 5 addresses these problems and provides a workable

solution by introducing a technique for automatically converting application code (in this

case Java code) to JavaScript and then encapsulating it with data and meta data to form

a portable job request message.

1.4 Flexible N-N Model For Device-To-Device Networks

In the mobile-computing domain, the WiFi-Direct technology has received much atten-

tion as a means for creating opportunistic networks [27]. This technology allows a mobile

device to discover and establish connections with other devices within WiFi signal range

without a standard access point. It establishes an isolated network group by electing one
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device as a Group Owner (GO) and to act like a virtual access point with a DHCP service.

It assigns IP addresses (range of 192.168.49.x) to itself and other devices in the group. Be-

cause the groups are isolated, WiFi-Direct only provides 1-to-1 or 1-to-N communications,

which by itself, minimizes its application for offloading in dynamic edge environments where

more complex and flexible network communications are needed.

Some other research has addressed this problem by providing workaround solutions.

For example, one approach, called IP Subnet Negotiation Protocol (ISNP) for Seamless

Multi-Group Communications [28], runs before the establishment of groups to allow any

subsequent multi-grouping protocol to succeed in creating bidirectional links between the

groups 1. Another approach, called Efficient Multi-group formation and Communication

(EMC) [2], exploits the battery specifications of the devices to qualify potential group owners

and enable dynamic formation of more efficient groups. It utilizes the service discovery

feature of WiFi-Direct to allow devices to share their battery information. A device with

a richer energy reserve than those in its range opts for creating a group. Once a group

has been formed, the owner designates from among its members what is referred to as

proxy members (PMs) that link the group to other groups. Similarly, Casetti et al. used

the Legacy Client2 to bridge from the member of a group to GO of another group, for

data-centric networks [29]. However, these solutions are limited because they either require

modification to the operating system (e.g. device rooting), lacked open APIs for developer

to integrate in their distributed systems, or are overly complicated to integrate into mobile

applications and deploy on heterogeneous platforms.

1.5 Enabling RMI On Mobile Platforms

Code offloading is known to have slow responsiveness due to high overheads and per-

mission checks [30]. The architectures designed for code offloading or code migration are

inappropriate to apply for real-time applications. For the systems with high demand of

1ISNP takes advantage of the service discovery mechanism in WiFi-Direct to allow a participating device
to negotiate distinct IP subnets with other devices in a way that does not require them to be connected by
any other means. Once multi-groups have been created by subsequent protocols, each GO uses its proposed
IP subnet [28].

2The term Legagy Client refers to the original WiFi adapter or network interface
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rapid distribution, Remote Method Invocation (RMI) framework or CORBA model seems

to be a better fit as they allow invoking remote method calls on local object on top of

transparent network layer. However, these two technologies are out-of-date for the time

being, their unwieldy structures require a stable network infrastructure which does not suit

mobile networks characterized by intermittent connections, their APIs are deprecated on

lightweight mobile platforms such as Android as well.

Some attempts to address this problem by providing different solutions for Android

RMI [31, 32], which are lightweight RMI packages dedicated for Android platform, these

approaches leverage the original Binder to allow users to invoke system services as well as

application services between devices using remote parcel format. Using external intents as

messages, they abolished the cumbersomeness of the traditional RMI and made it adaptable

with unstable networks established among the devices. Nevertheless, these approaches

expose two major problems: (1) platform dependence: due to the reliance on Binder which

is only available on Android OS. To adapt with the other platforms, an adaptive layer must

be built in between to serialize Binder objects to binary array for network transmission

and deserialize back on another platform. (2) Tightened with 1-1 (or 1-N) communication

model : using Binder limits the choice of network topologies and raises the complexity for

extension to larger scale network models such as N-N or multiple groups.

Inter-group network can significantly extend the distance limit of WiFi-Direct over

200 meters. To support inter-group, we utilized the idea of Legacy Client [29] which is a

bridge to open connection between one device from one group with the owner of another

group on original WiFi interface. We built our middleware following component-based

which include 4 out-of-the box components: FrontEnd for dispatching requests, BackEnd

for handling processes, Broker for navigating requests to destinations and Bridge for inter-

group, each combination of these building blocks can construct different network topology.

To simplify the software integration, we provide a function-scope declaration mechanism

for developer to define service by annotating on function prototypes, then these functions

will be automatically converted to service during the code compilation. The converted
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services handle the remote calls by serializing and wrapping them into binary packages

then forwarding them to the peers (Chapter 6).

1.6 Offloading In Multi-Group In Mobile Applications

Finally, we perceived the possibility of combining remote method invocation and code

offloading. As mobile device is characterized as a personal device, it faces everyday threats

such as personal information being collected, device resources (e.g. camera, CPU or RAM)

being taken advantage of, or credit card information being stolen. Therefore, running

an external process on a mobile device which has not passed the background permission

checks is always considered as high risk, making code offloading technology arduous to be

incubated in the industry. According to this problem, one solution for the mobile devices

that are willing to adopt external programs is: before the process execution, they must all

preliminarily agree on a function list and accompanied permissions. To do so, the device

must register to receive a function prototype 3 reflecting the actual service so that it can

safely offload through the prototype in the same way RMI model does. Moreover, due to

the wide-range distribution and mobility of mobile devices, the system should address three

important requirements: intermittent communications, inter-group networks, device filter

and selection.

Each BackEnd registers a set of service functions to the nearest Broker at the system

initialization, this registry will be routed by the Bridges to the other Brokers for synchro-

nization in inter-group network. To ensure the requesting device will receive either the final

result for a request or an accurate error message from the system if any problem occurs

on message route, we provided a fault handling mechanism which considers message time-

out value to evaluate the success of every transmission step on each component. If error

happens, an error message will be routed back to the requesting source.

1.7 Summary

The five problems mentioned above are central to creating portable middleware and

3In RMI the function prototype is called Stub class
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programming frameworks, namely UMSEF, which aims to support seamless code offloading

in dynamic edge environments. The papers found in the next five chapters address one or

more of these problems and collectively establish a foundation for UMSEF – an Universal

Mobile Service Execution Framework. Because these papers were written over a period

of two years, some of the names and terminology have changed, but their contributions

represent incremental steps towards the overarching offloading problem. Also, even though

paper contributions are significant, they do not represent a final solution and there is still

work to be done. Chapter 7 discusses future research directions and ideas for unifying the

middleware and framework components discussed in the individual papers into a cohesive,

open-source package. Finally, Chapter 8 provides some general conclusions about the work

presented here and its value to the mobile community.
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CHAPTER 2

UTILIZING NEARBY COMPUTING RESOURCES FOR RESOURCE-LIMITED

MOBILE DEVICES

[5] 1

2.1 Abstract

For the last decade, mobile devices have been significantly developed with powerful

hardware facilities such as multicore CPUs, large and fast memory, fast network and high-

resolution displays. Moreover, mobile applications deliver increasingly complex functional-

ity thereby still requiring ever greater hardware capability. As a result, overcoming resource

limitations in mobile software development has become a major research challenge. To that

end, in this chapter, we present a distributed execution infrastructure that enables mobile

applications to access remote resources (e.g., CPU, memory, network, sensors, etc.) based

on two distribution models: client/server and peer-to-peer. We break down a remote execu-

tion into small execution units (e.g., code and data) based on the availability and resource

capacities of nearby devices. The benchmarks and case studies demonstrate that the exist-

ing mobile devices can extend their resource capabilities through our distributed execution

infrastructure, so that it makes possible to introduce new hardware capacity (e.g., sensors)

to existing mobile devices as well as increasing both performance and energy efficiency of

mobile applications.

2.2 Introduction

Mobile devices have been evolving at a lightning pace with powerful hardware facilities

such as multicore CPUs, large and fast memory, fast network and high-resolution displays

[33]. Due to the significant development of mobile hardware, today’s mobile applications are

1Minh Le, Young-Woo Kwon @ SAC 2017
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becoming more complex with an increasingly feature-rich nature. As a result, mobile devices

often overtake the personal computer as a primary means of accessing computing resources.

However, the resource demands of mobile applications often outstrip the hardware capacities

of mobile devices. A particularly popular technique to extend limited mobile hardware is

computational offloading executing CPU-intensive functionality at a powerful cloud-based

server, thereby improving both performance and energy efficiency.

Although computational offloading has been widely enjoyed in the research literature

[34, 35] as an optimization mechanism that can utilize remote CPU resources, a majority

of feature-rich mobile applications still suffer from resource limitations to provide quality

user experiences. In addition, because computational offloading mechanisms have been

developed by leveraging cloud computing technologies, despite their significant advantages,

the high operational cost of cloud infrastructures and the implementation difficulties of

computational offloading have deterred programmers from actively applying computational

offloading in their mobile applications [36]. Furthermore, performance or energy benefits

gained through computational offloading would be considerably low when comparing to

the operational costs of the cloud-based offloading server. Finally, implementing effective

computational offloading optimization often requires highly experienced programming skills

and efforts.

Nevertheless, offloading-based mechanisms are still considered an important optimiza-

tion technique for mobile applications [37, 38]. Thus, in this chapter, we present a novel

distributed execution model that provides two offloading models: client/server and peer-to-

peer model to optimize mobile applications executions in terms of performance and energy

efficiency but also extends mobile devices hardware capability. Mobile devices will be able

to add virtually more hardware resources including computation, networking, memory, and

sensors to the existing hardware setups. Specifically, our middleware system determines

an offloading strategy between client/server and peer-to-peer model and then distributes

the requested execution over the nearby or remote devices [39]. The middleware system

employs a dynamic, adaptive mechanism to determine the best distribution and execution
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strategy under different execution environments including diverse network conditions and

mobile devices.

The experiments in three case studies have demonstrated the effectiveness of our ap-

proach, to extend limited mobile hardware resources, thereby improving performance and

energy efficiency as well as bringing new hardware capabilities. The rest of this chapter is

structured as follows. Section 2 introduces a technological background for the main tech-

nologies used in this work. Section 3 details our technical approach and Section 4 discuss

how we evaluated our approach. Section 5 compares our approach to the related state of

the art. Section 6 concludes this chapter.

2.3 Technical Background

In this section, we present major technologies including cloud offloading, peer-to-peer

and WiFi Direct technology.

2.3.1 Computation Offloading

Computation Offloading-executing computation intensive functionality and receiving a

result only-has become a popular optimization technique for mobile applications [4], [40].

It leverages the resources of cloud-based remote servers to execute portions of a mobile

applications functionality. By executing some of the applications functionality in the cloud,

offloading reduces the amount of energy consumed by the mobile device, thus saving its

battery power. An additional benefit of computation offloading is improved performance

efficiency, as cloud servers have hardware resource more powerful that those available on

mobile devices. This technique is used as one of the distributed execution models in this

chapter.

2.3.2 Peer-to-Peer Network and WiFi Direct

WiFi Direct 2 is a new peer-to-peer standard built on top of the IEEE 802.11 to provide

direct connections between WiFi devices without an Internet connection. Over a WiFi

2Wi-Fi Direct: http://developer.android.com/guide/topics/connectivity/wifip2p.html.

http://developer.android.com/guide/topics/connectivity/wifip2p.html.
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network, a device can discover and connect to any devices without special configurations

or setups. Once a connection is established, the devices can communicate with each other

as a client or a group owner. WiFi Direct has been widely used to share media contents

between mobile devices. Our approach uses Android WiFi Direct to use near computing

resources without an Internet connection or a wireless access point (AP).

2.4 Our Approach

Next, we present our approach, a distributed execution model that can extend the

resource capacities of a mobile device. We start by giving an overview of the approach and

then describe its major parts.

2.4.1 Approach Overview

Our approach provides a communication and collaboration infrastructure between the

nearby devices. Figure 2.1 shows the overall system design. Specifically, JobExecutionManager

determines appropriate distribution units and targets and then steers job executions through

DataParser that splits a job into small data chunks. Prior to dispatching a job to peer

devices, JobDispatcher first discovers available mobile devices by sending a broadcast mes-

sage to nearby devices and then calculates the availability of peer devices. For the optimal

execution result, JobExecutionManager keeps track of current execution environments such

as network conditions (e.g., delay, bandwidth) and system status (e.g., resource usage in-

cluding CPU, memory).

On a peer side, JobClassLoader instantiates the job class and executes an entry func-

tion using the attached data chunk. Then, the caller waits for the execution result from

each peer until receiving all the results for a certain time-out period. Otherwise, they are

considered missing results and re-executed through fault-handling mechanisms. Moreover,

JobExecutionManager keeps monitoring the execution status of peers, so that if there is

any fault during the execution, JobExecutionManager immediately restarts the failed job

locally. In addition to the exception handling mechanism, we use the checksum to verify

data integrity.
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Fig. 2.1: The overall system design.

2.4.2 Middleware

In this section, we discuss (1) how to discover available peers and exchange their in-

formation, (2) how to select appropriate peers, and (3) how to partition data to be sent to

the selected peers.

Discovering Available Peers

During the initialization phase, our middleware identifies available peers by broadcast-

ing a status inquiry message to the nearby peers. Upon the receipt of the message, the

middleware immediately sends back a response message, which contains the following in-

formation: Responsiveness Level based on the current resource usages, the current battery

level, GPS and network availability, etc. In particular, the Responsiveness Level is a pa-

rameter that represents how favorable the selected peer is to execute the requested job. In

the following discussion, we show how to compute Responsiveness Level.
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Estimating Resource Usages

Since Responsiveness Level (RL) represents devices resource availability, it is propor-

tional to the resource capacities (e.g., the number of cores, CPU speed, total memory) and

their usages. As a result, the more resources consumed, the more responding time the peer

would take. To select most suitable peers, RL is calculated on each nearby device as follows:

RL =
NCores × CPUSpeed

UsageCPU
+

MemSpec

UsageMem
+

BattSpec

UsageBatt
(2.1)

where NCores is the number of CPU cores. CPUSpeed is the speed of a single core in GHz.

MemSpec is the memory capacity in GB. BattSpec is the battery capacity in Ah. UsageMem

and UsageBatt are the current memory and battery usages, respectively.

The higher value of RL means higher availability. Thus, if the selected peer is a powerful

cloud-based server connected to a wall power outlet, BattSpec is ∞ and UsageBatt becomes

0, resulting in ∞ for RL. In our design, the RL value is calculated on each peer in advance

and then sent back to the caller before the job assignment, thereby reducing the runtime

overhead on a caller side.

In the following discussion, we present how each resource usage information can be

collected and quantified.

CPU Information While CPU frequency (CPUSpeed) can be easily obtained by read-

ing the cpuinfo max freq system file, the ratio of CPU usage is calculated using the

/proc/stat system file as follows:

UsageCPU =
(
∑
TCPU2 − TIdle2)− (

∑
TCPU1 − TIdle1)

(
∑
TCPU2 −

∑
TCPU1)

Where
∑
TCPUi and TIdlei are the total active time and idle time in two consecutive

inquiries.

Memory Information For the memory usage information, we also collect the total

memory capacity and current usage information. In particular, the total memory capacity

and usage information can be obtained using the MemoryInfo class In Android. MemoryInfo

provides availMem property for actual available memory in MB (denoted as availMem),
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and totalMem for total accessible total memory in MB (denoted as MemTotal). The ratio

of available memory can be calculated as follows:

UsageMem = 1− availMem

MemTotal

Battery Information

Next, the battery information including the total capacity (BattTotal) and the current

usage (BattUsed) can be collected from the PowerProfile class and ACTION BATTERY CHANGED

service. Then, we calculate the ratio of available battery as follows:

UsageBatt =
BattLevel
BattTotal

Where BattTotal is the battery capacity in mAh and BattLevel is the current battery

usage reported by an operating system.

Selecting Available Peers

Next, depending on the amount of data, appropriate peers are chosen for the best execu-

tion result. To that end, we take multiple parameters representing execution characteristics

(e.g., CPU-intensive computation, sensor access), data size, performance/energy prediction,

and peer status into consideration. In addition, computational offloading [41], [34] has re-

ceived much attention as an energy/performance optimization mechanism. Thus, we will

take advantage of a powerful cloud-based remote server as a peer. To select an appropriate

number of peers, we use a heuristic way as follows:

• If only one peer is requested (e.g. request GPS or sensor data): Select one peer that

has the largest RL value and meets other criteria.

• If an offloading server is available (e.g., CPU-intensive job): Select the offloading

server and ignore nearby devices only the network condition is favorable.

• Otherwise Select nearby peers based on RL that have larger RL than the callers one.
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Partitioning Data

After identifying available peers, the run-time system partitions data that will be sent

along with a job. As a result, the runtime system can ensure that each peer receives an

appropriate amount of job that is suitable to execute. Specifically, the amount of data sent

to peers is calculated as follows:

Mi = M
RLi∑

j=1,nRLj
(2.2)

where M is the total size of data in bytes, n is the number of active peers, and j-peer has

its Responsibility Level, RLj , respectively. If an offloading server is available, we calculate

the amount of data sent to the server Moffload:

Moffload = M
RLoffload∑
j=1,nRLj

= M
1

1 +
∑

j 6=offload RLj

RLoffload

From Section 2.4.2, we know that RLoffload is ∞ for an offloading server. Since∑
j 6=offloadRLj is limited due to peers’ resource constraints, Moffload becomes M . As

a result, we can flush the whole task to an offloading server to gain the best result. Based

on these estimations, we assign appropriate amounts of data to each peer through the

following steps:

• Calculate the total size of data (M) and the responsiveness levels (
∑

j=1,nRLj) of all

peers.

• Estimate the data size to be sent to each peer (Mi) and then partition data into

smaller parts.

• Produce n distribution units containing an extended Job class and data.

• Dispatch each distribution to each peer.

Handling Run-time Failures

Due to the nature of volatile mobile networks, partial failure may occur because each

component of a distributed execution (e.g., peers, offloading server, or the network) can
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fail independently. Thus, to ensure all jobs are completely executed at peers and their

results are returned to a caller, our run-time system listens to network-related updates

(e.g., network join/leave events from the BroadcastReceiver class) and as well as catching

exceptions thrown from the underlying system (e.g., TCP socket, WiFi Direct Controller,

Android, etc.). Moreover, we use a simple checksum mechanism to check the integrity of an

execution result. If any types of execution failures occur, the Execution Manager module

immediately re-executes the failed job on a caller.

2.5 Evaluation

We evaluated the effectiveness of our approach in improving energy- and performance-

efficiency as well as introducing a new hardware capability to resource-limited mobile de-

vices. The experimental setup includes a test-bed with five Android phones and one cloud-

based server (Table 2.1). Then, we have experimented with three emulated network con-

ditions described in Section 2.5.2. To measure energy consumption, we used a Monsoon

Power Monitor device 3. For the offloading server, we set up an Android-based server using

Android x86 4. We only measured energy consumption and time at a caller side.

Table 2.1: List of devices used in the experiments in chapter 2

Devices CPU RAM Battery OS
LG Opt. GK 1.7GHz 2GB 3100mAh 4.4.2
LG G Stylo 1.2GHz 1GB 3000mAh 6.0
LG Tribute 1.2GHz 1GB 2100mAh 4.4
LG G4 1.44GHz 3GB 3000mAh 5.1
Galaxy S3 1.4GHz 1GB 2100mAh 4.4
Asus Zenfone 2 1.7GHz 3GB 2400mAh 5.1
LG G Pad 1.7GHz 2GB 4600mAh 4.2.2
Lumia 550 1.1GHz 1GB 2100mAh W. 10

2.5.1 Micro-benchmark

We first performed a micro-benchmark to evaluate the overhead introduced by our

3Moosoon Power Monitor: https://www.msoon.com
4Android x86: http://www.android-x86.org

https://www.msoon.com
http://www.android-x86.org
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middleware including constructing a peer-to-peer network, monitoring peers status, and

steering job executions. Figure 2.2 shows the amount of energy consumed to maintain

the peer-to-peer network. Surprisingly, the number of peers does not affect the total energy

consumption of a caller. Because our approach transmits the same amount of data regularly

over the WiFi network, from the statistic information we collected, the energy variability

of one device within P2P network in idle condition can be simply represented by a linear

function.
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Fig. 2.2: Total energy consumption on a caller side.

2.5.2 Case Studies

Then, to evaluate the performance and energy efficiency of the our system, we experi-

mented with three case studies:

• Image Processing An image is split into several parts, each of which is blurred

through nearby devices.

• Internet Sharing A device without an Internet connection utilizes the dearby device

network resources to download a web page.
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• GPS Sharing A device requests location information to nearby devices that have

locality functionality (e.g.,GPS, network provider, etc.).

Image Processing Application

We first applied our approach to an image blurring application requiring complex image

processing. We experimented with the benchmark application with two images that have

different sizes: the large image has 4326×2856 pixels and the smaller ones size is 2500×1405

pixels. To distribute the image to nearby devices, the caller splits an image into a number

of vertical portions, the size of which is proportional to their RL value.

First, we experimented with a large size image, which needs about 50MB memory space

to load and another 50MB for the result. A low-end mobile device may not load and process

the image due to the resource limitations. Thus, when executing the application on multiple

devices through our approach, we reduced the execution time by 2345% and increased the

energy efficiency by 3545%, respectively. For the small size image, our approach could run

3552% faster and save 20-33% more energy than running on a single device. Figure 2.3

shows the experimental results.

Internet Sharing Application

Next, we implemented an Internet sharing application that can accelerate downloading

Internet contents through nearby smartphones. A request consists of URL, n (i.e, number

of peers) and index (i.e, device order). Then, each device (including the caller) downloads

the HTML text contents from the URL, collects its resource URLs (images, videos, audio

etc.), and downloads a batch of those URLs according to its index position of n devices.

As depicted in Figure 2.4, we could reduce the downloading time by 62%, as well as

saving 63% of energy consumed as compared to downloading the same contents on a single

smartphone.

GPS Sharing

Although acquiring a GPS location is high energy consumption process, our approach
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Fig. 2.3: Performance and energy consumption comparison of the image processing case
study

allows a device to request the GPS location from a healthier device. To that end, we only

select a device that has a GPS and the largest value of RL (i.e., the most suitable device).

We experimented with two test cases: remotely and locally obtaining GPS locations. As

shown in Figure 2.5, the GPS sharing functionality has the similar execution results in terms

of energy efficiency and performance. Thus, GPS needs to be accessed locally for energy

efficiency and performance. However, it makes possible to provide location information to

mobile devices that are not equipped with GPS or users who dont want to reveal their actual

location for the privacy reason. As a result, our approach enables a mobile application to

utilize virtual resources.

Comparison with Cloud Offloading

Finally, we compare peer-to-peer- and cloud offloading-based executions in terms of

performance and energy efficiency to determine where and when to offload jobs.
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Fig. 2.4: Performance and energy consumption comparison of the Internet sharing case
study
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Fig. 2.5: Experimental results comparison between remote and local GPS access.

Experimental Setup: To set up testing environment without any modifications, we used

Android x86 platform [2] on a powerful PC that was considered another peer having infinite

battery capacities. Then, we emulated various network conditions using Network Emulator

for Windows Toolkit 5. For the comparison of our approach and cloud offloading, we re-

performed the image processing test with a same small-scale image. When increasing the

latency between the PC and the server from 0 to 150ms, the time and energy consumption

also steadily increased as we expected. Then, we compared the cloud offloading-based

results with our peer-to-peer based results reported in the previous. We have the following

observations:

• The cloud offloading in WAN environment (i.e., limited and intermittent latency150ms)

5Microsoft Research. Network Emulator for Windows Toolkit (NEWT) version 2.1, 2010.
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has limited benefits in terms of performance and energy efficiency compared to the

P2P-based offloading.

• The cloud offloading in WLAN environment (i.e., moderate latency50ms) is sometimes

more beneficial than the P2P-based offloading in terms of energy efficiency but does

not have performance benefits.

• The cloud offloading in LAN environment (i.e., favorable latency0ms) completely over-

whelms the P2P-based offloading regardless of the number of peers.

As a result, we can argue that different offloading mechanisms should be selected in

accordance with various network conditions (i.e., latency/bandwidth characteristics) and

different jobs (i.e., computation-intensive vs. sensor-based executions) in a dynamic, adap-

tive way to achieve further optimization [42].

2.5.3 Discussion

Despite its benefits, one can argue that executing any class files on a mobile device

is harmful in terms of privacy and security. Thus, we will make our run-time system

configurable as a future research direction. The implementation will provide a configuration

file that can be used to specify user preferences with respect to battery, privacy, security,

etc. In particular, a configuration file contains a set of key/value pairs, with the keys of

battery level, trusted host, and privilege, which will indicate the favorable battery

level for requested job executions, trusted network or peer list, and local resource access

rights (e.g., CPU, memory, local files, or sensors), respectively.

The results presented above are subject to internal and external validity threats. The

internal validity is threatened by how the interactive subject applications were exercised.

The performance and energy consumption of interaction applications depend on how the

user chooses to use them. To minimize this threat, the benchmarked use cases were fixed

to using the same media (i.e., picture file), location (i.e., GPS coordinates), and Internet

URL. Another internal validity threat is the fashion in which we implemented the jobs (e.g.,
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blur effect). To minimize this menace, we took advantage of built-in Android libraries to

implement these jobs.

The external validity is threatened by the mechanism to measure energy consumption.

We measured the physical consumed energy directly using a power monitoring tool, which

does not isolate the energy consumption of the subject applications from the total energy

consumption of the whole mobile device. Thus, the energy consumption of the subject

applications is subject to background services. To minimize this threat, we uninstalled all

the third-party applications and stopped unnecessary background services.

2.6 Related Work

The work presented here enhanced the other efforts that optimize mobile applications

performance and energy efficiency via remote executions including peer to peer networking,

code migration and computation offloading. In the category of wireless peer-to-peer net-

works, there have been several research efforts. Built on top of WiFi Direct, Rio [43] lever-

ages I/O system devices to capture and share contents and resources between the existing

applications running on different devices without any modification. GameOn [44] also built

on the same network infrastructure to establish non-Internet connection between gamers

within closed range networks like in public transportation. CAMEO [45], and GigaSight [46]

are also the similar content sharing systems in closed range network architecture. However,

these contributions are missing a novel mechanism to pick up some appropriate devices out

of the device pool for a specific remote execution.

Another relevant work to our approach is one that migrates different code bases into a

system. In particular, code migration can be used to update existing, legacy systems [47,48].

Similar to our approach, code migration mechanisms are mainly used to run code on different

memory spaces (e.g., running C++ code on multi-core systems [49], running JavaScript

code on a server [24, 50], object-level migration for distributed systems [51], thread-level

migration through middleware [52]). These code migration mechanisms also have affected

execution offloading techniques in the mobile computing area.

Finally, our work shares objectives and techniques with execution offloading approaches
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[53–55]. These offloading mechanisms is a well-known mobile application optimization tech-

nique that makes it possible to execute the applications energy intensive functionality at a

powerful cloud-based server, without draining the mobile devices battery. However, these

approaches have limits in terms of network availability, deployment cost and mobility. In

this paper, to overcome those limits, we proposed our middleware system generalizing these

offloading mechanisms using two different distributed execution modelsclient/server and

peer to peer communications. As a result, we enabled resource-limited devices to extend

their hardware capacities through our approach.

2.7 Conclusion

In this chapter, we have presented a distributed execution infrastructure to increase the

quality of service of mobile applications as well as extend hardware capacities to resources-

limited mobile devices. Our approach enables a mobile application to outsource any func-

tionality through a novel middleware system by leveraging both cloud infrastructures and

nearby mobile devices. In addition, our approach makes possible to bring a new hard-

ware feature (e.g., sensors) to existing mobile devices. We have evaluated our approach

by reducing the execution time and the energy consumption of case study applications as

well as allowing a mobile device to use a GPS from nearby mobile devices. These results

indicate that our approach represents a promising direction in developing complex mobile

applications for resource-limited mobile devices.
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CHAPTER 3

RELIABLE AND EFFICIENT MOBILE EDGE COMPUTING IN HIGHLY DYNAMIC

AND VOLATILE ENVIRONMENTS

[6] 1

3.1 Abstract

By processing sensory data in the vicinity of its generation, edge computing reduces la-

tency, improves responsiveness, and saves network bandwidth in data-intensive applications.

However, existing edge computing solutions operate under the assumption that the edge

infrastructure will comprise a set of pre-deployed, custom-configured computing devices,

connected by a reliable local network.

Although edge computing has great potential to provision the necessary computational

resources in highly dynamic and volatile environments, including disaster recovery scenes

and wilderness expeditions, extant distributed system architectures in this domain are not

resilient against partial failure, caused by network disconnections.

In this chapter, we present a novel edge computing system architecture that delivers

failure-resistant and efficient applications by dynamically adapting to handle failures; if

the edge server becomes unreachable, device clusters start executing the assigned tasks

by communicating P2P, until the edge server becomes reachable again. Our experimental

results with the reference implementation show high responsiveness and resilience in the

face of partial failure. These results indicate that the presented solution can integrate the

individual capacities of mobile devices into powerful edge clouds, providing efficient and

reliable services for end-users in highly dynamic and volatile environments.

1Minh Le, Zheng Song, Eli Tilevich and Young-Woo Kwon @ FMEC 2017



31

3.2 Introduction

Edge computing exploits data locality by processing massive amounts of sensory data

collected by IoT devices “at the edge of the network.” IoT devices, mobile devices, and

edge servers process the locally collected data and transmit only the processed results to

the cloud [56]. In addition, edge servers function as gateways that coordinate the at-the-

edge computation by assigning tasks to the available connected devices for execution [57].

Traditional edge computing setups operate under the assumption of having a stable network

connection, both between the edge server and the cloud, as well as between the local devices

and the edge server.

In this chapter, we consider edge computing environments that are highly dynamic and

volatile [58,59]. These environments are characterized by intermittent network connectivity,

device mobility, and the presence of partial failure. In other words, the network connections

both within the edge cloud and to the Internet are unstable or even non-existent. Users

carrying the mobile devices involved can move at will, thus potentially affecting their de-

vices’ reachability to the edge cloud. Any of the computing devices involved, including the

edge servers, can crash or become unreachable at any time.

The technical solutions presented herein enable reliable and efficient mobile edge com-

puting in highly dynamic and volatile environments, such as those exemplified by disaster

recovery scenes, battlefields, or expeditions to the wilderness.

3.2.1 Motivating Example

As a concrete example of the problem domain, consider Figure 3.1. A team of first

responders reports to the location of a recent disaster. Each responder is supported by a

collection of personal devices, both mobile and wearable. These devices are heterogeneous,

in the sense that they differ in terms of their hardware resources, operating systems, and

platform versions. A recovery vehicle hosts an edge server that also provides a WiFi access

point (AP). Assume that the edge server’s processing power is vastly superior to those of

the personal devices, the WiFi AP covers the entire disaster recovery area, and the Internet

connection’s cellular signal is intermittent or non-existent.
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Fig. 3.1: Motivating example with image stitching service

Enabling the mobile devices and the edge server to cooperate as an edge cloud can

greatly assist the responders in their mission. First, the responders must assess the sit-

uation on the ground and come up with a recovery strategy. To that end, they need to

be able to efficiently map the entire recovery area. This task is called Image Stitching,

a computer vision operation that glues adjacent pictures of an area together into a single

panoramic image. The pictures are taken by the geographically dispersed responders using

their respective devices, while the stitched panorama provides a detailed yet holistic view

of the recovery area for the responders to facilitate their immediate recovery tasks (e.g.,

“What’s around the corner from me?”).

3.2.2 Technical Challenges

To realize the vision of enabling the heterogeneous mobile devices and the edge server

to collaborate as a coordinated edge cloud, one must address two key technical challenges—

device mobility and partial failure.

The responders need to move at will to attend to the recovery task at hand. This
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requirement entails that the devices forming the edge cloud may move to locations not

covered by the limited WiFi AP, thus causing partial failure in the device-edge server

distributed execution [60]. Therefore, another technical challenge is to provide not only an

efficient and reliable edge cloud architecture, but also resistant to partial failure caused by

device mobility [61,62]. The device-edge server distributed execution may operate in a peer-

to-peer pattern, if the connection with the edge server is broken. The available network is

likely to exhibit a high degree of volatility, with fluctuating bandwidth, latency, and packet

loss rates [63,64].

For example, to stitch individual images into a single panoramic view, the individual

devices that have captured their pictures need to send them to the edge server that has

the computational and storage capacities to execute the stitching algorithm. However, the

Image Retrieval service may operate in a peer-to-peer pattern, if the requested portion of

the stitched map happens to be located on some nearby devices, or if the connection with

the server is broken. The available network is likely to exhibit a high degree of volatility,

with fluctuating bandwidth, latency, and packet loss rates [65].

This chapter describes a solution that provides reliable and efficient mobile edge com-

puting in highly dynamic and volatile environments. Our solution comprises a novel ser-

vice architecture that includes the service infrastructure, a trusted portable store of vetted

mobile edge services, each of which constitutes a self-contained executable module to be

downloaded to mobile devices and invoked at runtime. In addition, the coordination of

mobile services and the edge server is orchestrated by our edge server architecture, in a

context-adaptive, failure-resistant fashion.

This chapter makes the following contributions:

• Mobile Edge Service Infrastructure—a novel system component for deploying

microservices on demand to heterogeneous mobile devices at the edge.

• Adaptive Edge Service Architecture—a novel distributed system architecture

that dynamically re-configures itself to provide resilience to partial failure.
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• Empirical Evaluation—We rigorously evaluate the effectiveness and performance/en-

ergy efficiency of our reference implementation on a series of micro and macro bench-

marks and applications.

3.3 Technical Approach

In this section, we present our novel mobile edge service architecture, which enables

reliability and efficiency in the face of the following technical challenge: the possibility of

the mobile devices involved moving outside of their reachability range or failing for other

reasons (i.e., partial failure).

To solve the aforementioned technical challenge, the architecture organizes mobile de-

vices and edge servers into a hierarchical structure. All computing nodes, including the edge

server and the set of available mobile devices, are connected using peer-to-peer communica-

tion interfaces, the main and the backup ones. When partial failure renders the edge server

inaccessible, the backup interface makes it possible for the mobile devices to communicate

with each other directly, with a cluster of mobile devices providing the edge services.

3.3.1 System Architecture

Here we provide an overview of our system architecture; the specific technical details

are covered in the subsequent subsections, to which we provide forward references.

Our solution comprises a service infrastructure for reliable and efficient mobile edge

computing. To understand how one can develop distributed mobile applications using this

architecture, let us revisit the motivating example above. In that example, computing vision

operations will be implemented as mobile microservice. Each service is a self-encapsulated

unit of functionality managed by a service infrastructure. Each service includes a set of

execution constraints that define the type of an edge computing device that can execute it

in a given environment.

As the responders move around over time, the network topology of the mobile devices

they are carrying is continuously changing. The technical challenge here is to hide the re-

quired underlying re-configurations of the mobile networks in response to the deployment of
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services on the continuously fluctuating—both in size and location—collection of mobile de-

vices. We address these problems by providing middleware support for dynamic and volatile

environments, whose adaptive facilities dynamically restructure the patterns of distributed

communication in response to partial failure. Section 3.3.3 discusses the general design of

the middleware system, while Section 3.3.3 discusses the details of handling partial failure.

3.3.2 Mobile Edge Services

Our service infrastructure features of application markets and mobile service reposito-

ries. Following the application market model enables mobile devices to automatically install

and execute the required mobile edge services, while following the service repositories model

enables mobile application developers to implement the required functionalities as service

invocations.

Since the platform on which a mobile edge service will be executed is unknown until

the runtime, service developers are expected to provide several equivalent versions for each

service to support execution on all major platforms. An important design assumption is

that of mobile devices possessing limited resources, with some of the limitations making it

impossible for a given device to execute a given service.

3.3.3 Adaptive Edge Service for Reliability and Efficiency

Our middleware provides efficient communication support for mobile microservices,

coordinating their executions between heterogeneous edge computing participants, such as

the edge server and mobile devices. In addition to the communication support, due to the

dynamic and volatile nature of wireless networks, the middleware provides a novel failure

handling mechanism, activated in cases of service execution failures or network disconnec-

tions.

Figure 3.2 gives an overview of the system architecture. The primary service execution

model is client-server executing microservices at the edge server, as long as it is reachable.

However, when the network or edge server becomes unavailable, mobile services are executed

by means of nearby mobile devices in a peer-to-peer model. Then, as soon as the network
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Fig. 3.2: Edge cloud architecture.

connection between the edge server and mobile devices is restored, the service execution

model is switched back to the client-server model.

Service Execution

Although our system architecture consists of two communication models: the client-

server model and the peer-to-peer model, we use an adaptive system architecture on top of

the topic-based publish/subscribe middleware [66] with three main constituent components:

Broker, Worker and Client.

The broker hosted on either an edge server or mobile devices plays a critical role in

executing mobile services, including (1) receiving service execution requests from clients;

(2) looking up and downloading execution packages from a service repository; (3) selecting

workers based on their resource availability and capacity; (4) delivering service execution
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packages to the selected workers; (5) gathering execution results from the workers and

returning them back to the clients.

The worker located on an edge server and all mobile devices reports its resource avail-

ability and capacity to the broker that assigns tasks by sending service packages to workers

and then execution results are sent back to the broker.

The client requests mobile service execution to the broker and waits for the result from

the broker. If the broker cannot handle incoming new service requests due to the limited

number of available workers, the client immediately cancels the service execution request

and executes it locally.

When the edge server is available and the communication model is the client-server

model, the edge server functions both as the broker and the worker. When the edge server

is not available, the mobile device which is the cluster head works as the broker, and the

other mobile devices in the cluster are taken as available workers. For a client device, it

ignores the differences in the network communication model, and only needs to coordinate

with the available broker. If partial failure happens (e.g., no available workers), the broker

returns “execution error” to the client device, and the client device executes the service

locally.

Optimal Device Selection

The result of executing a service remotely is often dominated by the hardware con-

figuration of the service execution device, as well as its network conditions such as band-

width/delay characteristics [42]. Thus, our approach finds an appropriate number of devices

for the current service execution environment to provide the best execution results with re-

spect to performance. In the following discussion, we describe our service request algorithm

in detail.

Our service request algorithm determines the best service execution model between an

edge server and peers, and finds the most favorable devices based on the service execution

capacity of each device. For the service execution capacity, we define the Device Responsive-

ness Level (DRL) metric, which is expressed as follows: DRL =
∑

i=1,M Ci × CRi , where
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Algorithm 1 Service request algorithm.

1: function selectDevices(client)
2: workerList ← getAvailableWorkers() . Include worker on edge
3: if (workerList.edgeAvailable()) then . Edge server is used
4: client.offloadToEdge()
5: else . P2P is used
6: broker ← client.offloadToP2P()
7: sortedDRLs[] ← sort(workerList.DRLs) . Descending order
8: maxCombine ← 0
9: availWorkerList[]← null

10: for all (DRLi ∈ sortedDRLs) do . Find max (i ×DRLi)
11: if (maxCombine < (i×DRLi)) then

12: availWorkerList
add←−− workerList[i]

13: maxCombine ← (i×DRLi)
14: end if
15: end for
16: if (maxCombine < DRLclient) then . Prefer local execution
17: broker.runAtLocal(client)
18: else . Job is distributed to the selected workers
19: broker.sendToWorkers(availWorkerList)
20: end if
21: end if

22: end function

Ci is the CPU speed of core i (Ci = CPUi); CRi is the remaining percentage of the CPU

core; and M is the number of cores. To find the most favorable mobile devices in a P2P

network, a Broker selects N devices by comparing their DRL values with the client’s DRL,

divides a job into N equal pieces2, and sends them to the corresponding workers through

the following steps:

• Assume that we have D devices. First, we sort the available devices based on their

processing power (DRL) in the decreasing order. Here, we have a list of devices D =

{d = 1, 2, ...D}, with their DRL {DRLd | ∀d ∈ D}, DRLd1 ≥ DRLd2,∀d1 < d2 ∈ D.

• For each d ∈ D, we calculate the d×DRLd, and select N = max(d×DRLd), ∀d ∈ D.

Then, select all devices from the sorted list that has higher DRL values than d, and the

selected device set is: N ∗ = {1, 2, ..., N}. The basic intuition behind this arrangement

is, considering that the job will be divided into N equal pieces, the overall execution

time can be estimated as the longest execution time of executing one piece on each

2To make the data partitioning problem simple, we adopted the Hadoop’s idea that splits data into
multiple chunks of the same size.
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worker, or say, the execution time on a worker device with the lowest DRL of all

selected workers. If we use I to represent the job, and I/N to represent the piece on

a worker, the overall execution time can be represented as t = I
N min(DRLd)

(∀d ∈ N ).

As we sort the devices based on their DRL in decreasing order, t = I
N×DRLN

, for the

Nth device has the lowest DRL on all selected devices. Therefore, to minimize the

overall execution time, is to first find a device d to maximize d × DRLd, and select

all the devices whose DRL is higher or equal to d.

• We further consider the DRL of the client. If DRLclient ≥ N ×DRLN , which means

that executing the job on the client is faster than executing the job on the peers, we

choose to execute the job on the client; Otherwise, if DRLclient < N × DRLN , we

choose to distribute the job equally into N pieces, on the selected workers N ∗.

Handling Network and Service Failures

Clients maintain two communication channels with an edge server and a cluster head.

By exchanging a heartbeat message between an edge server and clients, each client can

check the availability of the edge server and network status to both the edge server and

nearby devices. If a client does not receive an acknowledgement from the edge server due to

the network disconnection, it informs nearby clients of the network failure through a cluster

head. Then, clients immediately switch their service execution model to the P2P mode and

continue the failed service execution through a peer-to-peer network.

Algorithm 2 explains our failure handling strategy. Any clients maintain one heartbeat

communication to the edge server and they periodically send heartbeat requests to the server

and wait for the response. If the response is not received within a timeout, a failedEvent

will be dispatched to the holder to notify of the network failure. Once the client receives

failedEvent, it immediately switches its service execution model to the P2P mode and

continues the failed service execution. By exchanging heartbeat messages with a the cluster

head, the client can also detect a service failure in the P2P mode and execute the failed

service locally. In the meantime, the client keeps attempting re-connection to the edge
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Algorithm 2 Handling network and service failures.

1: function checkHeartbeat()
2: openNewHBConn() . open new Heart-beat connection
3: while (Thread.isInterrupted()) do
4: try
5: wait(HEARTBEAT PULSE) . HEARTBEAT PULSE = 3s
6: sendHeartbeatToEdge()
7: resp ← waitForResponse(TIMEOUT) . TIMEOUT = 2s
8: if (resp != null) then
9: notifyOKEvent()

10: else . If unable to receive response
11: notifyFailedEvent()
12: end if
13: catch (NetworkException)
14: try
15: wait(REESTABLISH) . REESTABLISH = 3s
16: closeCurrentHBConn()
17: openNewHBConn() . Reopen heartbeat connection
18: notifyRestoredEvent() . Network has been restored
19: catch (Exception)
20: . When attempt failed again
21: . Silently start a new loop
22: end try
23: end try
24: end while
25: closeCurrentHBConn() . Close current Heart-beat connection

26: end function

server by sending a heartbeat request. If the client receives a heartbeat response from

the edge server, it dispatches restoredEvent to the holder and restores the system to the

normal state3.

3.4 Evaluation

We evaluate the effectiveness of our approach through a micro benchmark and realistic

case studies. Specifically, we conduct two test cases to ascertain how efficient and reliable

our system would be in highly dynamic and volatile mobile edge computing environments4.

The testbed for experiments has been built up with various Android devices featuring WiFi

Direct and one edge server.

3For the details, please see our demo at: http://youtu.be/7dd1EQFb_vk
4 Our system implementation and evaluations can be found at:

https://github.com/minhld/Pub-Sub-Middleware

http://youtu.be/7dd1EQFb_vk
https://github.com/minhld/Pub-Sub-Middleware
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Table 3.1: List of devices used in the experiments in chapter 3.

Device CPU RAM Battery OS

Moto G4 Octa 1.5GHz 2GB 3000mAh 6.0.1

G4 Quad 1.5GHz 3GB 3000mAh 5.1

Asus ZF2 Quad 1.7GHz 3GB 2400mAh 5.1

BLU R1 Quad 1.3GHz 1GB 2500mAh 6.0

S3 Quad 1.4GHz 1GB 2100mAh 4.4

Dell PC i7 3.6GHz 8GB N/A Win10

3.4.1 System overhead

In this experiment, we evaluate the system’s overhead by measuring the execution time

of each main component of our system architecture, which include the client, the broker, and

the worker, both on the edge server-based and the peer-to-peer-based networks. We (1) pre-

install an empty service, which sleeps for 15 seconds on the edge server and P2P workers and

(2) place mobile devices in a nearby area for fast, stable WiFi Direct communication. We

timestamp the start and end times of each component executing its job and then aggregate

all the times, excluding the service execution time (i.e., 15 seconds). Figure 3.3 shows the

total overhead time, which can be disregarded.
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Fig. 3.3: Aggregate overheads in two different networks.

3.4.2 Case Study

To evaluate our system’s implementation in realistic scenarios, we conduct two case

studies:

• Image Processing Service: splits an image into several parts, and each device then
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blurs one image part and sends the results back to the client, which merges all these

partial results into a single image.

• Internet Sharing Service: provides Internet connectivity to nearby devices that

lack a cellular data plan. The service loads a web page in the device’s mobile browser

by engaging surrounding Internet-connected devices.

• Word Counting Service: splits an e-book into several text parts, and each device

then find most frequent words and sends the results back to the client, which merges

all these partial results and shows the top 50 most frequent words.

Image Processing Service

For this experiment, we implemented an image blurring service using the Gaussian

convolution. An image is split into N equal parts vertically, and then each part is sent to

a worker. Each worker executes the Gaussian convolution definition to blur its image part

and sends the result back to be merged into a complete image.

We first requested the service to the edge server, and then disconnect the network

between the edge server and a client, resulting in switching the service execution model to

the P2P mode. We measured the total execution time of the client that elapsed between

the initiation of the service request and the arrival of all results. Figure 3.4 shows that the

edge server-based and P2P-based service execution. Although the edge server-based service

execution outperforms the performance of P2P-based service executions, as the number of

mobile devices increases, the performance of the P2P-based service model is also significantly

improved.

Then, to evaluate our peer selection approach, we compared the estimated execution

time with the actual time taken by the P2P collaboration in five scenarios, which engage

between 1 and 5 devices. Figure 3.5 (Top) shows the estimated and actual lines having

the same trend and close values. We found that this trend approximation also occurs

when starting the service execution from different devices in the P2P network. Figure 3.5

(Bottom) describes the similar trends on 3 devices with different resource capacities, when

requesting the same service from different mobile device in the P2P network.
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Fig. 3.4: The performance comparison of the edge server- and P2P-based execution model
in image processing test.
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test.

Word Counting Service

This service will be used mostly in the section 3.4.2. Although a word-counting ser-

vice would not represent a typical example targeted by our solution, we use this canonical
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computation-intensive scenario to compare the respective performance and energy efficiency

of the edge server and the P2P networks under multiple configurations. Figure 3.6 shows

the similar trends as in the image processing service above, indicating that our schedul-

ing algorithm allocates the optimal number of devices to maximize the performance and

minimize the energy consumption.

Figure 3.6 shows the similar trends as in the image processing service above, indicating

that our scheduling algorithm allocates the optimal number of devices to maximize the

performance and minimize the energy consumption.
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Fig. 3.6: Word-counting: execution time and energy consumption.

Figure 3.7 evaluates the accuracy of Algorithm 1 by comparing its output with the

actual measured performance numbers, summarized in Figure 3.6. The graph shows that
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the two lines follow the same trend, indicating that the algorithm approximates the actual

performance with an acceptable level of accuracy.
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Fig. 3.7: Comparison of the estimated versus actual execution times in word counter test.

Internet Sharing Service

Next, we study the Internet sharing service, an example of sharing the nearby devices’

computing resources, including networks, files, sensors (e.g., GPS, motion, environmental

etc.). We design the Internet sharing service to distribute requests including URL, n – the

number of devices in the cluster, and index – the index of a device. Each device (including

the client) downloads the HTML text contents of a web-page from the URL, collects its

resource URLs (images, audio, videos etc.) and downloads a batch of URLs according to

its index position of n devices.

In this experiment, we assume that only one device, lacking Internet access, sends the

same content-downloading request to an edge server or a cluster head. The first two bars in

Figure 3.8 show the total execution time measured at different devices when connecting to

the edge server, while the next five bars show the total execution time on each mobile device

when connecting to different cluster heads. To show how dissimilar resource capacities lead

to different performance characteristics, we configured our testbed to sequentially select

different devices as the cluster head for each experiment. Unlike the first two bars, which are

almost the same, the cluster heads have dissimilar resource capacities, with their respective
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performance levels fluctuating in the wider range between 37 and 42 seconds, being obviously

slower than the edge server.
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Fig. 3.8: The edge server versus P2P-based service execution in internet share test.

Failure handling

As discussed in Section 3.3.3, our failure handling mechanism can switch the remote

execution back and forth between the edge server and the P2P network in response to

the edge server becoming unavailable and available again, as well as the network getting

disconnected and reconnected. We evaluate the efficiency and effectiveness of our failure

handling mechanism by implementing a word counting service, a well-known use case of

multi-processing setups, such as Apache Hadoop.

The word counting service searches for 50 most frequently used words from a textbook.

First, a client loads the entire text from a book and attaches it to the request message. Then,

a broker finds the number of available workers, divides the text into the same number of

parts, and sends them to the workers.

Switching to a P2P network

First, we enable the edge server, so that the client can offload the word-count service

normally there within 4.3 seconds (Figure 3.9). Then we repeat the test but shut the edge
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server down at the 3rd second; then the client detects the system failure at around the

5th second (the timeout for failure detection is 3 seconds) and immediately initiates a new

offloading session to the P2P network. The P2P collaboration returns the result within 23

seconds, and the total process takes around 29 seconds. From this moment, if we offload the

service again, the offloading will be dispatched directly to the P2P and completed within

around 23 seconds.

Fig. 3.9: Execution time of the word count service measured in 3 different cases.

Edge server restoration

In this experiment, we observe and examine how our system behaves in consecutive

scenarios: (1) run normally on the edge server, (2) detect failure, (3) switch to P2P, and

(4) restore back to the edge when the network reappears. To this end, we use the same

test-bed as in the above experiments, thus enabling the client to offload a number of service

requests; then we measure the total time of each request at the client. In this test, the

client delivers three different services: empty, word-count, and image processing (the image

processing service is discussed in Section 3.4.2).

Figure 3.10 depicts the overall performance of our system in each type of service requests

with a number of continuous attempts. Particularly, in the case of word-count service, the
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Fig. 3.10: System performance when requesting multiple services.

first 4 requests are resolved by the edge server within 4.3 seconds. During the 5th request,

the edge server is shut down, with the client immediately detecting this event and switching

to the P2P execution mode, completing the request in 29 seconds. After that, the upcoming

requests from the 6th to 9th requests are resolved by the P2P configuration in 23 seconds

on average. When the edge server comes back, the client reestablishes the connection and

pushes the 10th and subsequent requests to the edge, thus reverting to the original normal

execution mode.

3.4.3 Discussion

Our approach offers a number of advantages and has several limitations that we discuss

in turn next.

Advantages

Mobile edge services serve as building blocks, enabling application developers to design

mobile applications that take advantage of the complimenting strengths of nearby devices

from the resource provisioning perspective. In other words, developers can orchestrate the

execution of an application’s functionalities on the devices whose resources are the most

suitable and abundant for given execution tasks.

This software architecture eliminates the need to accept executable code from nearby
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devices by introducing a trusted third-party intermediary. The introduction of the interme-

diary component increases the trustworthiness of the distributed execution model. However,

for this intermediary component to become widely applicable, multiple stakeholders in the

technology will need to come to an agreement, which may be hard to accomplish.

Once a service is downloaded to a mobile device, the Internet connection is no longer

required, making it possible to execute mobile services in environments with limited or

intermittent wide-area networks. In fact, this architecture can increase the utilization of

nearby mobile devices in such execution environments.

Finally, the ability to address resource scarcity makes this architecture potentially suit-

able as a solution for orchestrating the execution of IoT setups, in which each participating

device is known to posses specialized unique functionality (e.g., sensing, media capture,

etc.) while lacking general hardware or software resources.

Limitations

The trustworthiness of mobile edge services hinges entirely on the reputation of the

trusted intermediary component, thus restricting this distributed execution model to envi-

ronments that provide such trusted components. In addition, the high dynamicity of the

mobile context increases the risk that no suitable nearby device may end up being avail-

able for executing a service with a specified set of requirements. To defend against these

risks, mobile developers need to provide back-up options for executing services, either with

relaxed QoS requirements or using the local resources.

Since one cannot predict what platforms will be run by the available nearby devices,

service developers have no choice but to provide multiple versions of their services, equipped

to run on all major platforms. This design feature increases the developer workload, even

though JavaScript execution may provide a reasonable cross-platform solution.

3.5 Related Work

The work presented here is related to other complementary efforts that improve the

reliability and efficiency of mobile distributed execution, including frameworks, peer-to-peer
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networking, code migration, and computation offloading.

Alljoyn5 is an open source framework that hides the complexity of network communi-

cations for application programmers. By providing interoperability between multiple plat-

forms without any transport layers, Alljoyn makes the integration and initiation of network

communication easy and straightforward. Before the Wi-Fi Direct, many efforts have fo-

cused on optimizing peer-to-peer network based on existing short-range/wireless communi-

cation technologies available on mobile devices including Bluetooth, Wireless IEEE802.11

and cellular communication link [67,68].

In the category of wireless-based P2P communication, before the Wi-Fi Direct tech-

nology, several efforts utilized other wireless communications to establish P2P networks,

such as media sharing system sin urban transport using Bluetooth [69], resource sharing

using cellular networks [70], and radio resource sharing over ultra-wideband [71]. Built on

top of Wi-Fi P2P, Rio [43] leverages I/O system devices to capture and share contents and

resources between the existing applications running on different devices without any mod-

ification. Some of their applications are multi-system photography and gaming, singular

SIM card for multi-devices, music and video sharing.

Another related work direction is code migration to update existing, legacy systems [72].

Similar to our approach, code migration mechanisms are mainly used to run code in different

memory spaces (e.g., running C++ code on multi-core systems [73], running JavaScript code

on a server [24], object-level migration for distributed systems [51], thread-level migration

through middleware [52]). These code migration approaches have influenced the design of

offloading mechanisms in the mobile computing area.

Finally, our work shares objectives and techniques with execution offloading [3,74], well-

known mobile application optimizations that execute the resource-intensive functionality

at cloud-based servers to avoid draining the mobile device’s battery. In this paper, we

generalize these offloading mechanisms using two different distributed execution models—

client/server and peer-to-peer communication models.

5https://allseenalliance.org/framework

https://allseenalliance.org/framework
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3.6 Future Work and Conclusion

As a future work, we plan to explore additional diverse failure handling mechanisms

by exposing them as reusable components, activated in response to the underlying system

behaving abnormally, based on our prior work on hardening remote services with network

volatility resilience [75].

In this paper, we present a service middleware architecture and reference implemen-

tation that execute services reliably and efficiently on available devices, both mobile and

stationary, accessed via self-adaptive communication channels. Our solution centers around

the characteristics of highly dynamic and volatile environments, in which the network con-

nection between the devices forming the edge cloud is intermittent. The presented solution

automatically detects and handles partial failure of the network, by switching between

client-server and peer-to-peer mobile edge execution modes. Our experimental evaluation

shows that our solution enables resilient and efficient mobile edge execution over unreliable

networks, typical of highly dynamic and volatile environments, heretofore not supported by

edge clouds.
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CHAPTER 4

ENABLING FLEXIBLE AND EFFICIENT REMOTE EXECUTION IN

OPPORTUNISTIC NETWORKS THROUGH MESSAGE-ORIENTED MIDDLEWARE

[7] 1

4.1 Abstract

Computation offloading has received much attention to improve the performance or

energy efficiency of mobile systems that have usually limited and constrained resource ca-

pacities. Yet, applying the computation offloading technique in opportunistic networks that

are highly dynamic and often become volatile still remains a challenge due to the following

reasons: (1) technical difficulties in constructing efficient and reliable execution environment

using commodity devices using WiFi, (2) a lack of runtime support for multiple clients that

request diverse computational tasks and execute them concurrently with minimum perfor-

mance impacts. In this chapter, we introduce a new middleware system that provides an

offloading framework operated in opportunistic networks. In particular, our middleware

employs a publish-subscribe communication mechanism to provide multiple different com-

munication models (e.g., one-to-one, one-to-many, many-to-one, and many-to-many) for

different use cases. Furthermore, when distributing computational tasks to nearby nodes,

our middleware takes their resource capabilities into consideration for efficient execution.

Finally, since partial failure is an unavoidable artifact in highly dynamic and volatile op-

portunistic networks, we provide a simple, but effective failure handling mechanism. Our

benchmarks and experimental results indicate that our approach enables programmers to

easily apply computation offloading techniques in opportunistic networks when compared

with the local execution.

1Minh Le, Young-Woo Kwon @ COMPSAC 2017
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4.2 Introduction

Despite the significant development of mobile devices, the resource demands of mobile

applications often outstrip the hardware capacities of mobile devices. One approach to ad-

dress the resource constraint problem is computation offloading—executing CPU-intensive

functionality at a powerful cloud-based server, thereby improving both performance and en-

ergy efficiency [4,74,76]. While the computation offloading technique has been well studied

in the field of mobile cloud computing in which powerful servers and fast, stable network

connection are mostly available, applying them in opportunistic network that are highly

dynamic and often become volatile still remains a challenge.

Recently, the WiFi Direct (WFD) technology has received much attention in distributed

systems and mobile computing utilizing opportunistic networks in closed ranges where In-

ternet is unnecessary [43, 44]. The WFD technology allows a mobile device to discover

nearby ones and establish connections between them using an ordinary WiFi protocol with-

out a WiFi infrastructure such as an access point (AP). However, the current studies are

mostly limited to data distribution among clients [44]. Furthermore, due to the limitation

that a wireless network organized through WFD only provides 1-to-1 and 1-to-N communi-

cations, despite its convenience it has been less utilized in computation offloading or remote

execution. In particular, multiple connections between devices is generally unsupported by

default [29]. As a result, to achieve flexible and efficient communications between devices in

a WFD network (i.e., P2P network), a programmer must deal with complex network-related

programming.

In this chapter, we address the following research problems to enable computation

offloading in a small, volatile wireless network with no necessity of powerful computing

resources.

• How can one efficiently offload its software functionality to nearby mobile devices

without changing network configurations?

• How can the participants of a P2P newtork deal with network or service failures?
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• How can programmers easily construct a peer-to-peer network between nearby devices

for their applications?

To that end, we first provide a middleware system that can construct different types

of networks using the WFD technology. Then, we build our computation offloading infras-

tructure on top of the newly developed middleware system. To support multiple message

delivery models, we extend message-oriented middleware (MOM) that can construct a flex-

ible and reliable peer-to-peer (P2P) network using the WFD. In particular, we employed a

broker from traditional publish-subscribe middleware, so that any mobile device in a P2P

network can initiate communications through a broker (i.e., any mobile device can offload

a job without reforming a P2P network at the same time). The broker monitors the re-

source usages of all network participants and manages job request/response queues on each

device for job distribution. To fairly distribute computation units (i.e., job in this chapter)

to P2P network participants, our approach takes their hardware resource capacities into

consideration to determine the appropriate amount of job. Moreover, our middleware im-

plementation can be used as a general-purpose communication middleware. Finally, due to

the volatile and dynamic characteristics of wireless networks, any mobile device may leave a

peer-to-peer network at any time; a network can be destroyed; and transmitted data can be

damaged or lost. Thus, we provide a simple recovery mechanism for partial failures. This

chapter makes the following contributions:

• Flexible and reliable communication infrastructure: The newly developed mid-

dleware allows programmers to easily develop an application that requires various

communication mechanisms in a volatile opportunistic network.

• Efficient task allocation algorithm: We introduce a resource-based task allocation

algorithm to optimize the execution of offloaded tasks and reduce their impacts on

mobile devices.

• Empirical evaluation: We evaluate the effectiveness and efficiency of our approach

through a series of benchmarks and case study applications.
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The rest of this chapter is organized as follows. Section 4.3 describes the technologies

we used. Section 4.4 presents our approach. Section 4.5 empirically evaluates our approach.

Section 4.6 compares our approach and other closely related approaches, then we conclude

our work in Sections 4.7.

4.3 Background

WiFi Direct (WFD)

The WiFi Direct technology is a new peer-to-peer standard built on top of the IEEE

802.11 to provide direct connections between Wi-Fi devices without an Internet connection

[77]. Over a Wi-Fi network, a device can discover and connect to other devices of any

type without special configurations or setups. Once a connection is established, the devices

can communicate with each other as a Client or a Group Owner. Wi-Fi Direct has been

widely used to transfer content or share applications between the nearby mobile devices.

Our approach uses Android WiFi Direct2 to utilize nearby computing resources without an

Internet connection or a wireless router.

Message-oriented Middleware (MOM)

In distributed computing, MOM has been widely discussed [78] and there are various

implementations for cloud or mobile systems such as ZeroMQ [79], RabbitMQ [66] or Ac-

tiveMQ [80]. Since MOM supports multiple messaging paradigms including point-to-point,

fan-out, publish/subscribe, request/response, its implementations have been used for vari-

ous systems, especially for server applications. Offloading a local execution unit to nearby

devices in an opportunistic network requires different execution models for different appli-

cation scenarios or network constructions. As a result, to provide a flexible and reliable

offloading infrastructure, we adopted message-oriented middleware, so that a programmer

2Android: WiFi Peer-to-Peer, http://developer.android.com/guide/topics/connectivity/

wifip2p.html

http://developer.android.com/guide/topics/connectivity/wifip2p.html
http://developer.android.com/guide/topics/connectivity/wifip2p.html
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can choose an appropriate messaging paradigm for different applications. As a reference

implementation, we extended ZeroMQ3.

4.4 Approach

In this section, we present our middleware system that supports reliable and efficient

computation offloading and message delivery in a volatile wireless network.

4.4.1 Architecture Overview

In opportunistic networks relying on WFD or Bluetooth, multiple connections among

devices is generally unsupported by default [29], thereby making it impossible to initiate

computational offloading requests from different devices without changing a network topol-

ogy [1]. Specifically, a group owner can only send a message to all group participants (i.e.,

1-to-n communication), while group participants cannot exchange messages among them-

selves (i.e., n-to-n communication). As a result, a mobile device needs to re-construct a new

peer-to-peer network for every single communication. Thus, from our prior work [5], we

identified the following technical challenges to achieve efficient and reliable computation of-

floading in a peer-to-peer network: (1) offloading jobs or delivering messages among nearby

mobile devices without changing their network configurations and (2) handling network or

service failures in intermittent or disconnected networks.

To that end, we designed a topic-based publish-subscribe middleware that consists of

the following components: Broker, Worker and Requester. Figure 4.1 shows the system

architecture of our middleware system. In the following discussion, we explain our middle-

ware system with a focus on computation offloading, and then discuss how our approach

can be generalized for other application development. First, Requester (which is a con-

sumer in a typical pub-sub pattern) sends a job request message to the Broker which then

divides the request into smaller tasks and disseminates each to one Worker (or publisher

in pub-sub) to execute. The Worker executes task and returns a result back to the Broker.

3We have experimented with RabbitMQ and ZeroMQ for our reference implementation and then selected
ZeroMQ because of the performance and the ease of modification.
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Fig. 4.1: System architecture.

To send a complete result back to the Requester, the Broker merges all the partial results

received from the assigned Workers. In this workflow, the Requesters can start sending job

requests simultaneously at any time, and then the Broker schedules job executions as soon

as Workers are available. Figure 4.2 describes the details of the aforementioned workflow.

In addition, because the three constituent components are installed on every device, they

can dynamically switch their roles in accordance with the need for network topology changes

(e.g., in case of network failures).

4.4.2 Flexible and Efficient Group Organization

By the decentralized design, our middleware can be deployed as various combinations

of components to form a different network topology. For example, a device can host two

Workers running on different threads, or both Requester and Worker to easily switch its

role. To that end, we provide two group models—brokerless and broker-enabled model. In

the following discussion, we describe each model in turn.

Brokerless group

The bokerless group (i.e., 1-N group, Figure 4.3-left) comprises of all three components,

but a Requester and a Broker are installed on the same Group Owner (GO) device. Because

in a WFD network, one client cannot establish multiple connections to different GOs directly
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at the same time [13, 29], the Brokerless group is only useful when a network doesn’t need

to change; an application needs to be run fast; a programmer wants to simply configure

point-to-point, fan-out and request-response patterns.

P

S

S

P

S

S

B

S

P

B

R

R

W

W

W

R

W

W

Fig. 4.3: Brokerless and Broker-enabled models.

Broker-enabled group

The broker-enabled group (i.e., N-N group, Figure 4.3-right) requires a Broker to be
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installed on the GO device. This model enables flexible network topology, where multiple

Requesters and Workers are able to easily join or leave a group at run-time as well as

exchange messages in a parallel fashion. As a result, a programmer can easily configure

request-response and publish-subscribe patterns in a peer-to-peer network. However, the

broker-enabled group has the following limitations: (1) one device must be dedicated as the

Broker as long as the group endures, (2) because only one Broker is allowed at a time, the

Broker may become a performance bottleneck, (3) if the Broker goes down for any reason,

a group needs to be re-constructed.

4.4.3 Remote Job Execution

For efficient execution, we introduced Device Responsiveness Level (RL) which is a

value representing resource information of mobile device. It is directly proportional to the

resource capacities (number of cores, CPU speed, total memory and battery) and their

percentage of remaining. In our first implementation, we only consider CPU information

as the main factor to the RL value and compute RL as follows:

RL =
∑

i=1,N

CPUi ×RPi (4.1)

where N is the number of CPU cores, CPUi is the clock speed of CPU i in GHz and RPi

is the remain percentage of CPU i. Obviously, the higher value of RL means the greater

computation availability of the peer. The actual clock speed of each CPU in the Equation

4.1 can be simply estimated on worker device by extracting from cpuinfo max freq 4 system

file; and the available percentage of each CPU can be inferred accordingly from /proc/stat

file as follows:

RPi = 1− (
∑
TAct2 − TIdle2)− (

∑
TAct1 − TIdle1)

(
∑
TAct2 −

∑
TAct1)

where
∑
TActx and TIdlex (x = 1, 2) are the total active time and idle time in two consec-

utive inquiries on device i.

4Located at: /sys/devices/system/cpu/cpu0/cpufreq
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Job Partitioning

Next, for the efficient offloading, a Broker divides job data into N pieces which are

proportional to RL values, so that each task has the size Mi as follows:

Mi = M
RLi∑

j=1,N RLj
(4.2)

where M is the total size of data in bytes, N is the number of available Workers, and j-device

has its RLj value respectively. Then, the Broker creates N tasks, each of which is a replica

of the original message except for the partial data with Mi size and dispatches them to the

Workers.

Support for Multi-Clients

To support multiple job requests from different clients, we provide a simple job sched-

uler on the Broker as follows: the Broker keeps two queues (1) a request queue holding

incoming requests and (2) a result queue holding results returned from the Workers. The

Broker periodically checks the request queue. If the queue is not empty, the Broker pops

out the first item and collects status of the available Workers. If the remaining resources

of the available Workers are not sufficient, the Broker postpones the corresponding request.

Otherwise the request is processed. This procedure continues until there are no items left

in the queue.

Each Worker also has the request and result queues to handle multiple task executions.

When a task request is popped out from the queue, a Worker dedicates a separated thread

to execute that task. When the task is successfully executed, the result is stored in the

result queue and then sent back to the Broker.

Job Execution

Job and data needs be wrapped into a single package which is serialized to binary

and put into a field of the request message. In our reference implementation, a package

is compiled into DEX files and put into the JAR package. When receiving the package, a

Worker deserializes and loads it using DexClassLoader from Android SDK.
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4.4.4 Estimating Execution Time in Multiple Requests

Next, we build a simple estimation model to theoretically evaluate the performance

of the system in both synchronous and asynchronous modes by comparing with the local

execution measured on the starting device (Requester). To avoid complex cases, we assume

dispatching a job with simple linear algorithm interacting solely with attached data without

requesting any external hardware resources.

Single execution

Assume that a Requester installed on the device that has resource capacity RLC (con-

stant - measured before the execution), runs the job J having data processing speed γ

(bytes/sec) locally on data with size MJ in total time TJ . The data processing speed γ is

previously measured by running J on the device in a perfect condition (e.g. device is idle).

By considering these parameters: γ, MJ and RLC for each job on each specific device, we

observe that TJ is proportional with MJ and inversely proportional with RLC and γ, in

other words:

TJ =
1

γ
(
MJ

RLC
) (4.3)

If we offload the job J to the P2P network with serve of N Workers (N ≥ 1), the

total execution time would be the sum of execution time of the slowest Worker, as they

are working parallelly, plus the time data traveling between the devices in both directions

and overhead time at the Broker. Regarding network transmission, our results in Figure

4.5 and [81] reveal that transmission time is linear with the amount of traveling data.

Particularly, the transmission time would be TNet = MJ
α where α is the speed of WFD

(bps) at the moment. Since the job request and data must travel in the network from

the Requester to Broker, Broker to Workers and be back, it would take totally 4TNet for

transmission time if we consider the same amount of the results. Finally, if we assign H to

the overhead time at the Broker, the total remote execution time T ′J can be estimated as

follows:



62

T ′J = max
i=1,N

{ Mi

γiRLi

}
+H + 4

MJ

α

By combining with Equation 4.2 and set SRL =
∑

i=1,N RLi we have:

T ′
J =

MJ

SRL
max
i=1,N

{ 1

γi

}
+H + 4

MJ

α
(4.4)

According to the strategy in Section 4.4.1, since we only select the Workers having

better RLs than the Requester’s, therefore RLi ≥ RLC ,∀i = 1, N , so SRL =
∑

i=1,N RLi ≥

N ×RLC . Also, in the perfect condition where all the Workers are fully dedicated for one

job, we can consider γi ≥ γ,∀i = 1, N . By applying to Equation 4.4, we have:

T ′
J ≤

TJ
N

+H + 4
MJ

α
(4.5)

From this equation, if we can offload a job with very small amount of data (e.g. sorting-

list job, array data 1KB) on 3 available Workers (N = 3), we can consider the network

transmission time and Broker’s overhead is insignificant, then we obtain remote execution

time T ′J '
TJ
3 which is 3 times faster than local execution.

Multiple executions

According to the Equation 4.3, if we start M jobs synchronously on M Requesters, the

total time would be:

∑
i=1,M

TJi =
∑

i=1,M

1

γi
(
MJi

RLCi

) (4.6)

If we offload all these jobs to the Broker and assume that they are resolved immediately

by the Broker, they will be executed simultaneously and the total time to run all of them

would be:

∑
i=1,M

T ′
Ji

= max
i=1,M

{ MJi

γiSRLi

}
+
∑

i=1,M

(Hi + 4
MJi

α
) (4.7)
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Where Hi is the overhead the Broker must pay to pick and forward the request #i to the

Workers, Ni is the number of Workers participated in resolving the request #i. By applying

the same analysis as in Equation 4.5, we have:

∑
i=1,M

T ′
Ji
≤ max

i=1,M

{TJi

Ni

}
+
∑

i=1,M

(Hi + 4
MJi

α
) (4.8)

4.4.5 API Usage Scenario

Distributed application programming often terrifies the average developer with hetero-

geneity of components and technologies, especially in mobile platforms. Therefore, simpli-

fication of programming model for easy integration to applications is always a mandatory

requirement.

new Requester ( th i s , IP ){
@overr ide
pub l i c void messageReceived ( i n t type , byte [ ] msg){

switch ( type ){
case TASK INFO:

writeLog ( ( S t r ing )msg ) ;
case TASK DONE:

displayBitmap ( ( Bitmap )msg ) ;
}}

@overr ide
void send ( ){

Job jobDef = new JobImpl ( ) ) ;
byte [ ] data = loadDataFromFile ( dataPath ) ;
JobMessage msg = new JobMessage ( jobDef , data ) ;
msg . addDataParser (new DataParserImpl ( ) ) ;
sendJob (msg ) ;

}} . execute ( ) ;

Code Snippet 4.1: Overriding and initiating Requester

Upon adopting our middleware library, developer can easily integrate these components
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into their applications and initiate the system. As we discussed before in Section 4.4.1, our

middleware enables multiple network topology by using different combinations of the the

components, for example, the simplest form can be illustrated as in the Figure 4.1. Assume

we are building a collaborative network including 6 mobile devices connected in one WFD

network. First of all, we integrate all Broker, Worker and Requester components into the

application because the role of each device will probably change if network changes, the

device can firstly play role of Requester and later Broker.

Since Broker and Worker are the prebuilt components, which only require the simple

initiations, developer only needs to override the Requester class to define what to offload

and how to handle result (Listing 4.1). Particularly, the messageReceived() method must

be overridden to listen to the messages including system information under TASK INFO label

and task results under TASK DONE label, where msg contains the detailed messages or result

data returned from Broker. Finally, developer overrides the send() method to define job,

data and dataParser respectively and calls sendJob to pack all the content into the JAR

package and dispatch to the Broker.

4.4.6 Failure Handling

In mobile opportunistic networks, connection failures between devices may happen at

any time due to the nature of volatile wireless network communications [82]. Therefore,

it is necessary to ensure that a job is executed and its result is successfully returned back

to a client. We distinguish two failure cases: (1) a failure happens on a Worker and (2) a

failure on a Broker. Then, we designed the Signal Server module running on a Broker and

Signal Client running on the both Requester and Worker to exchange status signals. Once

a Requester and Workers are connected to a Broker, they open a signal communication

channel to exchange their status. By default the update status is exchanged every 10

seconds5.

The Signal Server module on the Broker stores the list of Workers for further reference.

If a device doesn’t receive any signal during the timeout period, its peer could be lost. If

5this property can be updated at the system initiation
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the Worker is disconnected, it will quickly terminate all current executions and connections

and turn into the waiting state. Meanwhile, the Broker detects the Worker’s failure, finds

the tasks with the similar Worker ID, and runs the failed job locally. Furthermore, the

Broker also removes the Worker having the similar Worker ID from the Worker list. In the

second case, if a failure occurs on the Broker, it removes all the related jobs and connec-

tions. Meanwhile, all the peers including Requesters and Workers terminate corresponding

connections with the Broker and turn themselves into the waiting state. In this case, the

Requesters simply executes the failed jobs locally.

4.5 Evaluation

We have evaluated the effectiveness of our approach through micro-benchmarks and

a realistic case study. The testbed for experiments has been built up with various An-

droid devices featuring WFD and one server for comparing with performance of traditional

approaches. Table 4.1 shows the mobile devices and a PC used in the experiments.

Table 4.1: List of devices used in the experiments in chapter 4.

Device CPU RAM Battery OS
Moto G4 Octa 1.5GHz 2GB 3000mAh 6.0.1
G4 Quad 1.5GHz 3GB 3000mAh 5.1
Asus ZF2 Quad 1.7GHz 3GB 2400mAh 5.1
BLU R1 Quad 1.3GHz 1GB 2500mAh 6.0
S3 Quad 1.4GHz 1GB 2100mAh 4.4
Dell PC i7 3.6GHz 8GB N/A Win10

4.5.1 Micro Benchmarks

We measured the system overheads such as network initialization time and message

transmission/processing time through a set of micro-benchmarks.

Discovery Phase

First, a WFD-enabled mobile device needs to search nearby devices by scanning avail-

able devices. Since the peer discovery phase is mandatory for communications [29], we

measured the impact of the discovery process on each device. Figure 4.4-Top shows the
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average time that each device discovers nearby devices. According to the results, it takes

a few dozens of millisecond, particularly: 10ms on G4, 19ms on Asus ZF2 and 14ms on

Galaxy S3, which are considerably short compared to the overall execution time.
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Fig. 4.4: Average discovery and connection establishment time.

Connection Establishment

After the discovery, the two devices start a negotiation to ordain one to become a group

owner (GO) [5]. The GO will take the role of a virtual AP that initiates DHCP to allocate

a client IP to the connecting devices and forms up a group.

Due to the complexity of establishing connection, mobile devices have to spend much

more efforts for this process than the discovery. Figure 4.4-Bottom shows the variability of

connection initiation time on three devices when connecting to the same GO; the average

time on G4 is 1024ms, on Asus ZF2 is 1822ms and 5680ms on Galaxy S3, respectively.

Then, we experimented with WFD-related processes including the peer discovery and
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connection establishment phase. Since the peer discovery and connection establishment

phases are mandatory for a peer-to-peer network, we measured the impact of these processes

on each device. Figure 4.4 shows our experimental results. In particular, the discovery phase

normally took 10—20ms on most devices, while WFD connections were established within

1—2seconds on high-end devices (e.g., G4, Asus ZF2, etc.) and 3—5 seconds on low-end

device (e.g., Galaxy S3, Blue).

Message Dispatching Time

Next, we measured the message delivery time that greatly affects total execution

time and energy consumption in accordance with different network conditions such as de-

lay/bandwidth characteristics and signal strength. For the experiment, we pre-installed the

middleware system on three devices. One device hosted both the Requester and Broker, and

the others operated as Workers. For accurate measurements, we firstly synchronized the

clocks of all the devices using a NTP server, then recorded timestamps on each device. As a

benchmark application, we implemented a benchmark program where the Requester simply

sends out a message (i.e., job definition) to these Workers through the Broker and then

each Worker returns an acknowledgment back to the Requester. Figure 4.5 shows the in-

cremental distribution time among the devices when sending packages with sizes increasing

from 1KB to 1.5MB.

Middleware Overheads

To estimate the overheads of our middleware implementation on top of ZeroMQ library,

we compare its performance with ZeroMQ’s performance by measuring the round-trip time

of various size data packages traveling from the first device to the second and third ones

and back. The total time is calculated as the sum of processing time on each device plus

the transmission time. According to the Figure 4.6, the overheads of our implementation

fluctuate from 21 to 33% more when sending packages with sizes increased from 1KB to

1MB.
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Fig. 4.5: Time when sending various jobs to multiple devices.

4.5.2 Case Studies

In this section, we evaluate our approach through two case studies: Image processing

and Failure Handling.
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Video Sharing

The previous benchmarks show that our middleware can send 100KB message in ap-

proximately 100ms, thus technically we can stream video at acceptable frequency of 10fps

with each frame contains 100KB of data.

In this application, we will stream an MP4 video file from one device to the others.

FFmpeg Media Metadata Retriever library (FMMR) 6 is embedded to extract frames out

of the video every 100ms to reach the speed of 10fps (Figure 4.7).

Theoretically, by integrating our middleware with above FFmpeg-supported library, it

is possible to stream video data from any sources: Youtube, Vimeo or capture devices.

Image Processing

In this experiment, we implemented a simple image blurring application whose function-

ality implemented using Gaussian convolution was executed remotely. For the experiment,

we first started a Requester sequentially on each of the two devices—low-end device (BLU)

and high-end device (LG-G4). For each case we deployed consecutively one to four Workers

to see how system compares and selects the appropriate Workers. According to the results

that depicted in the Figure 4.8, if the job is offloaded from the BLU, all 4 Workers are se-

lected and they help improve the performance up to 57% compare with the local execution.

6FMMR: https://github.com/wseemann/FFmpegMediaMetadataRetriever

https://github.com/wseemann/FFmpegMediaMetadataRetriever
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Fig. 4.7: Sharing video across mobile devices

Meanwhile, if the job is offloaded from the LG-G4, only the Moto-G4 and Asus ZF2 which

have better RL values are selected, and they help improve the performance up to 35%.
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Multiple Requests In the previous experiment, we observed the performance benefit of the

system in the synchronous mode where each job is only dispatched after the previous one

has been completed. In this experiment, we will test the system in asynchronous mode by

starting two Requesters at the same time to simultaneously send their jobs to the Broker.

Then, we compare the cumulative execution time of running two jobs in the two modes.

Figure 4.9-Top reveals that running two jobs in asynchronous mode help reduce the total

execution time from 40 to 48% in the networks with one to four Workers. Compared with

the result from Figure 4.8, it shows the average speed of running two simultaneous jobs is

very close to single job.

Unlike the result obtained from running two jobs, running three jobs in asynchronous

mode helps reduce execution time from 58-62% as shown in Figure 4.9-Bottom. The exe-

cution speed of running three jobs is also close to the speed of running one single job and

two asynchronous jobs; the leftover, as we noticed, comes from the system overhead when

it handles several jobs at a time.

Failure Handling

To evaluate our failure handling mechanism, we implemented a simple test application

with one Requester, one Broker and two Workers for two sub tests. In the first test, we

disconnect one Worker so that the assigned task can be executed on the Broker instead.

Then we measured the final execution time of the complete job at the Requester. In the

second test, we disconnected the Requester from the network and observed how our approach

handles the exception and recovers the execution locally.

Figure 4.10 depicts the difference between the three processes: (1) normal process

when all components collaborate successfully (yellow line), (2) failure handling process

when failure occurs on Broker (blue) and (3) when failure occurs on Worker (green). The

blue line reveals that the handling process takes longer execution time than normal process

since the Requester needs time to detect and cover failure from the network. However, in

this case the detection time only takes 1.7 seconds (timeout is set at 2 seconds) and the

failure covered by a local execution is immediately started within 2-300ms. When the failure
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Fig. 4.9: Compare the cumulative execution time of the system between synchronous and
asynchronous modes.

occurs on the Worker, it would take more time for the job to be done than the Broker’s

failure because the Broker must handle both failure detection and result transmission.

4.6 Related Work

Message-oriented middleware architecture such as ActiveMQ or DataTurbine [83] are

only suitable for the development of distributed systems on stationary servers, their ar-

chitectures and libraries are overwhelmed for the mobile network systems. Moreover, to

the best of our knowledge, none of the up-to-date middleware these days support for both

multiple remote execution delivery and device selection optimization on mobile networks.

There are a few similar attempt to address the compatibility problem. Fram [84], a

publish-subscribe middleware for opportunistic content distribution on both wireless ad-hoc

domain and wired Internet. It enables JMS-like simpler API and abstracts the heterogeneity

of networks including BLE, WiFi Aware and LTE-Direct from the applications. ICD2D [85],

implemented on NS3, is an information-centric device-to-device network which is distributed
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Fig. 4.10: Compare the normal process when all components work smoothly and when
failure happens in image processing test.

and requiring no centralized coordination.

Our research shares the interest in the domain of remote execution on mobile ad-hoc

network for performance enhancement. Serendipity [1] introduces a different job distribu-

tion algorithm based on PNP-blocks which each contains pre-process program to split input

data into multiple equal segments and allocate to the parallel tasks. However, the limit of

Serendipity’s approach is that tasks are equally offloaded to the nearby peers without con-

cerning about their capability, as well as lack of a novel mechanism for picking up some

appropriate devices for a specific remote execution because all devices are not always avail-

able at that moment. As the extension of Serendipity, COSMOS [86] provides computation

offloading as a service to mobile devices by efficiently managing cloud resources, allocating

and scheduling offload requests as well as risk control.
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Publish-subscribe architecture has a long history in distributed computing research

with multiple paradigms [78]. Many of them focused on different angles of the problem:

social network, network intermittent [87], mobility [88]. There are a few remarkable re-

searches on mobile networks: SocialCast [87] is a routing framework exploiting predictions

based on metrics of social interaction, which addressed the intermittently-connected hu-

man networks to improve performance and overcome high rates of mobility and long-lasting

disconnections.

By leveraging device-to-device communication on publish-subscribe pattern, our soft-

ware can serve for code offloading over multiple nearby devices without the need of Internet

connection. According to this, our efforts have made an improvement of previous works like

MAUI or COMET [3,4] which ordinarily address offloading to the cloud servers.

4.7 Conclusion

In this chapter, we introduced a new middleware system which employs multiple mes-

saging paradigms for computation offloading in opportunistic networks. In particular, we

utilized the publish-subscribe paradigm to support multiple clients and remote executions

concurrently. As a result, our system can flexibly allow any mobile device to offload code

to nearby mobile devices by adapting mutable topology. The experimental results imple-

mented in Android, show that our approach can effectively build a flexible and reliable

peer-to-peer network using the WiFi Direct technology.
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CHAPTER 5

JSREX: AN EFFICIENT JAVASCRIPT-BASED MIDDLEWARE FOR

MULTI-PLATFORM MOBILE PEER-TO-PEER NETWORKS

[8] 1

5.1 Abstract

Code offloading on mobile platforms has received much attention as a way of relieving

heavy workload by utilizing power of the other devices or cloud servers. The offloading

mechanisms rely on multiple platforms to be enabled on variety of mobile devices. To sup-

port platform heterogeneity, the execution code should be implemented in JavaScript and

executed on the designate devices by correspondingly compatible JavaScript engine. In this

chapter, we present a novel distribution mechanism with a built-in JavaScript execution

package, annotation processor and an engine to enable code offloading among the devices

and servers in peer-to-peer (P2P) networks. This approach includes a set of constraints

for code implementation so developers can easily integrate to their project. Our evalu-

ation, based on a testbed with Android and Windows Phone devices, demonstrates the

efficiency of offloading JavaScript-based packages on multiple devices, as well as compares

the performance between JavaScript and native versions.

5.2 Introduction

Along with rapid advancements in mobile hardware, mobile applications are becoming

more sophisticated and computationally intensive. Nevertheless, certain applications, like

those that attempt to do real-time speech recognition, image processing, language transla-

tion, or video rendering are facing a computational-resource scarcity problem. Furthermore,

1Minh Le, Stephen W. Clyde @ iiWAS 2017
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we believe that the growth of computationally intensive mobile apps will continue to out-

pace advances in mobile computing power. This means that the resource scarcity will likely

be an on-going challenge for the foreseeable future.

Li et al. address resource scarcity by offloading CPU-intensive computations to pow-

erful cloud servers [9]. However, this approach requires persistent network connections, can

incur cloud-related expenses [37, 89, 90], and is not suitable for wide-range mobility. An-

other approach is code migration within a mobile P2P network [91, 92], which allows one

device to offload certain software components (e.g., functions or classes) to remote devices

and to coordinate their execution via message passaging over WiFi-Direct 2, Bluetooth, or

NFC. Despite its flexibility, however, this approach struggles with platform heterogeneity,

a reality in today’s fast moving mobile-device market (See Section 5.6).

This chapter proposes a new approach for offloading computation that supports device

heterogeneity for a P2P code migration (See Figure 5.1). It consists of a middleware layer,

called JavaScript Remote Executor (JSReX ) that accepts requests from applications, then

breaks up them up into small self-contained jobs, and coordinates their executions among

multiple peer devices. Each job represents a computational sub-task and includes the neces-

sary code for its executing, a subset of the request’s overall data, plus meta-data for parsing

and interpreting the data (See Section 5.4).

To overcome the limit of the prior JavaScript-based approaches which are only ap-

plicable for mobile web applications [9, 24, 93–95], as well as support native applications,

we propose a new method that helps automatically convert native code (Java) portions

into JavaScript by declaring method-scope annotations. If a method is attached with our

annotation, its code will be translated into JavaScript during the compiling process.

In the next Section, we describe the technology that underlies our implementation.

Section 5.4 discusses key issues in architectural design and implementation of (JSReX ).

Section 5.5 provides an initial evaluation of JSReX based on a micro-benchmark and three

case studies that demonstrate its feasibility and efficiency on real devices with non-trivial

2http://www.wi-fi.org/discover-wi-fi/wi-fi-direct

http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
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application requests. Section 5.6 then provides some additional insight on related work and

Section 5.7 provides a conclusion with a statement about future work.

5.3 Background

In this section we describe three main technologies that we are going to use in this

chapter, WiFi-Direct, Code Offloading and Local Web Server.

5.3.1 WiFi-Direct

Wi-Fi Direct 3 is a certification mark for devices supporting a technology that enables

Wi-Fi devices to connect directly, making it simple and convenient to do things like print,

share, sync and display. WiFi-Direct allows devices to communicate regardless of access

point within longer distances (up to 200 meters) than the other technologies such as NFC 4

or Bluetooth as well as operate at much higher speed, 250mbps in comparison with 25mbps

of Bluetooth 4.0 and 424kbps as of NFC. Moreover, since WiFi-Direct is built on top of

3WiFi-Direct: https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
4NFC: https://www.androidpit.com/what-is-nfc

https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.androidpit.com/what-is-nfc


78

WiFi network interface, it is available on any WiFi-enabled device running Android 4.0 or

higher without requiring hardware support.

Wi-Fi Direct communication always occurs within a single group where one peer in

the group acts as Group Owner (GO) and the other devices become clients of GO. Such

roles within the group are not predefined, but are negotiated upon group formation. After

the GO is elected, the role of each peer remains unchanged during the whole group session.

Only when the GO leaves the group, the peers become disconnected and a new group must

be created [29]. Many studies take advance of WiFi-Direct to build low-level device-to-

device communications [43,44], while the other attempt to extend the distance limit of this

technology by employing group-to-group mechanism [29].

5.3.2 Code Offloading

Offloading is an opportunistic process that relies on remote servers or platforms to

execute code delegated by a mobile device. In this process, the mobile application has local

decision logic to detect resource-intensive portions of code (e.g. time- or CPU-intensive), so

given the current network condition the mobile application can estimate where the execution

of code will require less computational effort (remote or local) to enhance the performance

and save energy [91, 96]. Code offloading is generally categorized by the three questions,

what to offload, when to offload and where to offload. Several research address what to

offload by employing code profiler [97, 98] or annotations to define which portion of the

code to be offloaded. For the question when to offload, the middleware determines the

most appropriate time or whether to offload by comparing performance of the remote cloud

server versus local device based on the status information of many factors including network,

algorithm of the execution code or cloud’s and local device’s capabilities [90]. Finally, for

where to offload, one should be able to choose the best platform or server for a specific task

or know how to break the task’s logic into sequent execution parts to offload [99].

(JSReX ) addresses the question what to offload by adopting JavaScript-based execution

package for offloading code to facilitate multiple platforms. Specifically, for each common

platform, such as Android and Windows Phone, (JSReX ) includes a JavaScript engine that
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operates in conjunction with a local web server.

5.3.3 Local Web Server

There are several ways to load JavaScript (JS) code into the memory but the most

popular is using either (1) JS native compiler (e.g. Rhino 5) or (2) default web browser.

The benefits of the JS native compiler is the execution code will be loaded and parameters

are injected directly without going through a middle interface. However, according to our

evaluation, the speed of loading JS by this method on Android and Windows Phone is much

slower than by using the default web browsers (Section 5.4.4).

In contrast, loading JS code on a default web browser requires an external web server

to load a trigger HTML file which is stored on local storage, and this file in turn loads

the JS execution code. A local web server is an embedded HTTP server library that can

be integrated in applications to provide simple request/response services for the host. An

example of local web server is NanoHttpd for Android applications 6. By using a local

web server, a developer can avoid deploying a separated external web server to load HTML

and related resource files; place files to anywhere in the device’s local storage minimal

constraints; and avoid problems arising from firewalls or access controls.

5.4 Approach

(JSReX )’s design and implementation satisfy five important objectives: heterogeneity,

robustness, simplicity, reliability, and efficiency. For heterogeneity, JSReX ensures that

common devices, like Android or Windows phones, can join the network and execute jobs.

For robustness, it supports a board range of computational requests from virtually any

kind of mobile app and for any kind of data. Also, JSReX supports a variety of network

topologies, including closed-range and dynamic P2P networks, where devices don’t have

to be connected to Internet and can join or leave at any time. For simplicity, JSReX

makes it easy for app developers to integrate computational offloading into their mobile

5Rhino: https://github.com/mozilla/rhino
6NanoHttpd: https://en.wikipedia.org/wiki/NanoHTTPD

https://github.com/mozilla/rhino
https://en.wikipedia.org/wiki/NanoHTTPD
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Fig. 5.2: The major components of our middleware.

apps by allowing them to code request computations into a simple JavaScript template.

Finally, for reliability and efficiency, (JSReX ) utilizes standard communication protocols

and JavaScript engines.

5.4.1 Architectural Overview

Figure 5.2 shows the major components of JSReX. At the heart of the system are

Distribution Packages that represent either requests for remote execution or responses to

those requests, at either the application or job level. An App Request represents some chunk

of work that a mobile app would like to be done by its peers and an App Response is the

aggregated result from the peers. Similarly, a Job Request represents a sub-task for one

peer to execute and a Job Response is the result.

Every Distribution Package includes three items: an Execution File, Data, and Meta-

data. The Execution File is a JavaScript code snippet written by the application developer

following the template shown in Listing 5.1. By having the necessary computation imple-

mented in JavaScript, JSReX can enable a wide range of heterogeneous peers to volunteer
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to execute jobs. The data in a distribution package is either input or output data, depend-

ing on whether the package is a request or response. The Metadata describes the structure

and semantics of the data, enabling peers to parse and interpret the data as they execute

their jobs.

In general, a Package Manager handles both message sending and receiving processes.

It invokes a Data Stripper and Aggregator to break the App Request messages into smaller

blocks and calls the Dispatcher to deliver to the peers. In the destination device, the

Package Manager maintains a Receiver thread to receive incoming messages. A detailed

message workflow will be described in the next section.

5.4.2 Java to JavaScript Conversion

Developers working with native code (e.g. Java) may find it cumbersome to prepare

JavaScript execution packages. Therefore the prior approaches only emphasized web appli-

cations where they could offload JavaScript code directly. To address this issue, we employed

JSweet library 7 and proposed a method to convert Java code snippets into JavaScript using

annotations.

In the Java code, the developer places the @ToJS annotation before method prototype.

During compilation, the associated annotation processor will combine the middleware li-

braries (e.g. JavaScript Interface) to generate a JavaScript file containing converting

code of the method with conventional structure. Then, the developer will use the generated

JS file as an execution code input to create an App Request. This feature is very useful

for those who are unfamiliar with JavaScript, it also avoids being distracted by using JS in

Java native code.

5.4.3 Workflows

An application developer can integrate offloading of certain computations into a mobile

app by either implementing the computation in JavaScript, following the template shown

in Listing 1, or putting @ToJS on a method to get the JS file automatically. When using the

7JSweet: http://www.jsweet.org
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func t i on entry ( ){
i f ( window . j s I n t e r f a c e ){

var in=window . j s I n t e r f a c e . getParam ( ’ p ’ , ’ base64 ’ ) ;
. . .
var out=reso lveData ( in ) ;
. . .
window . j s I n t e r f a c e . r e turnResu l t ( out ) ;

}
}

/∗ main r e s o l v i n g func t i on ∗/
func t i on reso lveData ( data ) {

. . .
}

$ ( document ) . ready ( func t i on ( ){
entry ( ) ;

} ) ;

Code Snippet 5.1: A sample of JavaScript template.

template, the developer will implement the execution code in the entry() function, which

is will be started after JQuery 8 detects that the DOM 9 is fully loaded.

At the beginning of the entry() function, the compiler checks if an instance of JavaScript

Interface (Listing 5.2) has been initiated through the window.jsInterface object, this is

mandatory because the JavaScript Interface handles communications between the native

and JavaScript interfaces. If the jsInterface object is not available, the execution code

should be canceled.

To retrieve converted data from the native code, developer may call the function

getParam() by providing input parameters name and convert type. In the above example,

the value in will be assigned a value of parameter ”p”, encoded in base64.

After the code execution is done, the JavaScript will return results back to the native

interface through the function returnResult(). Finally, the last three lines represent the

8JQuery: https://jquery.com
9DOM: https://www.w3schools.com/js/js_htmldom.asp

https://jquery.com
https://www.w3schools.com/js/js_htmldom.asp
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pub l i c i n t e r f a c e J a v a S c r i p t I n t e r f a c e {
pub l i c S t r ing getParam ( St r ing name , S t r ing type ) ;
pub l i c byte [ ] r e a d F i l e ( S t r ing u r i ) ;
pub l i c S t r ing normalizeHtml ( S t r ing content ) ;
pub l i c byte [ ] getDataFromUrl ( S t r ing u r l ) ;
pub l i c S t r ing getTextFromUrl ( S t r ing u r l ) ;
pub l i c void loadLink ( St r ing ur l , i n t numOfParts , i n t index ) ;
pub l i c void re turnResu l t ( S t r ing r e s u l t ) ;
. . .
pub l i c i n t e r f a c e R e s u l t L i s t e ne r {

pub l i c void r e s u l t A v a i l a b l e ( S t r ing r e s u l t ) ;
}

}

Code Snippet 5.2: Functions of JavaScript Interface.

default entry point of JQuery which will automatically load the entry() function when

DOM is ready.

Sending a request

A mobile application can then have peer devices execute some piece of work by creating

an App Request containing this JavaScript file, the necessary data, and Metadata, and then

sending it to the Package Manager. The Package Manager will invoke the Data Stripper and

Aggregator module to analyze the request and create one or more Job requests, according to

the number of available peers, it will also create a placeholder for this request and store in

the Placeholder Map with an unique request ID. Then, the Package Manager distributes

those Job requests to peer through the Dispatcher, which in turn uses the WiFi-Direct

Manager for the actual network communications (Figure 5.3).

On each peer, a Receiver listens for incoming Job Requests and store them into a Ring

Buffer 10. When it is able to process a request, the JavaScript Interface pops the oldest

Job Request from the Ring Buffer and launches the Execution File, which in turn interacts

with a WebView to run the job.

10https://en.wikipedia.org/wiki/Circular_buffer

https://en.wikipedia.org/wiki/Circular_buffer
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Fig. 5.3: The workflow that sends a request to the destination device.

To load the Execution File, the WebView opens the Loader Package and loads the

trigger HTML file through the Local Web Server. While the HTML is loading, the necessary

JavaScript libraries such as JQuery and RequireJS 11 are headforemost loaded, then come

the execution file. The JQuery waits until the HTML load has been completed to invoke

the entry() function of the Execution File.

sd Figure S2 - Processing of Job Requests

: Web
Server

: Web
View

dBuffer : Ring
Buffer

rBuffer :
Ring Buffer

: Javascript
Interface

5: Insert(jResult) 4: CovertFromBase64(jResult)

2: ConvertDataToBase64(jReq)

3: Load(jReq) ->
jResponse : Job Request

1: Get() -> jReq : Job Request

Visual Paradigm Standard(Utah State University)

Fig. 5.4: The workflow that executes the remote task and return a result.

The JavaScript Interface converts job’s data into base64 string format and when it

11RequireJS: http://requirejs.org

http://requirejs.org


85

receives result back, it converts them back from base64 to the original format, i.e., a binary

format. Then, the result is packed in a Job Response and stored in the Return Ring Buffer

(Figure 5.4).

Returning a response

Figure 5.5 describes the response message flow from a remote peer back to the request

device. The Dispatcher on the peer periodically checks for responses queued in the buffer.

When a response is available, it will be popped out and sent back to the requesting device

via WiFi-Direct Manager. On the requesting device, the Receiver receives a Job response

and saves into its Return Ring Buffer. The Package Manager will pop the response, find its

ID and invoke Data Stripper and Aggregator to merge it to the corresponding placeholder.

When the placeholder is fully filled with all partial responses, its contents will be merged

into a App Response and this final response will be sent to the calling application through

a callback function.

sd Figure S3 - Returning Responses
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Fig. 5.5: The workflow that returns a result to the requesting device.

5.4.4 Run-time Considerations

Next, we discuss the (1) P2P communication, (2) template and metadata, and (3)

JavaScript execution. We also provide an overview of concrete implementation of JSReX
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on the Android and Windows Phone platforms.

P2P Communication

To enable P2P connections, JSReX includes a WiFi-Direct Manager module to wrap

up the default WiFi P2P feature. According to the WiFi-Direct standard [100], when

connection is established, one device will be assigned as the Group Owner (GO) and the

others will become clients (peers) of the GO’s group. Then, the WiFi-Direct Manager on

the GO will send status requests to the peers to collect information of them. One peer is

considered as unavailable if it has battery level less than 20% or CPU usage at 100%.

Message Format

A general message contains a Request ID. To distribute an App request message to the

peers, Package Manager breaks the message into a number of Job requests of which each is

a copy of the message with partial data. It also creates a placeholder in the Placeholder

Map with a key that is the Request ID (Figure 5.6). When a Job response arrives at the

requesting device, Package Manager will use its Request ID to open the corresponding

placeholder and fill it in to the appropriate position using its index in the metadata.

Data (M-size)

JS code
Metadata

Request ID

Data (M/n-size)

JS code
Metadata

Request ID

Data (M/n-size)

JS code
Metadata

Request ID

Data (M/n-size)

JS code
Metadata

Request ID

N Job Requests

…

App Request

Fig. 5.6: The workflow that executes the remote task and return a result.
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Metadata

To make data understandable for the automatic parsers on the response devices, dis-

tribution packages contain metadata that describe the structure and semantics of request

data. The metadata is captured in a JSON file, referenced by either a file path in the

package or an URL.

JavaScript Executor

To find an efficient ES5 compatible JavaScript engine on Android platforms, we em-

bed and compared several different approaches: Rhino 12 (1), NanoHttpD 13 (2) and An-

droidAsync 14 (3). Similarly, for Windows Phone platforms, we compared uHttpSharp 15

(4) and SimpleHttpServer 16 (5). All of the approaches, except Rhino, are essentially local

web servers with an integrated WebView.

Figure 5.7 summaries the performance of all 5 engines when offload the word counter

service (Section 5.5.2) on to a remote device. The Rhino JavaScript engine had the highest

execution time (lowest performance), but can be used directly without a WebView [101].

Based on these results, we selected NanoHttpD for JavaScript engine on Android platform

and uHttpSharp on Windows Phone.

 30000

 35000

 40000

 45000

 50000

1 2 3 4 5

Ex
ec

ut
io

n 
Ti

m
e 

(m
s) Word Counter

Fig. 5.7: Performance comparison of multiple JavaScript engines on Android and Windows
Phone platforms.

12https://github.com/mozilla/rhino
13https://github.com/nanohttpd
14https://github.com/koush/androidasync
15https://github.com/bonesoul/uhttpsharp
16https://github.com/jeske/simplehttpserver

https://github.com/mozilla/rhino
https://github.com/nanohttpd
https://github.com/koush/androidasync
https://github.com/jeske/simplehttpserver
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Figure 5.8 illustrates how JavaScript code is loaded by the default web browser. Firstly,

JavaScript Interface pops out an App Request, extracts and saves the JS file to the same

location with the Loader Package on the local storage. After that, it invokes the load()

function of the web browser to load the HTML file from the Loader Package. This makes

the browser send a HTTP GET request (in the format http: //host/load.html) to the

Local Web Server. The web server will resolve the URL in the request and search for the

HTML file in the Loader Package. This file includes a link of the JavaScript code, when

it is loaded the JS code will also be loaded into the memory. Finally, when the browser

completely executes the JavaScript code, it calls the returnResult() function to return

results back to the middleware.

Local 
Web 

Server
WebView

Loader Package

JavaScript Interface

Job Request
Job 

Response

Fig. 5.8: How JavaScript code is loaded by the default web browser and a local web server.

To support multi-threading, we maintain a number of browser instances (the default

number is 5 but it is customizable by a configuration file), each instance can resolve a

request concurrently.

Runtime Failure Handling

Due to the highly intermittent characteristic of P2P mobile networks, failures can
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occur at any portion of the system. In JSReX, the WiFi-Direct Manager handles the

system failures by exchanging status information between the peers over the detected status

channels. The request device saves the copies of all the Job Requests in the local Local Buffer

before dispatching. If a status channel fails for a peer, the Package Manager will find the

corresponding Job Request from the Local Buffer and execute it locally. Moreover, JSReX

uses a simple checksum mechanism to check data integrity. If package lost happens on any

peer, the Package Manager will execute similarly the corresponding Job Request locally.

5.5 Evaluation

We built a test-bed with real devices (Table 5.1) to evaluate the effectiveness of JSReX

through a micro-benchmark and case studies of three representative mobile apps and a P2P

network of heterogeneous mobile devices.

Table 5.1: List of devices used in the experiments in chapter 5.

Device CPU RAM Battery
LG Volt Quad-core 1.2GHz 1GB 3000mAh
LG Tribute Quad-core 1.2GHz 1GB 2100mAh
Moto G4 Octa-core 1.5GHz 2GB 3000mAh
BLU R1 Quad-core 1.3GHz 2GB 2500mAh
Lumia 550 Quad-core 1.1GHz 1GB 2100mAh
Dell PC Intel i7-4790 3.6GHz 8GB Wall-plugged

5.5.1 Micro-benchmark

To measure the overheads of the system, we offloaded an simple package which only

has remote devices to sleeps for 2 seconds, so computational costs were predictable [102].

Figure 5.9 shows the performance of the system in terms of distribution time when sending

a number of packages of varied sizes over the network. To isolate JSReX ’s overheads, we

performed this micro-benchmark on a P2P network with just two devices and removed the

2-second latency for the simulated computation from the timing measurements. The results

showed that JSReX takes about 80ms on average for the background processing of each

request. The rest of time is spent for data transmission over network and data conversion
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between the native and JavaScript code.
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Fig. 5.9: System overheads on two mobile devices when sending packages of varied sizes.

We also excluded the discovery and connection establishment phases since they are very

much dependable on device specs (Figure 5.10) and only involved in the system initiation

and recovery. Thereafter, in our experiments we assumed the network was connected and

only measured the total time starting from packaging (Tpack) on the requesting device,

sending/receiving over network (Tsend, Trec) and resolving (Tres) on the remote peers.

TTotal = Tpack + Tsend + Tres + Trec (5.1)

5.5.2 Case Studies

We integrated JSReX into several different mobile apps: image processor, word counter,

pdf-to-image and cloud offloading. For each app, we measured the total execution on the

requesting device, including all overheads, for multiple test cases and on P2P networks,

with differing numbers of devices. Then, we compared with the native versions of the same

apps to figure out where is the need of JavaScript. In the native version, we replaced the

JavaScript Execution File by an Android DEX format file 17 with the same workflow and

implementation. The DEX file could be loaded to memory by DEX Class Loader from

Android SDK.

17DEX Format: https://source.android.com/devices/tech/dalvik/ dex-format
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Fig. 5.10: Discovery time and connection time on different devices

Image Processor

This example app uses an image processing algorithm based on Gaussian Convolution 18

method to blur an image. The image is split into smaller parts by vertical cuts to distribute

to the peers. Each of the peers executes the code on the partial image and returns the

result to the requesting device (Figure 5.11).

We implement the Image Blur process in JavaScript and Java versions, Figure 5.12

reveals that the performance of both versions increase when adding more devices to the

network. Particularly, with a big image sample (with size 3900 x 3200) from 12% (2 device)

to 43% (4 devices) with JavaScript version and from 35 – 66% accordingly with Java version.

It also shows the native version always prevails the JavaScript, from 16% in the case of single

device up to 50% with 4 devices in the same configurations, however, the collaborations

using JS by 3 more devices perform better than the native version in a single device for at

18Gaussian Blur: https://en.wikipedia.org/wiki/Gaussian_blur

https://en.wikipedia.org/wiki/Gaussian_blur
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Data 
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Data 
Aggregator

Fig. 5.11: Image processing overview.

least 20%. With a smaller sample (2500 x 1500), we achieved the increment from 31 – 54%

and the performance of 2 devices is 23% higher than the native version on a single one (all

numbers are rounded).

The reason for that overhead in JavaScript is that we have to convert the image data

back and forth between binary and base64 formats and perform Gaussian convolutions on

base64 data which may take longer than on binary data. This is evident in the results,

because the performance difference between JS and native versions is really distinct on the

big sample (up to 37%), it’s only 16% on the small sample. Also, the process of loading

preliminary resources including the trigger HTML and JavaScript files somewhat delayed

the execution, however, according to our experiments this process only takes 30-50ms for

every execution, thus can be omitted.

Word Counter

The word counter uses a bruteforce algorithm to count the n most frequently appearing

words in an online document, where n is defined by the request app and captured in the App

Request ’s metadata. The algorithm examines every word except the stop words (articles,

conjunctions, etc.) and stores the number of word visits in a list. Finally, the algorithm
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Fig. 5.12: Compare the performance of the JavaScript and Native versions in image pro-
cessing test.

will sort the words by counting in a descending order, and then select and return the top

n words. For this app, each job package’s data will contain URL of the entire document,

each peer will extract the content from the URL and process its portion. The result is in

JSON format so the Data Stripper and Aggregator can merge the similar keys and increase

the counts.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

1 device 2 devices 3 devices 4 devices

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

JavaScript version
Native version

Fig. 5.13: Compare the performance of the JavaScript and Native versions with small data
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Based on tests with a 1.5MB document, Figure 5.13 shows the similar trend as the

previous case, especially running two devices are 45% faster than one on both versions.

The difference of performance between the two versions are insignificant because the two

processes only focus on fetching words without conversion. With 4 devices, the speed of

both versions increase up to 65%.
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Fig. 5.14: Compare the performance of the JavaScript and Native versions with large data
set.

On a 3MB document (Figure 5.14), we achieved the same performance increment from

44 – 64% for JavaScript version, and the total time of 2 devices running JavaScript version

is 38% better than one running native version.

Tests with this sample app confirms that, in some cases, our JavaScript-based system

can perform comparably with the native implementations.

PDF-to-Image Service

PDF-to-Image converting service is a typical example of loading an external JavaScript

file dynamically. This kind of service could be used in a light PDF reader application for

low-end devices with the remote rendering engine located on cloud server or remote devices.

Since the Loader Package including a HTML and several JS scripts preexisted and remained

unchanged on the remote device, we have to use $.getScript() from JQuery to load any

external JS files (Code Snippet 5.3). Inside the callback function(), the JavaScript file is
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loaded and ready to use.

To load a PDF file, we use PDF.js library 19 from Mozilla which is a built-in module

for PDF viewer on Firefox version 19+. The PDF converting service is straightforward, the

requesting device wrap up an App Request which comprises of a PDF.js, PDF sample and

information. When Package Manager receives this request, it will divide the request into a

number of Job Requests, each will contain a few page indexes so that each remote devices

will render a few pages of the total PDF document. (Code Snippet 5.3)

$ . g e t S c r i p t ( ’ pdf . j s ’ , f unc t i on ( ) {
PDFJS . workerSrc = ’ . / pdf . worker . j s ’ ;
PDFJS . getDocument ( ’ t e s t . pdf ’ ) . then ( func t i on ( pdf ) {

/∗ load a page by page index ∗/
pdf . getPage ( pageIndex ) . then ( func t i on ( page ) {

var r endere r = page . render ( renderContext ) ;
. . .
/∗ check when the render ing proce s s i s done ∗/
rendere r . then ( func t i on ( ) {

var imgData = $context . getImageData (0 , 0 ,
v iewport . width , viewport . he ight ) ;

. . .
} ) ;

Code Snippet 5.3: Loading an external JavaScript file using JQuery.

We simplify the experiment by storing the PDF.js file on all peers because the request-

ing device doesn’t need to resend the script file for every request. Figure 5.15 shows there is

almost no benefits of running PDF converting service on multiple devices (1 to 5) in terms

of the performance; it could probably gain when there is 8 more devices according to our

estimation. Despite of the low performance, it is still a typical example of loading external

JS scripts remotely and very useful for developing apps on low-end devices.

Stationary Server As A Peer

To verify the advantages of the system in comparison with the traditional offloading

19PDF.js: https://mozilla.github.io/pdf.js
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Fig. 5.15: Performance of PDF-2-Image converting service with 1 to 5 devices.

technique which relies on stationary server, we install Android x86 20 on our test-bed server

to mimic the server as a peer. Since the network bandwidth significantly affects the system

performance, we use Microsoft Network Emulator 21 to virtualize three different networks

LAN, WLAN and WAN and dispatch a number of different size packages on each network

configuration.
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Fig. 5.16: Compare performance of server offloading and P2P networks with 4 devices.

According to the Figure 5.16, our JavaScript-based system on 4-device collaboration

gives the same speed as offloading to the server at 100ms latency. At the lower latencies,

the stationary server performs faster, at 21-32% on LAN (no latency) and 15% on WLAN

(50ms latency) networks.

20Android x86: http://www.android-x86.org/
21Microsoft Network Emulator: https://goo.gl/j4kmc2

http://www.android-x86.org/
https://goo.gl/j4kmc2
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5.6 Related Work

With respect to using JavaScript for remote executions, Migratom.js [24] is a code

migration system that uses a flow-based paradigm to accelerate mobile web applications

by offloading compute-intensive tasks to the superpower servers. JSCloud [9] invokes the

code analysis and instrumentation phases to decide whether to any offloading and which

code partitions to offload to the cloud. JSCloud supports a wide range of devices and

computers, but the estimation relying on interpolation incurs more computation cost. The

other approaches [25,103,104] analyze offloadable code of JavaScript to enhance performance

of web applications. Our JSReX differs from the other approaches by adopting WiFi-Direct

to enable JavaScript-based collaborations over Device-to-device networks.

In code offloading, MAUI [4] introduces a code migration architecture relying on both

remote execution and virtual machine migration to maximizes the potential for energy

savings through fine-grained code offload while minimizing the changes required to appli-

cations. COMET [3] relies on Distributed Shared Memory (DSM) [105] to enhance VM-

synchronization between the mobile devices and server for code offloading. This approach

can support applications that contain no offloading logic, full multithreading, thread migra-

tion at any point during its execution and more efficient data movement. CloneCloud [97]

uses a combination of static analysis and dynamic profiling to partition applications au-

tomatically at a fine granularity to enable unmodified mobile applications running in an

application-level virtual machine to seamlessly off-load part of their execution from mobile

devices onto device clones operating in a computational cloud. ThinkAir [90] proposes a

different approach using smartphone virtualization in the cloud and parallelizing method

execution for computation offloading. Our research extends the idea of these popular ap-

proaches to provide a solution for code offloading on multiple platforms using JavaScript-

based execution packages.

Our research shares the common aspect with code offloading for mobile web appli-

cations. AppMobiCloud [106] employs a combination of profiling and points-to analysis

at the development phase to find the computation-intensive code fragments, and specifies
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whether they can be offloaded with some constraints. Then, at runtime, it migrates the

chosen JavaScript code fragments from the mobile devices for remote execution. It synchro-

nizes client-side application runtime context and constructs the cloned context at server,

executing the codes there and re-integrating the result back to the mobile device. Maciej

et al. [107] introduces a new mechanism for web applications by offloading HTML5 web

workers 22 from mobile device to the cloud. By extending the mobile web browser engine

with offloading decision module, the system can decide whether to offload a JS background

worker to the server farm. Similarly, Jeong et al. [108] apply a snapshot technique to safely

save and restore the states of web applications and offload to server. This approach un-

ties developer from any code limitations and constraints but it generates more overheads

with server. In general, these approaches strongly bind to web applications which insist

a stable communication for data exchanges with cloud server, they are inapplicable for

device-to-device collaborations.

There are similar works that utilize WiFi-Direct technology but for the different pur-

poses. Rio [43] leverages system I/Os to capture and share contents and resources between

the existing applications running on different devices without any modification. Some of

their applications are multi-system photography and gaming, singular SIM card for multi-

devices, music and video sharing. GameOn, Prime [44, 109] are also built on the same

networks to enable non-Internet connection between gamers within closed range areas like

in public transportation.

Another relevant work is one that migrates different code bases into a system [73,110].

Similar to JSReX, code migration mechanisms can execute code in different memory spaces

like running C++ code on multi-core systems, using annotations to construct a privacy

preserving data centric programming model [111] or thread migrations [112,113].

5.7 Conclusion

This chapter has presented an initial version of JSReX – a novel distribution mecha-

nism for offloading computationally intensive algorithms to peer devices in heterogeneous

22Web Worker: https://w3c.github.io/workers/

https://w3c.github.io/workers/
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P2P networks. JSReX includes a simple distribution package and coding template so that

developer can easily integrate offloading into their mobile apps. A performance evaluation

of JSReX shows that it has low overhead for Android and Window Phone devices. The

results of this initial evaluation are sufficient to motivate future research and development.

Specifically, we will focus on (1) supporting native implementation for execution files, (2)

privacy protection, (3) multi-group P2P networks, and (4) evaluations that examine other

software qualities besides performance.
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CHAPTER 6

INGRIM: A MIDDLEWARE TO ENABLE REMOTE METHOD INVOCATION

ROUTING IN MULTIPLE GROUP DEVICE-TO-DEVICE NETWORKS

6.1 Abstract

Mobile devices can improve performance and preserve energy by offloading computa-

tional intensive calculations to nearby peers, as well as Internet-access servers. However,

despite a long research history, peer-to-peer offloading is dilatory and unfit for applications

which require rapidly consecutive requests over short periods. Existing solutions for inter-

process communications are either unsupported or unwieldy for mobile platforms, or require

Internet connectivity to access message servers or object brokers. This chapter introduces

INGRIM– Inter-group Remote Invocation Middleware, a library-based middleware system

to enable routing remote method invocation over multiple group device-to-device networks.

INGRIM provides annotations for declaring distribution decision and out-of-box compo-

nents that enable peer-to-peer offloading, even when a client app and the service provider

do not have a direct network link or Internet connectivity. This chapter shows that IN-

GRIM’s overhead is similar to RMI, but that it can support inter-group communications.

6.2 Introduction

Mobile app developers have been offloading computationally intensive operations to

servers for many years [3, 114], but the means for efficiently, effectively, and transparently

offloading computations to nearby mobile devices (because servers are not always available

or too costly) is still in its infancy. Although the core idea of peer-to-peer offloading is

relatively straightforward and some frameworks for this purpose already exist [5, 86], there

are open challenges that continue to hinder wide-spread offloading across mobile devices.

These challenges span multiple areas, including: efficient task partitioning and distribution,
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improving developer productivity and software quality, and the seamless formation of ad

hoc networks among the mobile devices.

Problems with task distribution deal with the selection of appropriate computations for

offloading and their partitioning into distributable jobs, such that the resulting distributed

computations have greater throughput or better energy efficiency [115]. To date, fully

automated solutions in this area are limited and apply only to certain kinds of computational

problems [86]. A more immediate and widely applicable approach is to give developers better

tools for localizing 1 decisions about task partitioning and distribution, either imperatively

or declaratively.

The second major area focuses on software engineering issues, including developer pro-

ductivity and software quality. The demand for more sophisticate apps is only increasing.

For example, end users are coming to expect ubiquitous inter-device connectivity, especially

for social interactions; app responsiveness even for complex operations like those required

for augmented reality; the advertised battery life for their devices regardless of which apps

are running; and complete functionality of an app regardless of Internet connectivity. Con-

sequentially, apps are becoming more complex and developers must find ways to manage

that complexity while ensuring that their software is reliable, secure, maintainable, extensi-

ble, and efficient, as well as possessing any other properties considered necessary for quality

in the app’s domain [117]. Commonly, solutions in the areas take the form of libraries,

frameworks, patterns, or middleware that provide developers with high-level abstractions

for inter-process communications or object distribution. Examples include remote method

innovations like Java’s RMI, object brokers like CORBA [118], and messaging systems like

JMS or RabbitMQ [66]. However, these solutions are either unavailable on mobile plat-

forms, dependent on Internet connectivity to access specialized servers, or are too heavy

weight for most mobile devices. See Section 2 for more details.

The third area deals with the application-level connectivity in situations where devices

only have single-hop link-level connectivity to other devices within WiFi or bluetooth range,

1The localization of design decisions is an aspect of good modularization. It reduces code duplica-
tion and, when coupled with good encapsulating and abstraction, can greatly enhance the maintainability,
extensibility, and reusability of a software system [116]
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as is commonly the case when mobile devices are out of range of a WiFi access point or lack

a cellular data connection. Communication subsystems, like WiFi Direct (see Section 2),

support this kind of single-hop connectivity but not support connectivity across overlapping

groups of devices, i.e., communications that would require multiple hops.

This chapter presents an innovative library-based middleware system, called INGRIM

– a Inter-group Remote Invocation Middleware, that addresses at least one problem in each

of the three areas mentioned above. Specifically, it aims to

• Make it easy for developers to declare which services can be offloaded and the optimal

communication patterns for executing each service (Area 1).

• Support complete access and location transparency2 [119] for individual services (Area

2).

• Enable the integration of offloading into existing, as well as new apps, with minimal

effort (Area 2).

• Provide developers with high-level abstractions that hide all but the architectural-

design details of inter-group communications (Areas 2 and 3).

• Perform comparably to RMI for single-hop inter-process communications (Area 3)

and support multi-hop communications without traditional access points or routers,

which RMI doesn’t support (Area 3).

To meet these goals, INGRIM provides the following features:

• Annotations that allow developers to localize and encapsulate offloading decisions.

• Automated tools for generating service proxies and skeletons, plus the ability for

developers to customize their functionality.

• Out-of-the box components for setting up and managing inter-group (multi-hop) com-

munications.

• Out-of-the box components that automatically manage service locations and route

requests/replies between clients and services

2With access and location transparency, a client component can call a service that may be offloaded at
runtime without worrying about whether the service is actually executed locally or remotely and, if remotely,
where the service is hosted.
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• Connectivity with Internet-accessible services, in addition to those on peer devices

• Compatibility with mobile platforms that support a Java Virtual Machine (JVM) and

WiFi Direct.

INGRIM’s annotations and code generators provide the developer with easy-to-use

tools for localizing and encapsulating distributions discussion in way supports access and

location transparency to service clients. INGRIM’s out-of-the-box components include a

broker, which is responsible for location-transparency communications, and two kinds of

bridges, which are responsible for inter-broker communications, especially between network

groups. Developers can use the annotation, code generators, and out-of-the-box compo-

nents to integrate peer-to-peer offloading into virtually any type of mobile application by

(1) deciding what services (methods) can be offloaded and annotated appropriately, (2)

customizing the proxy and skeleton code generated as a result of those annotations, as

needed, (3) deciding the high-level architecture, i.e., which devices will have brokers and

bridges, and then writing startup code to instantiate those objects along with application’s

service objects. Section 3 provides an architectural overall of INGRIM and describes its

components in more detail.

Section 4 provides an assessment of INGRIM with respect to goals listed above, includ-

ing the results of several experiments that were used to evaluate its performance. Section

5 discusses other related works. Finally, Section 6 discusses future work that will address

other outstanding issues in each of the mentioned problem areas and summarizes INGRIM’s

contributions as a step forward in helping peer-to-peer offloading reach its full potential.

6.3 Background

The range of technologies that can and have been applied to distributed applications,

and specifically offloading, is vast and diverse. To understand INGRIM and its contribu-

tions, though, it is only necessary to review a few representative technologies, specifically

remote method invocations, object brokers, and messaging systems (see Section 2.1) and to

provide a few details about WiFi Direct (see Section 2.2) and ZeroMQ (see Section 2.3).
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We chose to build INGRIM on top of WiFi Direct and ZeroMQ for their small footprint,

simply interfaces, and availability on common mobile platforms.

6.3.1 Representative Technologies

Java’s RMI is a mechanism for invoking methods on remote objects [120]. One of

its strengths is that it provides a degree of location transparency by having servers add

services to a registry and requiring clients to use the registry for binding. But, it does not

support any routing other than what the underlying network layers support. So, if there is

no inter-network (network-layer routing) between two devices, an object on the first device

cannot invoke a method for an object on the second device. Unfortunately, such inter-group

communication is a common situation with mobile devices and one of the problems that

INGRIM is trying to address.

Technological based on object brokers, like CORBA, also support remote method in-

vocations. But, they rely on middleware processes (or threads) to instantiate or re-hydrate

objects and then bind method calls to the target objects. Although there have been at-

tempts to support CORBA on mobile platforms [121], they require the underlying layers to

handle inter-networking and therefore do not directly support inter-group communications.

Also, the authors believe that its middleware is too heavy for most mobile devices and

that its language-neutral approach to distribution is unnecessarily complex for most mobile

apps.

Messaging systems, like JMS, RabbitMQ, and ActiveMQ [80] can also play a role in

offloading. Although they do not directly support remote method invocation, they provide

reliable routing and flow control through queuing mechanisms. The problem with most of

these technologies is that they are too unwieldy for mobile platforms and they typically

depend on servers for message queuing. There is one lightweight and portable messaging

library that doesn’t require a server, and that is ZeroMQ. See Section 2.3.

6.3.2 WiFi Direct

WiFi Direct is a new peer-to-peer communication standard built on top of the IEEE



105

802.11 to provide direct connections between the Wi-Fi-enabled devices without Internet

connections [122]. In our research [6, 7], we rely on WiFi Direct to construct opportunistic

networks, i.e., groups, among the nearby devices, by letting them dynamically discover and

connect to each other. However, with WiFi Direct, a single device can only belong to a

single group at any time. It is possible, though, for a device to still use its legacy WiFi

client (LC) to connect to an Internet access points or any other peer device directly.

In terms of performance, it is important to note that WiFi Direct adds another layer

on top the underlying communication layers, so messages sent through WiFi Direct are

expected to have slightly higher overhead than message sent an LC. To discover the ef-

ficiency of WiFi Direct in opportunistic networks, we compare the performance of plain

WiFi to WiFi Direct by sending and receiving messages of various sizes and measuring the

turnaround time. Figure 6.1 shows the similarity in performance between the two protocols

when sending messages from a mobile device 3 to a remote server and receiving a reply.

The message sizes varies from 1KB to 1MB.
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Fig. 6.1: Performance comparison of WiFi and WiFi Direct.

WiFi Direct forms short-range opportunistic networks by polling available nearby de-

vices and electing a Group Owner (GO) [123]. When a device becomes GO, it establishes

a virtual access point (i.e., soft AP) and starts a DHCP service to automatically assign IP

addresses (range of 192.168.49.0/24) for itself and other clients of its group.

3Runs on Android-X86 platform with WiFi Adapter
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Since WiFi Direct only allows each device to belong to one group, the members of a

group (including the group owner) cannot use WiFi Direct to talk to members of another

group, or to an Internet access point for that matter. Fortunately, WiFi Direct does not

preclude the direct use an LC and it exposes a GO’s soft AP to other devices outside the

group. So, an app running in another group can use its LC to establish a communication

link to the GO of the first group. After its LC is connected, that LC will be assigned an

IP in from the GO’s DHCP’s IP range (See Figure 6.2). INGRIM and others, like Funai

et al. [123], have exploited this technique to support inter-group and group-to-Internet

communications when using WiFi Direct. A similar approach has been successfully applied

in the content-centric routing domain [29].
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Fig. 6.2: Use of original WiFi interface to create group-to-group communications.

6.3.3 ZeroMQ

ZeroMQ (ZMQ) [79] is a flexible messaging library with native implementations in

C/C++, Java, and C# and with bindings for 40+ other languages 4. It is lightweight and

therefore well suited for mobile apps.

ZeroMQ brings to developer sockets that carry atomic messages across various trans-

ports like in-process, inter-process, TCP, and multicast. Developer can connect sockets

N-to-N with patterns like fan-out, pub-sub, task distribution, and request-reply. It’s fast

4ZeroMQ: zeromq.com

zeromq.com
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enough to be the fabric for clustered products. Its asynchronous I/O model enables scalable

multicore applications, built as asynchronous message-processing tasks.

6.4 INGRIM: Inter-group Remote Invocation Middleware

As mentioned earlier, with INGRIM, developers integrate offloading into mobile apps

by (1) annotating services, (2) customizing the proxy and skeleton code, (3) deciding the

high-level architectures and writing startup code to instantiate the necessary brokers and

bridges.

Employing the middleware is quite simple via 2 steps: (1) developer creates service with

full implementation and marks the methods with service annotations (Code Snippet 6.1).

After compiling the entire project, the INGRIM’s processor will automatically generate

extension classes for the service. Then (2) developer will use these generated classes along

with the other basic components such as Broker and Bridge to construct their mobile

networks (An example is in the Code Snippet 6.5).

6.4.1 Service Definition

Developer indicates a class as service by declaring @MobileService annotation on the

class prototype, where transmission type can be either binary (TransmitType.Binary) or

JSON format (TransmitType.JSON). By default transmission type is set to Binary but user

can select JSON for the simple request wrapping primitive data such as String, this option

is useful to display messages while they are routing in DEBUG mode. In the entire Section

6.4, we only discuss the Binary option.

Service functions always come with @ServiceMethod annotation, the other functions

without this annotation will be excluded during the compilation. There are two options for

function synchronous mode: Async - the result is handled by a common handler and system

can jump immediately to the next call, Sync - the request device is blocked until the result

arrives. Code Snippet 6.1 shows a service sample with two simple functions greeting in

Sync mode and getFolderList in Async mode.
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@MobileService ( transmitType = TransmitType . Binary )
pub l i c c l a s s ServiceA {

@ServiceMethod ( syncMode = SyncMode . Sync )
pub l i c S t r ing g r e e t i n g ( S t r ing msg) {

re turn ” He l lo ” + msg ;
}
@ServiceMethod ( syncMode = SyncMode . Async )
pub l i c S t r ing [ ] g e t F o l d e r L i s t ( S t r ing path ) {

F i l e f o l d e r = new F i l e ( path ) ;
F i l e [ ] f i l e s = f o l d e r . l i s t F i l e s ( ) ;
S t r ing [ ] r e s = new St r ing [ f i l e s . l ength ] ;
f o r ( i n t i = 0 ; i < f i l e s . l ength ; i++)

r e s [ i ] = f i l e s [ i ] . getAbsolutePath ( ) ;
r e turn r e s ;

}
}

Code Snippet 6.1: Service definition example.

During the compilation, the AnnotationProcessor module will automatically generate

the Proxy and Skeleton classes that are going to be placed on the local and remote devices.

Proxy is a generated class which resides on the local device to dispatch function call requests.

It has the same function list as the Service but inner implementation is the generated code to

convert function call to a request message (Code Snippet 6.2). A Proxy contains an instance

of FrontEnd for synchronous calls and a Sender for the asynchronous, for ServiceA, the

Proxy has assigned name by default, which is ServiceAProxy.

The Skeleton is a generated class which resides on the remote device to resolve function

requests. Skeleton inherits BackEnd class and contains an instance of the Service to call the

corresponding function if it receives a request with the same functionName. By default,

the Skeleton is assigned with the name ServiceASkeleton (Code Snippet 6.3).

6.4.2 Proxy and Skeleton In Use

INGRIM library is modularized by components that are possible to cooperate with both

WiFi and WiFi Direct, application developer therefore can opt to construct any network
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pub l i c c l a s s ServiceAProxy {
FrontEnd frontend ;
Sender sender ;

pub l i c S t r ing g r e e t i n g ( S t r ing msg) {
/∗ generated code ∗/

}
pub l i c void g e t F o l d e r L i s t ( S t r ing path ) {

/∗ generated code ∗/
}

}

Code Snippet 6.2: Generated Proxy class.

topology they may expect. In this section we describe a very simple form of network we

could make using the Proxy and Skeleton classes from the prior section (Figure 6.3), the

more complicated architecture can be varied (Figure 6.9).

pub l i c c l a s s Serv iceASke le ton extends BackEnd {
ServiceA s e r v i c e ;

@Override
pub l i c byte [ ] r e so lveReques t ( byte [ ] reqBytes ) {

byte [ ] respBytes = n u l l ;
RequestMessage reqMsg = NetUt i l s . d e s e r i a l i z e ( reqBytes ) ;

switch ( reqMsg . functionName ) {
case ” g r e e t i n g ” : {

/∗ generated code ∗/
}
case ” g e t F o l d e r L i s t ” : {

/∗ generated code ∗/
}}
re turn respBytes ;

}
}

Code Snippet 6.3: Generated Skeleton class.
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Fig. 6.3: Simple use of the Proxy and Skeleton objects.

According to the design in Figure 6.3, we firstly install the ServiceASkeleton on the

remote device, it will come with a Broker to host the services and trigger connection with

another device (Code Snippet 6.4).

/∗ s t a r t a Broker and a BackEnd on the remote dev i ce ∗/
new Broker ( remoteBrokerIp , c l i en tPor t , workerPort ) ;
new Serv iceASke le ton ( remoteBrokerIp , workerPort ) ;

Code Snippet 6.4: Example code to run Broker and Skeleton on the remote device.

On the local device we start a Broker to host services and a Bridge to reach out for

the remote Broker. Then, we start ServiceAProxy and declare how to handle incoming

responses from asynchronous function calls in the receive() callback. In the callback

implementation, msgType indicates whether a message is information (BROKER INFO) or

response message (function name), the developer is required to add appropriate code to

manipulate the responses (Code Snippet 6.5).

6.4.3 INGRIM Components

The middleware is constituted by 6 main components: Broker, BackEnd, FrontEnd,

Sender, Receiver and Bridge, each has different functionality but shares the basic structure

including ring buffers to buffer incoming and outgoing messages, and ZMQ sockets.
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/∗ s t a r t a Broker and a Ske le ton o b j e c t s on l o c a l dev i c e ∗/
new Broker ( l oca lBroker Ip , proxyPort , ske lPor t ) ;
/∗ s t a r t a Bridge to br idge the l o c a l and remote Brokers ∗/
new Bridge ( l oca lBroker Ip , ske lPort , remoteBrokerIp , proxyPort ) ;
/∗ s t a r t a Proxy at l o c a l ∗/
ServiceAProxy proxy = new ServiceAProxy ( loca lBroker Ip ,

proxyPort , new Rece iv eL i s t ene r ( ) {
@Override
pub l i c void r e c e i v e d ( St r ing IDs , S t r ing msgType , byte [ ] data ){

ResponseMessage resp = NetUt i l s . d e s e r i a l i z e ( data ) ;
i f (msgType . equa l s ( NetUt i l s .BROKER INFO)){

/∗ a denied message from the Broker ∗/
Log . v (” Error : ” + resp . outParam . va lue s [ 0 ] ) ;

} e l s e i f (msgType . equa l s (” g e t F o l d e r L i s t ”) ){
/∗ r e s u l t s from the ” g e t F o l d e r L i s t ” func t i on ∗/
St r ing [ ] f i l e s = ( St r ing [ ] ) r e sp . outParam . va lue s ;
f o r ( i n t i = 0 ; i < f i l e s . l ength ; i++)

Log . v (” F i l e : ” + f i l e s [ i ] ) ;
}

}} ) ;
/∗ c a l l the func t i on from the proxy ∗/
proxy . g e t F o l d e r L i s t ( ” / ” ) ;

Code Snippet 6.5: Example code to run Broker, Bridge and a Proxy on the local device.
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Fig. 6.4: INGRIM components – Broker, FrontEnd, BackEnd, Sender and Receiver.

Figure 6.4 and 6.5 depict the preexisted communications among the components. In

Figure 6.4-Left, BackEnd connects and registers its services to Broker while the Broker

buffers the request messages sent from FrontEnd, forwards each request to the correspond-

ing BackEnd to resolve and forwards result back to the FrontEnd. This type operates in
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asynchronous mode, the FrontEnd’s callback handler is where incoming messages such as

results and info messages are proceeded. Figure 6.5-Left introduces a more sophisticated

strategy with the involvement of a Bridge, an intermediate between two Brokers. The

Bridge consists of a FrontEnd and BackEnd, one connects to the left Broker and another

connects to the right. These two types will be used for Peer-to-Peer and Group-to-Group

modes.
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Fig. 6.5: INGRIM components – Bridge and BridgeX.

Figure 6.4-Right depicts Sender and Receiver, one sends request and the other re-

sponses in synchronous mode. An advantage of this type is no Broker involved, making

the message routing time becomes shorter, so that it could be perfectly employed in Client-

Server model. However, since this type works in synchronous mode, in our first implemen-

tation we only used it for BridgeX. Figure 6.5-Right shows the constitution of BridgeX

which consists of 4 components FrontEnd, Sender, Receiver and BackEnd, in the design,

two of sub components contact the left Broker and the other twos contact the right. The

benefit of BridgeX is that they can connect to each other directly without a middle Broker,

while Bridges insists one (Figures 6.9 and 6.10).

These components don’t start at the same time. Generally, Broker always starts first

right after network has been established to either host services for its current group or

interconnect with the other groups. Then, BackEnds come after Broker to register their
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” ac t i on ” :”REGISTER” ,
” id ” :”1” ,
” f u n c t i o n s ” : [
{ ” functionName ” :” g r e e t i n g ” ,

” inParams ” : [ ” S t r ing ” ] ,
”outParam ” :” St r ing [ ] ” } ,

{ ” functionName ” :” g e t F o l d e r L i s t ” ,
” inParams ” : [ ” S t r ing ” ] ,
”outParam ” :” St r ing [ ] ” } ]

Code Snippet 6.6: BackEnd’s service definition in JSON format.

services, when it starts, it sends service definition in JSON format (Code Snippet 6.6)

to the Broker. The service definition consists of (1) action as an indicator for Broker

to register/unregister the BackEnd’s service, (2) BackEnd’s ID and (3) functions – the

list of provided functions, each contains information of function name, input and output

parameters.

Broker will extract the function list and store them in FunctionMap table where keys

are function names and values are BackEnd IDs. Later, the Broker will use FuncName from a

request message to find the according BackEnd and forward the request to it. Before BackEnd

leaves the network, it sends the Broker an instruction message with code UNREGISTER to

remove all of its functions out of the Broker’s FunctionMap.

Bridge is simply a forwarder which starts when the BackEnds have been settled. At

the beginning, it sends a Service Request to the remote Broker for a list of available remote

functions, the Broker will response by returning the function list in the same format as the

functions in the Code Snippet 6.1. Then, it will connect to the local Broker and register

those remote functions, the local Broker will register those functions under the Bridge’s

ID.

In our implementation, only Broker and Bridge are used in their original forms, the

other components will be generated according to the developer’s service declaration during

the code compilation.
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Fig. 6.6: Sequences of the initialization process and message requests.

6.4.4 Function Call To Message Conversion

On FrontEnd/Sender, INGRIM dispatches a function call over the network by con-

verting it into a request message object, then serializing the request into binary array for

network transmission (Code Snippet 6.7). On BackEnd/Receiver, it deserializes the binary

array back to request message object, passes the object data into parameters and calls the

real function. Finally, it fills the result into a response message, serializes into binary format

and sends to the network (Code Snippet 6.8). To this end, AnnotationProcessor module

scans the entire project and generates the wrapping classes including the pairs: FrontEnd–

BackEnd and Sender–Receiver for all defined services marked with @MobileService anno-

tations.

On FrontEnd/Sender, the RequestMessage class defines the request message object.
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The request includes: (1) functionName to keep the name of function, (2) InParams to

contain types and values of input parameters and (3) OutParam to describe the type of

output parameter; the parameter type can be a single value or an array of any primitive

or user-defined object, as long as the relative classes exist in the classpath during the

compilation and execution on all devices. The Code Snippet 6.7 shows how the function

getFolderList with one parameter (Defined in the Code Snippet 6.1) is transformed into

a RequestMessage object and serialized into binary array.

pub l i c S t r ing g r e e t i n g ( S t r ing msg) {
// c r e a t e a r eques t message & s e r i a l i z e i t to binary format
St r ing functionName = ” g r e e t i n g ” ;
S t r ing outType = ” St r ing ” ;
RequestMessage reqMsg = new RequestMessage (

functionName , outType ) ;
reqMsg . inParams = new InParam [ 1 ] ;
reqMsg . inParams [ 0 ] = new InParam (”msg” , ” St r ing ” , msg ) ;
byte [ ] reqBytes = NetUt i l s . s e r i a l i z e ( reqMsg ) ;
// send reque s t to network & ha l t u n t i l r e sponse i s a v a i l a b l e
byte [ ] respBytes = req . send ( functionName , reqBytes ) ;
/∗ d e s e r i a l i z e the re sponse and e x t r a c t the output ∗/
ResponseMessage resp = NetUt i l s . d e s e r i a l i z e ( respBytes ) ;
S t r ing output = ( St r ing ) resp . outParam . va lue s [ 0 ] ;
r e turn output ;

}

pub l i c void g e t F o l d e r L i s t ( S t r ing path ) {
St r ing functionName = ” g e t F o l d e r L i s t ” ;
S t r ing outType = ” St r ing [ ] ” ;
RequestMessage reqMsg = new RequestMessage (

functionName , outType ) ;
reqMsg . inParams = new InParam [ 1 ] ;
reqMsg . inParams [ 0 ] = new InParam (” path ” , ” St r ing ” , path ) ;
byte [ ] reqBytes = NetUt i l s . s e r i a l i z e ( reqMsg ) ;
f rontend . send ( functionName , reqBytes ) ;

}

Code Snippet 6.7: Generated code in Service Proxy class.
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Code Snippet 6.8 shows the execution mechanism of BackEnd/Receiver to handle a

request by deserializing the binary data back to RequestMessage object and categorizing it

using functionName attribute. Inside each method handler (each case), input parameters

collected from InParams attribute of the request message are passed to the actual function

call of the service instance (serviceA) and the output type is from OutParam. Finally, the

result of the call is wrapped within a ResponseMessage along with the name and type, then

it is thrown back to the Broker (Code Snippet 6.8). To support asynchronicity, BackEnd or

Receiver handles each request on a single thread, the middleware allow at most 5 threads

running simultaneously by default.

6.4.5 Message Flows

In this section, we describe the design of low-level message flows on top of ZMQ from

FrontEnd to BackEnd (the message flow from Sender to Receiver is almost the same)

through a few Brokers and Bridges and vise versa.

In ZMQ, a message traveling between the two sockets needs at least 2 parameters:

identity of the destination and message content. To avoid overheads of message transit

on the intermediates, we design message format with the following fields: ReceiverId –

identity of the destination, IDs – ID chain of passed FrontEnds on the route, FuncName and

Message – a binary form of serialized Message object. Particularly, IDs keeps a series of

FrontEnd IDs which it passes along the way to BackEnd, for example in Figure 6.7 when

the message arrives at the BackEnd the value of IDs is ”1/100/200” where 1 is the ID

of FrontEnd #1, 100 is the ID of Bridge’s FrontEnd #1 and 200 is the ID of Bridge’s

FrontEnd #2. IDs is concatenated when the message arrives at Broker from the FrontEnd

and popped out to use when it arrives at the Broker from BackEnd. Finally, a message

comes with startTime and timeout to define how long the message should be available in

the route, the request will be marked as failed if the response doesn’t come out before the

timeout (Sub Section 6.4.7).
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/∗ c r e a t e an in s t anc e o f ac tua l s e r v i c e here ∗/
ServiceA s e r v i c e = new ServiceA ( ) ;
RequestMessage reqMsg = NetUt i l s . d e s e r i a l i z e ( packageBytes ) ;

switch ( reqMsg . functionName ) {
case ” g r e e t i n g ” : {

/∗ v a r i a b l e ”msg” ∗/
St r ing [ ] msgs = new St r ing [ req . inParams [ 0 ] . va lue s . l ength ] ;
f o r ( i n t i = 0 ; i < req . inParams [ 0 ] . va lue s . l ength ; i++)

msgs [ i ] = ( St r ing ) req . inParams [ 0 ] . va lue s [ i ] ;
S t r ing msg = msgs [ 0 ] ;
/∗ s t a r t c a l l i n g func t i on ” g r e e t i n g ” ∗/
St r ing [ ] r e t s = s e r v i c e . g r e e t i n g ( msgs ) ;
S t r ing retType = ” St r ing ” ;
ResponseMessage resp = new ResponseMessage ( req . messageId ,

req . functionName , retType , r e t s ) ;
/∗ convert to binary array ∗/
return NetUt i l s . s e r i a l i z e ( resp ) ;

}
case ” g e t F o l d e r L i s t ” : {

/∗ v a r i a b l e ”path” ∗/
St r ing [ ] paths = new St r ing [ req . inParams [ 0 ] . va lue s . l ength ] ;
f o r ( i n t i = 0 ; i < req . inParams [ 0 ] . va lue s . l ength ; i++)

paths [ i ] = ( St r ing ) req . inParams [ 0 ] . va lue s [ i ] ;
S t r ing path = paths [ 0 ] ;
/∗ s t a r t c a l l i n g func t i on ” g e t F o l d e r L i s t ” ∗/
St r ing [ ] r e t s = s e r v i c e . g e t F o l d e r L i s t ( path ) ;
S t r ing retType = ” St r ing [ ] ” ;
ResponseMessage resp = new ResponseMessage ( req . messageId ,

req . functionName , retType , r e t s ) ;
/∗ convert to binary array ∗/
return NetUt i l s . s e r i a l i z e ( resp ) ;

}

Code Snippet 6.8: Generated code in Service Skeleton class.

Sending A Request

We describe the Request flow using a typical example in Figure 6.7: A message to

Broker doesn’t need an address because a FrontEnd connects to only one Broker, so the first

message’s ReceiverId is EMPTY and IDs is ”1” since the message came out from FrontEnd
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with ID is 1. When Broker receives the request, it looks up FuncName in the FunctionMap

to find the corresponding BackEnd/Bridge and forwards the message, for this example the

destination is a Bridge. The Bridge concatenates IDs with the ID of its FrontEnd (”1/100”

- since Bridge’s FrontEnd ID is 100) and forwards the request to the next Broker. This

process repeats until the request eventually meets the BackEnd which owns the requesting

function and gets resolved.

If for any reasons the request can’t find the BackEnd, a denial message with flag

BACKEND NOT FOUND will be sent back to the FrontEnd as response. This case happens when

the request message gets lost at a Broker where the requesting function is not available in

its list.
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Fig. 6.7: Message flow from a Service Proxy to the remote BackEnd.

Sending A Response

Figure 6.8 illustrates a Response flow from BackEnd to the requesting FrontEnd. When

the response arrives at Broker, the Broker will extract the first ID in the IDs and put it to
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the ReceiverId so that the response can find way to the next FrontEnd. If the FrontEnd

has not defined handler for the response, it will forward the message to the next Broker.

This process repeats until the IDs is EMPTY, in other words the response arrives at the

requesting FrontEnd.

If the response can’t find the way back to the FrontEnd (when ReceiverId not found

or IDs is EMPTY), the FrontEnd will wait until timeout to report UNAVAILABLE SERVICE

error.
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Fig. 6.8: Message flow from a BackEnd back to the FrontEnd.

6.4.6 Group-to-Group Communications

This section will go deep inside the deployment of INGRIM to achieve the goal. Figure

6.9 illustrates a typical case of two groups 1 and 2, each group has 2 devices: one takes

role of GO with a Broker (host on the default WiFi-Direct IP – 192.168.49.1) and another

starts a FrontEnd.
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Fig. 6.9: Architecture of multi-group device-to-device communication with 4 devices.

To implement a Legacy Client, we firstly let the Group 1’s GO connect to the WiFi

AP created by Group 2’s GO 5. Then, on the Group 2’s GO, we start a new Broker to host

on the IP address of the WiFi interface, for instance 144.39.212.235, which is completely

irrelevant to the WiFi-Direct network established before. A new Bridge will start on the

Group 2’s GO to connect the two Brokers; Likewise, a new Bridge will start on the Group

1’s GO to connect its Broker with the new Broker on Group 2’s GO over the WiFi. From

this moment, the system will operate exactly the same way as the one we described in the

Section 6.4.5.
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Fig. 6.10: Architecture of multi-group device-to-device communication with 4 devices.

5When a device becomes GO, it will also be a WiFi Access Point. The other devices can connect to
that AP via the WiFi interface.
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To simplify the complexity of system, we use BridgeX to replace one Broker on Group

2’s GO device (Figure 6.10).

As aforementioned, INGRIM can work on both Android and PC platforms, developer

can easily bridge a communication from a device to PC by deploying a Broker on PC to

host the connections from devices (Figure 6.15). On mobile device, we could use Bridge to

relay messages back and forth from mobile Brokers to PC.
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Fig. 6.11: A simple way to bridge device to PC.

6.4.7 Failure Handling

INGRIM guarantees the client will receive either final result or appropriate error mes-

sage of any malfunction happens while routing.

On the requesting device, the FrontEnd maintains a copy of each request and it fre-

quently checks up in every 500ms on the request list. If a request has passed the timeout,

the FrontEnd will stop the listener thread for that request, report an UNAVAILABLE SERVICE

message and opt to execute it locally.

On Broker, if a forwarded request to BackEnd has passed the network timeout, the

Broker will attempt sending it again. If the failure still occurs, the Broker will consider the

BackEnd is unreachable, then it closes the sending thread and remove all the relevant service

functions of the BackEnd out of its list. Then, it will throw BACKEND UNREACHABLE error

message back to the requesting device. Sometimes later, if the Broker receives a request

with funcName is unfound in its function list, it will throw BACKEND NOT FOUND back to the
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requesting device.

When Broker receives a request or response, it finds the subtraction between the current

time and message’s startTime, then compares with timeout. If the message passes the

timeout, the Broker will replace the current message by an TIMEOUT error message and

send it back to the requesting device using the current message’s IDs.

On BackEnd, if it cannot send back a response within the network timeout, it will

make the second attempt. If failure still occurs, the BackEnd will consider the Broker is

unreachable, then it disconnects the Broker and close the sending thread. When it actively

leaves the group, it will send a UNREGISTER message to its Broker to let it remove all the

relevant service functions from the list.

6.5 Evaluation

We built a test-bed with actual WiFi-Direct featured Android devices to evaluate the

performance of our system, a PC is also included to examine the bridge between mobile

devices and stationary computer (Table 6.1).

Table 6.1: List of devices used in the experiments in chapter 6.

Device CPU RAM Battery
LG Volt Quad-core 1.2GHz 1GB 3000mAh
ZTE Maven 3 Quad-core 1.1GHz 1GB 2115mAh
Moto G4 Octa-core 1.5GHz 2GB 3000mAh
BLU R1 Quad-core 1.3GHz 2GB 2500mAh
Lumia 550 Quad-core 1.1GHz 1GB 2100mAh
Dell PC Intel i7-4790 3.6GHz 8GB Wall-plugged

6.5.1 Micro Benchmark

We designed a simple service with one function accepting a binary array as input

parameter and returning size of the array. A component (e.g. FrontEnd), when forwarding

a function call, will pack and send the function message with parameter values out to

another one. In this section, we will gradually increase size of the binary array from 1KB

to 1MB in order to figure the performance of the components with and without network.
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The measure time T[Total] will be estimated at the FrontEnd following the Equation 6.1,

with T[Net] is the total network round-trip time of all components.

T[Total] = T[Broker] + T[Bridge] + T[BackEnd] + T[Net] (6.1)
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Fig. 6.12: Benchmark tests by running all components on one device.

For overhead measurement of each component, we isolate the network usage by running

all components on one single device. Figure 6.12-1 shows the promising result where Broker

only spends 5-30ms to store and forward a request while FrontEnd and BackEnd steadily

increase processing time when package size dilates over time, 18-240ms and 5-90ms respec-

tively. When more devices join the collaboration, messages dispatching over the network

significantly degrades the performance from 10-15 times slower (Figure 6.12-2).
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Fig. 6.13: Architecture of multi-group device-to-device communication with 4 devices.

6.5.2 Group-to-Group Communications

The flexibility of the constituent components of the our middleware make it easy and

feasible for any group-to-group architectures. Figure 6.14 describes an overall example

which involves multiple mobile groups, even stationary servers, where a device from one

group (P2P Client or GO) reaches out to the GO of another group through its Bridge.

This architecture can extend the connection range of WiFi-Direct to unlimited without any

central WiFi access point because the inter-group connections are formed only by the GO

devices, they are actually the virtual mobile access points for the devices from other groups

to connect.

…
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Fig. 6.14: An example of multiple groups.
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Next, in the following experiments we will measure performance of our middleware

when it establishes connections between mobile group(s) and PC, on multiple mobile groups

and finally, INGRIM versus original RMI technology.

6.5.3 Devices To PC

An arbitrary device in group may by chance be connectible with a stationary server,

which enriches the group with more powerful resources. To make the server available,

one Broker will be installed there along with BackEnd(s) to receive requests and forward

responses as in Figure 6.15. The device contacting server will hold one Broker and a Bridge

to forward requests from its Broker to the server’s one.
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Fig. 6.15: A simple way to bridge device to PC.

Then, we compare the speed of Device(s)-to-PC over WiFi with Device-to-Device over

WiFi-Direct in the same network, Figure 6.16 shows 2 cases: (1) the performance of 1 device

to PC is always better varied from 2.2 to 4.5 depend on package sizes; likewise, (2) 2 devices

to PC also performs 1.9-2.7 times faster.
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Fig. 6.16: Performance of device-to-device versus device-to-PC.

6.5.4 INGRIM vs. RMI

Android platform has limited APIs and does not support RMI technology, therefore

we proceed this comparison on server environment where two servers periodically execute

remote function calls on top of each platform. This evaluation relies on T[Total] values

measured on FrontEnd for 4 different tasks: (1) sending packages with empty function (does

nothing but returns the package size) and gradually-increasing data sizes, (2) blurring an

image, (3) detecting motions in two images using OpenCV 6 and (4) counting the most

frequent words in a document.

6OpenCV for Java: http://opencv-java-tutorials.readthedocs.io

http://opencv-java-tutorials.readthedocs.io
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Fig. 6.17: Comparing INGRIM and RMI in 4 test cases.

Figure 6.17 depicts the different between the two technologies. In the first test case,

since the empty function returns result immediately so the T[Total] is accumulated by mostly

the network time and system overhead which is insignificant, 10-35ms by INGRIM and 3-

10ms by RMI for package sizes from 1K to 1MB. In general, RMI has the less overhead

which performs 70.8% faster than INGRIM. In the next two image processing test cases, the

image process takes approximately 100-200ms which is 4-5 times more than their overheads,

the impact of overheads becomes trivial. The results of 40 attempts (Figure 6.17-2 and 6.17-

3) show slightly better performance of RMI compared with INGRIM: 7.4% better for the

image blurring and 11.2% for the motion detection.

Regarding the word counting service, the average time to examine each 1MB document

takes 2000-2500ms which is 100 times of the system overheads and literally makes them
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futile. The results of 40 attempts of word counting show the RMI only dominates INGRIM

by 0.4% as their performance is almost the same. According to the results, it’s obvious that

our technology generates a bit more overhead than RMI but gives the similar performance

in actual test cases, especially for the intensive tasks.

6.5.5 Remote Motion Detection

In this experiment one device calls remote function to detect motions of an object from

the two consecutive images, the function returns an Integer array of the rectangle areas

where the motions take place. To this end, we used OpenCV for Android 7 and to reduce

network throughput the app reduces the images size to 180× 135 and converts it to black

and white before sending them out.

In the first test, we use one device to alternately connect to one of the three others,

Figure 6.18-Left reveals among them Moto-G4 gives the best performance at average of 416

milliseconds per call, or 2.4fps. BLU runs 6.5% slower and ZTE 21% slower than Moto-G4.

In the second test, we compare the system performance of motion detection remote

calls by 2 and 3-hop networks with the devices in the prior test. Figures 6.18-Right shows

the average time for each call in 3-hop network is 885.5ms which is 55% slower than the

2-hop.

6.6 Related Work

In an effort to enable advanced RMI on mobile device, INGRIM serializes a function

call into binary stream and dispatch over the networks. A different approach, Android

RMI [31] leverages the original Binder to allow users to invoke system services as well

as application services between devices using remote parcel format. Lin et al. introduces

an cross-platform IPC mechanism called XBinder [32] to enable remote process among

multi-user communication for mobile applications to cooperate with local or remote services

without developing complicate network. However, despite the remarkable improvements

7OpenCV for Android: https://opencv.org/platforms/android/

https://opencv.org/platforms/android/
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Fig. 6.18: Performance of device-to-device versus device-to-PC.

with respect to performance, these designs only aim to the mobile devices that are in the

same WiFi network.

Nakao et al. [124] provides an RPC-based invocation mechanism between Android de-

vices using Intent, a message format used by Android platform to realize transparent remote

service communication to other devices without any modifications to the current Android

applications. Similarly, Nagahara et al. [125] proposed a distributed intent framework where

Android applications collaborate with embedded devices by sending serialized Intent mes-

sages through the network. Another approach for mobile remote process is making services

public so the other devices may invoke services using remote call mechanisms [126, 127],

however, this approach incurs too much overhead for the host devices as well as risks of

service unavailability.

Our middleware makes contribution to the domain of WiFi-Direct multi-group com-

munication where a group connects to another one using legacy client, a module operates

on the original WiFi interface to serve as a bridge between the two group owners [123,128].

Casetti et al. [29] leverages WiFi-Direct multiple groups for content-centric routing network

where data is transparently available to users using content routing tables which collect and

transport data over the content nodes, the routing tables are advertised and populated via

a registration/advertisement protocol. INGRIM extends the idea of content-centric to bring
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function-centric architecture to the mobile network, any device can request for a function

call regardless of knowing actual location of the function or whether it hosts on a mobile

device or stationary server.

Finally, we share the vision in multi-group WiFi-Direct simulation since the cost for

the experiment deployment is expensive as well as the discovery and network handshake

phases are complex and time consuming. WiDiSi is a dedicated visual simulation [129,130]

extending PeerSim library [131] to support WiFi-Direct, it can simulate and visualize a vast

device-to-device network including discovery and network establishment of devices moving

randomly within closed distances, however, the disadvantages of WiDiSi (also the weakness

in PeerSim) are single-thread, less autonomy and unsupported for multiple groups. The

new version MAGNET [130], a novel self-organizing middleware infrastructure that aims to

provide reliable and stable P2P connectivity among large numbers of smart devices.

6.7 Conclusion

This chapter introduces INGRIM, a new Inter-group Remote Invocation Middleware

architecture to enable routing remote method invocation over multiple group device-to-

device networks. INGRIM modularizes its architecture by the functional components using

annotations which makes it flexible to apply and adaptive with either D2D or device-to-

server networks. Our empirical experiments with actual test-bed devices unveil the low

overhead conduct and similar performance as RMI in reality.
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CHAPTER 7

FUTURE WORK

7.1 Asynchronous WiFi-Direct Simulation

Mobile network is known as volatile and intermittent. Different from stationary server

networks where connections are wired and stable, mobile networks are formed by wireless

connectivity interfaces such as WiFi-Direct, Bluetooth or LTE, which mainly confront the

mobility and limited distances. In the experiments, as a device is gradually leaving its group

its connections with the others get more attenuated, thus the measurements performed on

the group become unreliable. Another problem we met is the limited number of devices,

for each test case we experienced executions with up to six devices, although the results

reflected exactly our system’s performance and energy consumption, it would be still helpful

and more accurate if we could perform further tests with 10 to 20 more devices. Finally,

every device runs a number of background applications such as system services or resource

management deamons, those hidden services consume CPU, occupy large amount of memory

and drain battery just as the other apps making measurements incorrect. Therefore, we

believe a mobile network simulator could solve all above problems.

A WiFi-Direct simulation should be defined with the following features: (1) each virtual

device has initial specification values of CPU, RAM and battery (or even sensors) randomly

or by user configuration, these values must be decreased according to the time or number

of running applications. (2) The virtual device must be integral with our middleware so

that it can run normally on as if the mobile platform. (3) They should be able to discover

peers, elect owner and establish connections if they are in closed distance (predefined in

by user configuration). (4) The device is able to move inside the virtual environment by

random or predefined speed and direction, or it can be stationary. Finally, (5) the simulator

must be visual, so that user can observe their movement, connectivity and amount of data
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transmitted over the inner virtual networks.

WiFi-Direct simulator has been discussed in some research before [129,130]. However,

these research and related products rely on single thread architecture, they can’t adopt

external application and do not support autonomy of virtual devices [132].

7.2 Compensation Model

Code Offloading mechanism always raises the question about user privacy when they

hesitate to receive a request of code execution from someone through WiFi-Direct or Blue-

tooth, even though they have been through an agreement process while establishing connec-

tion [133,134]. We proposed a compensation solution to address this problem using virtual

coin [135], through five steps: (1) a novel algorithm to estimate the cost of execution by

analyzing the complexity of offloading task and the amount of data attached to the task.

(2) The client sends the proposal including execution code, data, estimated cost and the

virtual coins with value equivalent to the estimated cost to broker, (3) the broker will split

the proposal and cost and forward each part to the peers [136]. (4) A peer will consider the

cost and send the answer back to the broker. (5) If all the answers are positive, the broker

will forward the sub task and partial virtual coins to each peer, wait and collect results,

then aggregate the results and push back to the client. If at least one answer is negative the

broker will repeat the request to the remaining peers. In the second time if one peer returns

a negative answer, the broker will consider the task as failed and push a denial message

back to the client.

7.3 Autonomous Reformation

Unlike the other server networks which operate on wired mesh topology, WiFi-Direct is

a wireless network formed up by the mobile devices come into single group with one device

is elected as group owner. The group owner takes role of a mobile server, its DHCP service

allocates IPs to the other members of the group and coordinates data transmission among

the devices. If the group suddenly drops connection, the entire group will also crumble [137],

to recover the connectivity, the remaining devices have to restart the discovery and election
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phases again which consume time a lot.

To address this problem, a solution proposed using Additional GO (AGO) [138]. During

the GO negotiation phase 1, both devices will attach 1 bit of Additional GO Intent to the

existing GO Intent to indicate the remain device will probably take place when the main

GO leaves group. When new device joins the group, the main GO will inform the address

of the substitute owner so that the clients know where it should connect to in the worst

case. By using Additional GO, we can prohibit the discovery and negotiation phases which

is to reduce time for group recovery.

1WiFi-Direct: http://www.thinktube.com/tech/android/wifi-direct

http://www.thinktube.com/tech/android/wifi-direct
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CHAPTER 8

CONCLUSION

This dissertation raised and solved five critical technical problems that are currently

interfering with the applicability of inter-group device-to-device communication to improve

performance and preserve energy in mobile industry. First, we proposed a novel middle-

ware architecture on WiFi-Direct which implements a selection and division algorithm to

split and distribute a task fairly to all nearby ones, based on their resource availability at

the moment of making requests. The system, dependent on the number of devices, signif-

icantly improved the performance to 70% and preserved energy to 50%. Second, in highly

dynamic and volatile edge computing environment, we provide a service infrastructure for

reliable and efficient mobile edge computing which includes adaptive facilities to dynami-

cally restructure the patterns of distributed communication in response to partial failure.

It flexibly switches all current executing tasks to any local mobile networks in its range if

communication to the edge server has failed, and restores the connection when network is

recovered. Third, for platform heterogeneity, we evaluated several JavaScript engines in the

market nowadays and integrated the highest performance one to our middleware system,

then enabled options for developer to create execution package to proceed on either na-

tive or JavaScript engine. Forth, we overcome the limitations of device-to-device networks

by providing method invocation routing infrastructure over inter-group mobile networks,

the system based on constituent out-of-the box components that is highly compatible with

multiple network topologies, and tolerant for network malfunctions. By extending remote

function calls on mobile platforms, we were capable of deploying RMI technology not only

on Android OS but extensible for Windows Phone and iOS, it also remarkably meliorated

the performance of dispatching requests to meet the speed requirements of mobile real-time

applications. Finally, we extended the use of mobile method invocation for effective code

distribution and offloading over multi-group device-to-device networks.
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In the future, we will continue the research by extending our architecture in three

different directions: mobile network simulation, compensation model for collaboration and

autonomous recovery for network failures. This dissertation is written based on five confer-

ence papers, sequentially presented at SAC 2017 [5], FMEC 2017 [6], COMPSAC 2017 [7],

iiWAS 2017 [8] and a submitted paper to MOBILESoft 2018.
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