145 research outputs found

    Securing Distributed Computer Systems Using an Advanced Sophisticated Hybrid Honeypot Technology

    Get PDF
    Computer system security is the fastest developing segment in information technology. The conventional approach to system security is mostly aimed at protecting the system, while current trends are focusing on more aggressive forms of protection against potential attackers and intruders. One of the forms of protection is also the application of advanced technology based on the principle of baits - honeypots. Honeypots are specialized devices aimed at slowing down or diverting the attention of attackers from the critical system resources to allow future examination of the methods and tools used by the attackers. Currently, most honeypots are being configured and managed statically. This paper deals with the design of a sophisticated hybrid honeypot and its properties having in mind enhancing computer system security. The architecture of a sophisticated hybrid honeypot is represented by a single device capable of adapting to a constantly changing environment by using active and passive scanning techniques, which mitigate the disadvantages of low-interaction and high-interaction honeypots. The low-interaction honeypot serves as a proxy for multiple IP addresses and filters out traffic beyond concern, while the high-interaction honeypot provides an optimum level of interaction. The proposed architecture employing the prototype of a hybrid honeypot featuring autonomous operation should represent a security mechanism minimizing the disadvantages of intrusion detection systems and can be used as a solution to increase the security of a distributed computer system rapidly, both autonomously and in real-time

    Flooding attacks to internet threat monitors (ITM): Modeling and counter measures using botnet and honeypots

    Full text link
    The Internet Threat Monitoring (ITM),is a globally scoped Internet monitoring system whose goal is to measure, detect, characterize, and track threats such as distribute denial of service(DDoS) attacks and worms. To block the monitoring system in the internet the attackers are targeted the ITM system. In this paper we address flooding attack against ITM system in which the attacker attempt to exhaust the network and ITM's resources, such as network bandwidth, computing power, or operating system data structures by sending the malicious traffic. We propose an information-theoretic frame work that models the flooding attacks using Botnet on ITM. Based on this model we generalize the flooding attacks and propose an effective attack detection using Honeypots

    Evaluating the effectiveness of an intrusion prevention / honeypot hybrid

    Get PDF
    An intrusion prevention system is a variation of an intrusion detection system that drops packets that are anomalous based on a chosen criteria. An intrusion prevention system is typically placed on the outer perimeter of a network to prevent intruders from reaching vulnerable machines inside the network, though it can also be placed inside the network in front of systems requiring extra security measures. Unfortunately, intrusion prevention systems, even when properly configured, are susceptible to both false positives and false-negatives. The risk of false positives typically leads organizations to deploy these systems with the prevention capability disabled and only focus on detection. In this paper I propose an expansion to current intrusion prevention systems that combines them with the principles behind honeypots to reduce false positives while capturing attack traffic to improve prevention rules. In an experiment using the Snort-inline intrusion prevention system, I was able to reduce the rate of false positives to zero without negatively impacting the rate of false-negatives. I was further able to capture a successful attack in a way that minimized disruption to legitimate users but allowed the compromised system to be later analyzed to find weaknesses, improve prevention rules, and prevent future attacks

    A Study on Honeypot Technology for Future: Principles and Applications

    Get PDF
    Honeypot is an exciting new technology with enormous potential for the security community. It isresource which is intended to be attacked and compromised to gain more information about theattacker and his attack techniques. They are a highly flexible tool that comes in many shapes andsizes. This paper deals withunderstanding what a honeypot actually is, and how it works.There are different varieties of honeypots. Based on their category they have different applications. Thispaper gives an insight in to the use of honeypots in productive as well as educative environments.This paper alsodiscusses the advantages and disadvantages of honeypots, and what the futurehold in store forthem

    Honeypots: Why We Need A Dynamics Honeypots?

    Get PDF
    Honeypots has emerged to become a great tool for administrator to track down the intruder, prevent attack by intruder and log all the activity done by the intruder

    Emulating Industrial Control System Field Devices Using Gumstix Technology

    Get PDF
    Industrial Control Systems (ICS) have an inherent lack of security and situational awareness capabilities at the field device level. Yet these systems comprise a significant portion of the nation\u27s critical infrastructure. Currently, there is little insight into the characterization of attacks on ICS. Stuxnet provided an initial look at the type of tactics that can be employed to create physical damage via cyber means. The question still remains, however, as to the extent of malware and attacks that are targeting the critical infrastructure, along with the various methods employed to target systems associated with the ICS environment. This research presents a device using Gumstix technology that emulates an ICS field device. The emulation device is low-cost, adaptable to myriad ICS environments and provides logging capabilities at the field device level. The device was evaluated to ensure conformity to RFC standards and that the operating characteristics are consistent with actual field devices

    An Analysis of Honeypot Programs and the Attack Data Collected

    Get PDF
    Honeypots are computers specifically deployed to be a resource that is expected to be attacked or compromised. While the attacker is distracted with the decoy computer system we learn about the attacker and their methods of attack. From the information gained about the attacks we can then review and harden out security systems. Compared to an Intrusion Detection System (IDS) which may trigger false positives, we take the standpoint that nobody ought to be interacting with the decoy computer; therefore we regard all interactions to be of value and worth investigation. A sample of honeypots are evaluated and one selected to collect attacks. The captured attacks reveal the source IP address of the attacker and the service port under attack. Attacks where the exploit attempts to deploy a binary can capture the code, and automatically submit it for analysis to sandboxes such as VirusTotal

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability
    corecore