312 research outputs found

    Reflecting Human Knowledge of Place and Route-Choice Behavior Using Big Data

    Get PDF
    Exploring human knowledge of geographical space and related behavior not only helps in understanding human-environment interactions and dynamic geographic processes, but also advances Geographic Information Systems (GIS) toward a human-centric paradigm to make daily life more efficient. Today’s relatively easy acquisition of various big data provides an unprecedented opportunity for geographers to answer research questions that previously could not be adequately addressed. However, new challenges also arise regarding data quality and bias as well as change in methodology for dealing with big data that are different from traditional data types. Representing people’s perception of place and studying driver’s route-choice behavior are two of the many applications of big data in answering research questions about human knowledge and behavior in the fields of GIS and transportation. Incorporating three papers, this dissertation focuses on these two different applications to achieve the following objectives: 1) examine the degree to which a geographic place’s spatial extent can be estimated from human-generated geotagged photos; 2) address the challenge of geotagged photos’ uneven spatial distribution in place estimation and explore an approach that can better derive a place’s spatial extent; 3) develop a method that can properly estimate the spatial extent of a place that has multiple disjoint regions while considering geotagged photos’ uneven distribution; 4) explore useful spatiotemporal patterns of taxi drivers’ route-choice behavior in a dynamic urban environment. This dissertation makes three major contributions to big data applications’ systematic theory: 1) proposes an effective approach to handling the uneven spatial distribution problem of geotagged photos as a type of volunteered geographic data by modeling their representativeness; 2) develops methods that can properly derive the vague spatial extent of a place with or without disjoint regions; and 3) explores taxi drivers’ route-choice patterns in different situations that can inform future transportation decisions and policy-making processes

    Future Transportation

    Get PDF
    Greenhouse gas (GHG) emissions associated with transportation activities account for approximately 20 percent of all carbon dioxide (co2) emissions globally, making the transportation sector a major contributor to the current global warming. This book focuses on the latest advances in technologies aiming at the sustainable future transportation of people and goods. A reduction in burning fossil fuel and technological transitions are the main approaches toward sustainable future transportation. Particular attention is given to automobile technological transitions, bike sharing systems, supply chain digitalization, and transport performance monitoring and optimization, among others

    Analysed potential of big data and supervised machine learning techniques in effectively forecasting travel times from fused data

    Get PDF
    Travel time forecasting is an interesting topic for many ITS services. Increased availability of data collection sensors increases the availability of the predictor variables but also highlights the high processing issues related to this big data availability. In this paper we aimed to analyse the potential of big data and supervised machine learning techniques in effectively forecasting travel times. For this purpose we used fused data from three data sources (Global Positioning System vehicles tracks, road network infrastructure data and meteorological data) and four machine learning techniques (k-nearest neighbours, support vector machines, boosting trees and random forest). To evaluate the forecasting results we compared them in-between different road classes in the context of absolute values, measured in minutes, and the mean squared percentage error. For the road classes with the high average speed and long road segments, machine learning techniques forecasted travel times with small relative error, while for the road classes with the small average speeds and segment lengths this was a more demanding task. All three data sources were proven itself to have a high impact on the travel time forecast accuracy and the best results (taking into account all road classes) were achieved for the k-nearest neighbours and random forest techniques.</p

    Modeling Spatio-Temporal Evolution of Urban Crowd Flows

    Get PDF
    Metropolitan cities are facing many socio-economic problems (e.g., frequent traffic congestion, unexpected emergency events, and even human-made disasters) related to urban crowd flows, which can be described in terms of the gathering process of a flock of moving objects (e.g., vehicles, pedestrians) towards specific destinations during a given time period via different travel routes. Understanding the spatio-temporal characteristics of urban crowd flows is therefore of critical importance to traffic management and public safety, yet it is very challenging as it is affected by many complex factors, including spatial dependencies, temporal dependencies, and environmental conditions. In this research, we propose a novel matrix-computation-based method for modeling the morphological evolutionary patterns of urban crowd flows. The proposed methodology consists of four connected steps: (1) defining urban crowd levels, (2) deriving urban crowd regions, (3) quantifying their morphological changes, and (4) delineating the morphological evolution patterns. The proposed methodology integrates urban crowd visualization, identification, and correlation into a unified and efficient analytical framework. We validated the proposed methodology under both synthetic and real-world data scenarios using taxi mobility data in Wuhan, China as an example. Results confirm that the proposed methodology can enable city planners, municipal managers, and other stakeholders to identify and understand the gathering process of urban crowd flows in an informative and intuitive manner. Limitations and further directions with regard to data representativeness, data sparseness, pattern sensitivity, and spatial constraint are also discussed. Document type: Articl

    Respiratory pandemics, urban planning and design: a multidisciplinary rapid review of the literature.

    Get PDF
    COVID-19 is the most recent respiratory pandemic to necessitate better knowledge about city planning and design. The complex connections between cities and pandemics, however challenge traditional approaches to reviewing literature. In this article we adopted a rapid review methodology. We review the historical literature on respiratory pandemics and their documented connections to urban planning and design (both broadly defined as being concerned with cities as complex systems). Our systematic search across multidisciplinary databases returned a total of 1323 sources, with 92 articles included in the final review. Findings showed that the literature represents the multi-scalar nature of cities and pandemics – pandemics are global phenomena spread through an interconnected world, but require regional, city, local and individual responses. We characterise the literature under ten themes: scale (global to local); built environment; governance; modelling; non-pharmaceutical interventions; socioeconomic factors; system preparedness; system responses; underserved and vulnerable populations; and future-proofing urban planning and design. We conclude that the historical literature captures how city planning and design intersects with a public health response to respiratory pandemics. Our thematic framework provides parameters for future research and policy responses to the varied connections between cities and respiratory pandemics

    An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques

    Full text link
    Origin-destination~(OD) flow modeling is an extensively researched subject across multiple disciplines, such as the investigation of travel demand in transportation and spatial interaction modeling in geography. However, researchers from different fields tend to employ their own unique research paradigms and lack interdisciplinary communication, preventing the cross-fertilization of knowledge and the development of novel solutions to challenges. This article presents a systematic interdisciplinary survey that comprehensively and holistically scrutinizes OD flows from utilizing fundamental theory to studying the mechanism of population mobility and solving practical problems with engineering techniques, such as computational models. Specifically, regional economics, urban geography, and sociophysics are adept at employing theoretical research methods to explore the underlying mechanisms of OD flows. They have developed three influential theoretical models: the gravity model, the intervening opportunities model, and the radiation model. These models specifically focus on examining the fundamental influences of distance, opportunities, and population on OD flows, respectively. In the meantime, fields such as transportation, urban planning, and computer science primarily focus on addressing four practical problems: OD prediction, OD construction, OD estimation, and OD forecasting. Advanced computational models, such as deep learning models, have gradually been introduced to address these problems more effectively. Finally, based on the existing research, this survey summarizes current challenges and outlines future directions for this topic. Through this survey, we aim to break down the barriers between disciplines in OD flow-related research, fostering interdisciplinary perspectives and modes of thinking.Comment: 49 pages, 6 figure
    • …
    corecore