7,197 research outputs found

    Enabling industrial scale simulation / emulation models

    Full text link
    OLE Process Control (OPC) is an industry standard that facilitates the communication between PCs and Programmable Logic Controllers (PLC). This communication allows for the testing of control systems with an emulation model. When models require faster and higher volume communications, limitations within OPC prevent this. In this paper an interface is developed to allow high speed and high volume communications between a PC and PLC enabling the emulation of larger and more complex control systems and their models. By switching control of elements within the model between the model engine and the control system it is possible to use the model to validate the system design, test the real world control systems and visualise real world operation. <br /

    When Should I Use Network Emulation?

    Get PDF
    The design and development of a complex system requires an adequate methodology and efficient instrumental support in order to early detect and correct anomalies in the functional and non-functional properties of the tested protocols. Among the various tools used to provide experimental support for such developments, network emulation relies on real-time production of impairments on real traffic according to a communication model, either realistically or not. This paper aims at simply presenting to newcomers in network emulation (students, engineers, ...) basic principles and practices illustrated with a few commonly used tools. The motivation behind is to fill a gap in terms of introductory and pragmatic papers in this domain. The study particularly considers centralized approaches, allowing cheap and easy implementation in the context of research labs or industrial developments. In addition, an architectural model for emulation systems is proposed, defining three complementary levels, namely hardware, impairment and model levels. With the help of this architectural framework, various existing tools are situated and described. Various approaches for modeling the emulation actions are studied, such as impairment-based scenarios and virtual architectures, real-time discrete simulation and trace-based systems. Those modeling approaches are described and compared in terms of services and we study their ability to respond to various designer needs to assess when emulation is needed

    When should I use network emulation ?

    Get PDF
    The design and development of a complex system requires an adequate methodology and efficient instrumental support in order to early detect and correct anomalies in the functional and non-functional properties of the tested protocols. Among the various tools used to provide experimental support for such developments, network emulation relies on real-time production of impairments on real traffic according to a communication model, either realistically or not. This paper aims at simply presenting to newcomers in network emulation (students, engineers, ...) basic principles and practices illustrated with a few commonly used tools. The motivation behind is to fill a gap in terms of introductory and pragmatic papers in this domain. The study particularly considers centralized approaches, allowing cheap and easy implementation in the context of research labs or industrial developments. In addition, an architectural model for emulation systems is proposed, defining three complementary levels, namely hardware, impairment and model levels. With the help of this architectural framework, various existing tools are situated and described. Various approaches for modeling the emulation actions are studied, such as impairment-based scenarios and virtual architectures, real-time discrete simulation and trace-based systems. Those modeling approaches are described and compared in terms of services and we study their ability to respond to various designer needs to assess when emulation is needed

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT
    corecore