450 research outputs found

    Enabling Correct Interest Forwarding and Retransmissions in a Content Centric Network

    Full text link
    We show that the mechanisms used in the name data networking (NDN) and the original content centric networking (CCN) architectures may not detect Interest loops, even if the network in which they operate is static and no faults occur. Furthermore, we show that no correct Interest forwarding strategy can be defined that allows Interest aggregation and attempts to detect Interest looping by identifying Interests uniquely. We introduce SIFAH (Strategy for Interest Forwarding and Aggregation with Hop-Counts), the first Interest forwarding strategy shown to be correct under any operational conditions of a content centric network. SIFAH operates by having forwarding information bases (FIBs) store the next hops and number of hops to named content, and by having each Interest state the name of the requested content and the hop count from the router forwarding an Interest to the content. We present the results of simulation experiments using the ndnSIM simulator comparing CCN and NDN with SIFAH. The results of these experiments illustrate the negative impact of undetected Interest looping when Interests are aggregated in CCN and NDN, and the performance advantages of using SIFAH

    Backscatter from the Data Plane --- Threats to Stability and Security in Information-Centric Networking

    Full text link
    Information-centric networking proposals attract much attention in the ongoing search for a future communication paradigm of the Internet. Replacing the host-to-host connectivity by a data-oriented publish/subscribe service eases content distribution and authentication by concept, while eliminating threats from unwanted traffic at an end host as are common in today's Internet. However, current approaches to content routing heavily rely on data-driven protocol events and thereby introduce a strong coupling of the control to the data plane in the underlying routing infrastructure. In this paper, threats to the stability and security of the content distribution system are analyzed in theory and practical experiments. We derive relations between state resources and the performance of routers and demonstrate how this coupling can be misused in practice. We discuss new attack vectors present in its current state of development, as well as possibilities and limitations to mitigate them.Comment: 15 page

    ADN: An Information-Centric Networking Architecture for the Internet of Things

    Full text link
    Forwarding data by name has been assumed to be a necessary aspect of an information-centric redesign of the current Internet architecture that makes content access, dissemination, and storage more efficient. The Named Data Networking (NDN) and Content-Centric Networking (CCNx) architectures are the leading examples of such an approach. However, forwarding data by name incurs storage and communication complexities that are orders of magnitude larger than solutions based on forwarding data using addresses. Furthermore, the specific algorithms used in NDN and CCNx have been shown to have a number of limitations. The Addressable Data Networking (ADN) architecture is introduced as an alternative to NDN and CCNx. ADN is particularly attractive for large-scale deployments of the Internet of Things (IoT), because it requires far less storage and processing in relaying nodes than NDN. ADN allows things and data to be denoted by names, just like NDN and CCNx do. However, instead of replacing the waist of the Internet with named-data forwarding, ADN uses an address-based forwarding plane and introduces an information plane that seamlessly maps names to addresses without the involvement of end-user applications. Simulation results illustrate the order of magnitude savings in complexity that can be attained with ADN compared to NDN.Comment: 10 page

    In-Network Retransmissions in Named Data Networking

    Get PDF
    The strategy layer is an important architectural component in both Content-Centric Networking (CCN) and Named Data Networking (NDN). This component introduces a new forwarding model that allows an application to configure its namespace with a forwarding strategy. A core mechanism in every forwarding strategy is the decision of whether to retransmit an unsatisfied Interest or to wait for an application retransmission. While some applications request control of all retransmissions, others rely on the assumption that the strategy will retransmit an Interest when it is not satisfied. Although an application can select the forwarding strategy used in the local host, it cannot guarantee the selection of the same strategy in other nodes in the network, especially in shared resource environments. In some scenarios, a developer must bind the implementation of the application to the details of the deployed forwarding strategy to guarantee the correctness of his application. In this paper we discuss the core mechanisms of a forwarding strategy in NDN, and we explore the importance and impact of in-network retransmissions on the application\u27s performance and correctness. We propose and implement a simple forwarding strategy abstraction that allows the application to decide whether a network retransmission is required, and differentiate application retransmissions from network retransmissions. We show that in some scenarios, such as multiple producers application or multipath consumer-producer service, the proposed abstraction can significantly reduce the percentage of unsatisfied Interests

    Content-Centric Networking at Internet Scale through The Integration of Name Resolution and Routing

    Full text link
    We introduce CCN-RAMP (Routing to Anchors Matching Prefixes), a new approach to content-centric networking. CCN-RAMP offers all the advantages of the Named Data Networking (NDN) and Content-Centric Networking (CCNx) but eliminates the need to either use Pending Interest Tables (PIT) or lookup large Forwarding Information Bases (FIB) listing name prefixes in order to forward Interests. CCN-RAMP uses small forwarding tables listing anonymous sources of Interests and the locations of name prefixes. Such tables are immune to Interest-flooding attacks and are smaller than the FIBs used to list IP address ranges in the Internet. We show that no forwarding loops can occur with CCN-RAMP, and that Interests flow over the same routes that NDN and CCNx would maintain using large FIBs. The results of simulation experiments comparing NDN with CCN-RAMP based on ndnSIM show that CCN-RAMP requires forwarding state that is orders of magnitude smaller than what NDN requires, and attains even better performance

    A Light-Weight Forwarding Plane for Content-Centric Networks

    Full text link
    We present CCN-DART, a more efficient forwarding approach for content-centric networking (CCN) than named data networking (NDN) that substitutes Pending Interest Tables (PIT) with Data Answer Routing Tables (DART) and uses a novel approach to eliminate forwarding loops. The forwarding state required at each router using CCN-DART consists of segments of the routes between consumers and content providers that traverse a content router, rather than the Interests that the router forwards towards content providers. Accordingly, the size of a DART is proportional to the number of routes used by Interests traversing a router, rather than the number of Interests traversing a router. We show that CCN-DART avoids forwarding loops by comparing distances to name prefixes reported by neighbors, even when routing loops exist. Results of simulation experiments comparing CCN-DART with NDN using the ndnSIM simulation tool show that CCN-DART incurs 10 to 20 times less storage overhead
    corecore