3,109 research outputs found

    Is Explicit Congestion Notification usable with UDP?

    Get PDF
    We present initial measurements to determine if ECN is usable with UDP traffic in the public Internet. This is interesting because ECN is part of current IETF proposals for congestion control of UDPbased interactive multimedia, and due to the increasing use of UDP as a substrate on which new transport protocols can be deployed. Using measurements from the author’s homes, their workplace, and cloud servers in each of the nine EC2 regions worldwide, we test reachability of 2500 servers from the public NTP server pool, using ECT(0) and not-ECT marked UDP packets. We show that an average of 98.97% of the NTP servers that are reachable using not-ECT marked packets are also reachable using ECT(0) marked UDP packets, and that ~98% of network hops pass ECT(0) marked packets without clearing the ECT bits. We compare reachability of the same hosts using ECN with TCP, finding that 82.0% of those reachable with TCP can successfully negotiate and use ECN. Our findings suggest that ECN is broadly usable with UDP traffic, and that support for use of ECN with TCP has increased

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    How long delays impact TCP performance for a connectivity from Reunion Island ?

    Full text link
    TCP is the protocol of transport the most used in the Internet and have a heavy-dependence on delay. Reunion Island have a specific Internet connection, based on main links to France, located 10.000 km away. As a result, the minimal delay between Reunion Island and France is around 180 ms. In this paper, we will study TCP traces collected in Reunion Island University. The goal is to determine the metrics to study the impacts of long delays on TCP performance

    Measuring ECN++: good news for ++, bad news for ECN over mobile

    Get PDF
    After ECN was first added to IP in 2001, it was hit by a succession of deployment problems. Studies in recent years have concluded that path traversal of ECN has become close to universal. In this article, we test whether the performance enhancement called ECN++ will face a similar deployment struggle as did base ECN. For this, we assess the feasibility of ECN++ deployment over mobile as well as fixed networks. In the process, we discover bad news for the base ECN protocol: contrary to accepted beliefs, more than half the mobile carriers we tested wipe the ECN field at the first upstream hop. All packets still get through, and congestion control still functions, just without the benefits of ECN. This throws into question whether previous studies used representative vantage points. This article also reports the good news that, wherever ECN gets through, we found no deployment problems for the "++" enhancement to ECN. The article includes the results of other in-depth tests that check whether servers that claim to support ECN actually respond correctly to explicit congestion feedback. Those interested can access the raw measurement data online.The work of Anna Maria Mandalari has been funded by the EU FP7 METRICS (607728) project. The work of Marcelo Bagnulo has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA and the 5G-City project funded by MINECO. This work was partially supported by the EU H2020 research and innovation program under grant agreement No. 644399 (MONROE) and grant agreement No. 688421 (MAMI)

    System Support for Bandwidth Management and Content Adaptation in Internet Applications

    Full text link
    This paper describes the implementation and evaluation of an operating system module, the Congestion Manager (CM), which provides integrated network flow management and exports a convenient programming interface that allows applications to be notified of, and adapt to, changing network conditions. We describe the API by which applications interface with the CM, and the architectural considerations that factored into the design. To evaluate the architecture and API, we describe our implementations of TCP; a streaming layered audio/video application; and an interactive audio application using the CM, and show that they achieve adaptive behavior without incurring much end-system overhead. All flows including TCP benefit from the sharing of congestion information, and applications are able to incorporate new functionality such as congestion control and adaptive behavior.Comment: 14 pages, appeared in OSDI 200
    corecore