
PATHspider: A tool for active measurement of path
transparency

Iain R. Learmonth
University of Aberdeen,

Scotland
iain@erg.abdn.ac.uk

Brian Trammell
ETH Zurich, Switzerland

trammell@tik.ee.ethz.ch

Mirja Kuhlewind
ETH Zurich, Switzerland

mirja.kuehlewind@tik.ee.ethz.ch

Gorry Fairhurst
University of Aberdeen,

Scotland
gorry@erg.abdn.ac.uk

ABSTRACT
In today’s Internet we see an increasing deployment of mid-
dleboxes. While middleboxes provide in-network functional-
ity that is necessary to keep networks manageable and eco-
nomically viable, any packet mangling – whether essential
for the needed functionality or accidental as an unwanted
side effect – makes it more and more difficult to deploy
new protocols or extensions of existing protocols. For the
evolution of the protocol stack, it is important to know
which network impairments exist and potentially need to
be worked around. While classical network measurement
tools are often focused on absolute performance values, we
present a new measurement tool, called PATHspider that
performs A/B testing between two different protocols or dif-
ferent protocol extensions to perform controlled experiments
of protocol-dependent connectivity problems as well as dif-
ferential treatment. PATHspider is a framework for per-
forming and analyzing these measurements, while the actual
A/B test can be easily customized. This paper describes the
basic design approach and architecture of PATHspider and
gives guidance how to use and customize it.

CCS Concepts
•Networks→Network experimentation; Network mea-
surement; Transport protocols;

Keywords
Active network measurement, path transparency, transport
protocol features, network experimentation, measurement
tools

1. INTRODUCTION
Network operators increasingly rely on in-network func-

tionality to make their networks manageable and economi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany
c© 2016 ACM. ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959441

cally viable. These middleboxes make the end-to-end path
for traffic more opaque by making assumptions about the
traffic passing through them. This has led to an ossification
of the Internet protocol stack: new protocols and extensions
can be difficult to deploy when middleboxes do not under-
stand them [8]. This paper presents a new software measure-
ment tool, PATHspider, for active measurement of Internet
path transparency to transport protocols and transport pro-
tocol extensions, to generate raw data at scale to determine
the size and shape of this problem.

The A/B testing measurement methodology used by PATH-
spider is simple: We perform connections from a set of ob-
servation points to a set of measurement targets using two
configurations. A baseline configuration (A), usually a TCP
connection using kernel default and no extensions, tests ba-
sic connectivity. These connections are compared to the
experimental configuration (B), which uses a different trans-
port protocol or set of TCP extensions. These connections
are made as simultaneously as possible, to reduce the impact
of transient network changes.

PATHspider is a generalized version of the ecnspider tool,
used in previous studies to probe the paths from multi-
ple vantage points to web-servers [14] and to peer-to-peer
clients [7] for failures negotiating Explicit Congestion Noti-
fication (ECN) [10] in TCP.

As a generalized tool for controlled experimental A/B
testing of path impairment, PATHspider fills a gap in the
existing Internet active measurement software ecosystem.
Existing active measurement platforms, such as RIPE At-
las [11], OONI [5], or Netalyzr [9], were built to measure ab-
solute performance and connectivity between a pair of end-
points under certain conditions. The results obtainable from
each of these can of course be compared to each other to sim-
ulate A/B testing. However, the measurement data obtained
from these platforms provide a less controlled view than can
be achieved with PATHspider given coarser scheduling of
measurements in each state.

In this paper we present the design approach and archi-
tecture of PATHspider. Source code and documentation for
PATHspider is available at
https://pathspider.mami-project.eu/

PATHspider as a tool is still work-in-progess. However, we
are currently using it to test the deployment and deployabil-
ity of different transport protocols and TCP extensions on
the open Internet, including TCP Fast Open[3], Multipath

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/161993611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

workerworkerworkerstargetstargetstargets

configurator

sys
config

test traffic

sysctl

observer

merger

target
queue

output
data

sync

target info

traffic info

Figure 1: Block diagram illustrating control flow and

flow of data between PATHspider components.

TCP[6], UDP options[12] and UDP with zero checksum[4].
To collect these kind of measurement data at scale, we are
currently deploying PATHspider on existing measurement
testbeds such as CAIDA Ark and MONROE.

Given PATHspider ’s modular design and implementation
in Python, plugins to perform measurements for any trans-
port protocol or extension are easy to build and can take
advantage of the rich Python library ecosystem, including
high-level application libraries, low-level socket interfaces,
and packet forging tools such as Scapy [2]. While present-
ing no new measurement results, we present an approach for
running controlled experiments of path impairments in the
Internet, and offer PATHspider as a framework for doing so.

2. ARCHITECTURE
The PATHspider architecture has four components, illus-

trated in figure 1: the configurator, the workers, the observer
and the merger. Each component is implemented as one or
more threads, launched when PATHspider starts.

For each target hostname and/or address, with port num-
bers where appropriate, PATHspider enqueues a job, to be
distributed amongst the worker threads when available. Each
worker performs one connection with the “A” configuration
and one connection with the “B” configuration. The “A”
configuration will always be connected first and serves as
the base line measurement, followed by the “B” configura-
tion. This allows detection of hosts that do not respond
rather than failing as a result of using a particular trans-
port protocol or extension. These sockets remain open for a
post-connection operation.

Some transport options require a system-wide parameter
change, for example enabling ECN in the Linux kernel. This
requires locking and synchronisation. Using semaphores, the
configurator waits for each worker to complete an operation
and then changes the state to perform the next batch of
operations. This process cycles continually until no more
jobs remain. In a typical experiment, multiple workers (on
the order of hundreds) are active, since much of the time
in a connection test is spent waiting for an answer for the
target or a timeout to fire.

In addition, packets are separately captured for analy-
sis by the observer using Python bindings for libtrace [1].

First, the observer assigns each incoming packet to a flow
based on the source and destination addresses, as well as
the TCP, UDP or SCTP ports when available. The packet
and its associated flow are then passed to a function chain.
The functions in this chain may be simple functions, such
as counting the number of packets or octets seen for a flow,
or more complex functions, such as recording the state of
flags within packets and analysis based on previously ob-
served packets in the flow. For example, a function may
record both an ECN negotiation attempt and whether the
host successfully negotiated use of ECN.

A function may alert the observer that a flow should have
completed and that the flow information can be matched
with the corresponding job record and passed to the merger.
The merger extracts the fields needed for a particular mea-
surement campaign from the records produced by the worker
and the observer.

3. EXTENSIBILITY
PATHspider plugins are built by extending an abstract

class that implements the core behaviour, with functions for
the configurator, workers, observer, and matcher.

There are two configurator functions: config_zero and
config_one, run by the configurator to prepare for each at-
tempted connection mode. Where system-wide configura-
tion is not required, the configurator provides the semaphore-
based locking functions. This makes the workers aware of
the current configuration allowing the connection functions
to change based on the current configuration mode.

There are three connection functions: pre_connect, con-
nect and post_connect. connect is the only required func-
tion. The call to this function is synchronised by the config-
urator. The pre_connect and post_connect functions can
preconfigure state and perform actions with the connections
opened by the connect function without being synchronised
by the configurator. This can help to speed-up release of
the semaphores and complete jobs more efficiently. These
actions can also perform data gathering functions, for ex-
ample, a traceroute to the host being tested.

Plugins can implement arbitrary functions for the observer
function chain. These track the state of flows and build flow
records for different packet classes: The first chain handles
setup on the first packet of a new flow. Separate chains
chains for IP, TCP and UDP packets to allow different be-
haviours based on the IP version and transport protocol.

The final plugin function is the merger function. This
takes a job record from a worker and a flow record from the
observer and merges the records before passing the merged
record back to PATHspider.

4. CONCLUSIONS
We have presented PATHspider, a new open-source tool

for controlled experiments of path transparency impairments.
PATHspider is a part of an emerging platform being built
within the EU H2020 MAMI project. It will feed its obser-
vations into a path transparency observatory for integrated
analysis, and future integration of mPlane [13] will allow
orchestration of large-scale, long-running observations.

By enabling larger-scale, more diverse measurements of
impairments to path transparency, we expect PATHspider
to help inform development of new protocol mechanisms and
protocols, and to reduce the burden of deploying them.

5. ACKNOWLEDGEMENTS
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant
agreement No 688421, and was supported by the Swiss State
Secretariat for Education, Research and Innovation (SERI)
under contract number 15.0268. The opinions expressed and
arguments employed reflect only the authors’ views. The
European Commission is not responsible for any use that
may be made of that information. Further, the opinions ex-
pressed and arguments employed herein do not necessarily
reflect the official views of the Swiss Government.

6. REFERENCES
[1] S. Alcock, P. Lorier, and R. Nelson. Libtrace: A packet

capture and analysis library. SIGCOMM Comput.
Commun. Rev., 42(2):42–48, Mar. 2012.

[2] P. Biondi. Scapy: explore the net with new eyes.
Technical report, EADS Corporate Research Center,
http://www.secdev.org, 2005.

[3] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP
Fast Open. RFC 7413 (Experimental), Dec. 2014.

[4] G. Fairhurst and M. Westerlund. Applicability
Statement for the Use of IPv6 UDP Datagrams with
Zero Checksums. RFC 6936 (Proposed Standard), Apr.
2013.

[5] A. Filasto and J. Appelbaum. Ooni: Open observatory
of network interference. In FOCI, 2012.

[6] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with Multiple
Addresses. RFC 6824 (Experimental), Jan. 2013.

[7] E. Gubser. Explicit Congestion Negotiation (ECN)

support based on P2P networks. ftp://ftp.tik.ee.ethz.
ch/pub/students/2015-FS/SA-2015-05.pdf.

[8] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is It Still Possible to
Extend TCP? In Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement
Conference, IMC ’11, pages 181–194, New York, NY,
USA, 2011. ACM.

[9] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating The Edge Network. In Internet
Measurement Conference (IMC), 2010.

[10] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168 (Proposed Standard), Sept. 2001.
Updated by RFCs 4301, 6040.

[11] R. N. Staff. RIPE Atlas: A Global Internet
Measurement Network. Internet Protocol Journal,
18(3), September 2015.

[12] J. Touch. Transport options for udp. Internet-Draft
draft-touch-tsvwg-udp-options-02, IETF Secretariat,
January 2016. http://www.ietf.org/internet-drafts/
draft-touch-tsvwg-udp-options-02.txt.

[13] B. Trammell, P. Casas, D. Rossi, A. Bar, Z. Houidi,
I. Leontiadis, T. Szemethy, and M. Mellia. mPlane: an
intelligent measurement plane for the Internet.
Communications Magazine, IEEE, 52(5):148–156, 2014.

[14] B. Trammell, M. Kühlewind, D. Boppart,
I. Learmonth, G. Fairhurst, and R. Scheffenegger.
Enabling internet-wide deployment of explicit
congestion notification. In Passive and Active
Measurement Conference, pages 193–205, New York,
USA, 2015.

