23 research outputs found

    Fast privacy-preserving network function outsourcing

    Get PDF
    In this paper, we present the design and implementation of SplitBox, a system for privacy-preserving processing of network functions outsourced to cloud middleboxes—i.e., without revealing the policies governing these functions. SplitBox is built to provide privacy for a generic network function that abstracts the functionality of a variety of network functions and associated policies, including firewalls, virtual LANs, network address translators (NATs), deep packet inspection, and load balancers. We present a scalable design aiming to provide high throughput and low latency, by distributing functionalities to a few virtual machines (VMs), while providing provably secure guarantees. We implement SplitBox inside FastClick, an extension of the Click modular router, using Intel's DPDK to handle packet I/O. We evaluate our prototype experimentally to find its bottlenecks and stress-test its different components, vis-à-vis two widely used network functions, i.e., firewall and VLAN tagging. Our evaluation shows that, on commodity hardware, SplitBox can process packets close to line rate (i.e., 8.9Gbps) with up to 50 traversed policies

    ENDBOX: Scalable Middlebox Functions Using Client-Side Trusted Execution

    Get PDF
    Many organisations enhance the performance, security, and functionality of their managed networks by deploying middleboxes centrally as part of their core network. While this simplifies maintenance, it also increases cost because middlebox hardware must scale with the number of clients. A promising alternative is to outsource middlebox functions to the clients themselves, thus leveraging their CPU resources. Such an approach, however, raises security challenges for critical middlebox functions such as firewalls and intrusion detection systems. We describe EndBox, a system that securely executes middlebox functions on client machines at the network edge. Its design combines a virtual private network (VPN) with middlebox functions that are hardware-protected by a trusted execution environment (TEE), as offered by Intel's Software Guard Extensions (SGX). By maintaining VPN connection endpoints inside SGX enclaves, EndBox ensures that all client traffic, including encrypted communication, is processed by the middlebox. Despite its decentralised model, EndBox's middlebox functions remain maintainable: they are centrally controlled and can be updated efficiently. We demonstrate EndBox with two scenarios involving (i) a large company; and (ii) an Internet service provider that both need to protect their network and connected clients. We evaluate EndBox by comparing it to centralised deployments of common middlebox functions, such as load balancing, intrusion detection, firewalling, and DDoS prevention. We show that EndBox achieves up to 3.8x higher throughput and scales linearly with the number of clients

    Zombie: Middleboxes that Don’t Snoop

    Get PDF
    Zero-knowledge middleboxes (ZKMBs) are a recent paradigm in which clients get privacy while middleboxes enforce policy: clients prove in zero knowledge that the plaintext underlying their encrypted traffic complies with network policies, such as DNS filtering. However, prior work had impractically poor performance and was limited in functionality. This work presents Zombie, the first system built using the ZKMB paradigm. Zombie introduces techniques that push ZKMBs to the verge of practicality: preprocessing (to move the bulk of proof generation to idle times between requests), asynchrony (to remove proving and verifying costs from the critical path), and batching (to amortize some of the verification work). Zombie’s choices, together with these techniques, provide a factor of 3.5×\times speedup in total computation done by client and middlebox, lowering the critical path overhead for a DNS filtering application to less than 300ms (on commodity hardware) or (in the asynchronous configuration) to 0. As an additional contribution that is likely of independent interest, Zombie introduces a portfolio of techniques to efficiently encode regular expressions in probabilistic (and zero knowledge) proofs; these techniques offer significant asymptotic and constant factor improvements in performance over a standard baseline. Zombie builds on this portfolio to support policies based on regular expressions, such as data loss prevention

    Enabling heterogeneous network function chaining

    Get PDF
    Today's data center operators deploy network policies in both physical (e.g., middleboxes, switches) and virtualized (e.g., virtual machines on general purpose servers) network function boxes (NFBs), which reside in different points of the network, to exploit their efficiency and agility respectively. Nevertheless, such heterogeneity has resulted in a great number of independent network nodes that can dynamically generate and implement inconsistent and conflicting network policies, making correct policy implementation a difficult problem to solve. Since these nodes have varying capabilities, services running atop are also faced with profound performance unpredictability. In this paper, we propose a Heterogeneous netwOrk Policy Enforcement (HOPE) scheme to overcome these challenges. HOPE guarantees that network functions (NFs) that implement a policy chain are optimally placed onto heterogeneous NFBs such that the network cost of the policy is minimized. We first experimentally demonstrate that the processing capacity of NFBs is the dominant performance factor. This observation is then used to formulate the Heterogeneous Network Policy Placement problem, which is shown to be NP-Hard. To solve the problem efficiently, an online algorithm is proposed. Our experimental results demonstrate that HOPE achieves the same optimality as Branch-and-bound optimization but is 3 orders of magnitude more efficient

    Enforcement of dynamic HTTP policies on resource-constrained residential gateways

    Get PDF
    Given that nowadays users access content mostly through mobile apps and web services, both based on HTTP, several filtering applications, such as parental control, malware detection, and corporate policy enforcement, require inspecting Universal Resource Locators (URLs) contained in HTTP requests. Currently, such filtering is most commonly performed in end devices or in middleboxes. Filtering applications running on end devices are less resource intensive because they operate only on traffic from a single user and possibly leverage a hook at the HTTP level to access protocol data, but it is left to the user whether to execute them. On the other hand, middleboxes present the challenge of ensuring that they lay on the path of all the traffic from any relevant device. Residential gateways seem to be the ideal place where to implement traffic filtering because they forward all traffic generated by the hosts on home(-office) networks. However, these devices usually have very limited computation and memory resources, while URL-based filtering is quite demanding. In fact existing approaches rely on a large database of rules coupled with either deep packet inspection or transparent proxying for URL extraction. This paper introduces U-Filter, a URL filtering solution based on a distributed architecture where a lightweight, efficient URL extraction and policy enforcement component runs on residential gateways, delegating to a remote policy server the resource intensive task of verifying policy compliance. Thanks to the lightweight communication between the two components and the very limited resource requirements of the local module, U-Filter (i) can be deployed on resource-limited devices such as residential gateways, and (ii) has almost no impact on the performance of the device, as well as on the users’ browsing experience, as demonstrated by the experiments presented in the paper

    Review and analysis of networking challenges in cloud computing

    Get PDF
    Cloud Computing offers virtualized computing, storage, and networking resources, over the Internet, to organizations and individual users in a completely dynamic way. These cloud resources are cheaper, easier to manage, and more elastic than sets of local, physical, ones. This encourages customers to outsource their applications and services to the cloud. The migration of both data and applications outside the administrative domain of customers into a shared environment imposes transversal, functional problems across distinct platforms and technologies. This article provides a contemporary discussion of the most relevant functional problems associated with the current evolution of Cloud Computing, mainly from the network perspective. The paper also gives a concise description of Cloud Computing concepts and technologies. It starts with a brief history about cloud computing, tracing its roots. Then, architectural models of cloud services are described, and the most relevant products for Cloud Computing are briefly discussed along with a comprehensive literature review. The paper highlights and analyzes the most pertinent and practical network issues of relevance to the provision of high-assurance cloud services through the Internet, including security. Finally, trends and future research directions are also presented
    corecore