107 research outputs found

    Learning from seismic data to characterize subsurface volumes

    Get PDF
    The exponential growth of collected data from seismic surveys makes it impossible for interpreters to manually inspect, analyze and annotate all collected data. Deep learning has proved to be a potential mechanism to overcome big data problems in various computer vision tasks such as image classification and semantic segmentation. However, the applications of deep learning are limited in the field of subsurface volume characterization due to the limited availability of consistently-annotated seismic datasets. Obtaining annotations of seismic data is a labor-intensive process that requires field knowledge. Moreover, seismic interpreters rely on the few direct high-resolution measurements of the subsurface from well-logs and core data to confirm their interpretations. Different interpreters might arrive at different valid interpretations of the subsurface, all of which are in agreement with well-logs and core data. Therefore, to successfully utilize deep learning for subsurface characterization, one must address and circumvent the lack or shortage of consistent annotated data. In this dissertation, we introduce a learning-based physics-guided subsurface volume characterization framework that can learn from limited inconsistently-annotated data. The introduced framework integrates seismic data and the limited well-log data to characterize the subsurface at a higher-than-seismic resolution. The introduced framework takes into account the physics that governs seismic data to overcome noise and artifacts that are often present in the data. Integrating a physical model in deep-learning frameworks improves their generalization ability beyond the training data. Furthermore, the physical model enables deep networks to learn from unlabeled data, in addition to a few annotated examples, in a semi-supervised learning scheme. Applications of the introduced framework are not limited to subsurface volume characterization, it can be extended to other domains in which data represent a physical phenomenon and annotated data is limited.Ph.D

    Performance of Deep Learning in Land Use Land Cover Classification of Indian Remote Sensing (IRS) LISS – III Multispectral Data

    Get PDF
    Identification of land use land cover is a very important task. However, methods existing for the above mention purpose are labor incentives, time-consuming, and costly. Remote sensing plays very important role in the mappings. classification of land cover features and offers very noteworthy and sensed information. The present study shows the semantic segmentation of Indian remote sensing (IRS) LISS-III multispectral image and the comparison of three algorithms U-Net, Deeplabv3+and Tiramisu. The deep neural network was used to perform the study. We present total 3 innovative datasets, built on these LISS-III images that has 4 different spectral bands (Band – 2 (Blue), Band-3 (Green), Band-4(Red), and Band-5 (Nearly Infrared), FCC (false color composite) images and the ground truth mask images. Dataset has 13500 labelled images. A fully-convolutional network (FCN) with skip connections is trained to take an input image of size 128 X 128 X 3 and outputs a matrix of shape 128 X 128 X 4 i.e., a one-hot encoded version of the mask. The experiment identifies 4 classes successfully (Water Bodies, Vegetation, Uncultivated Land, and Residential areas). The experiment showed that the U-Net algorithm has a very good capability for the classification of LISS -III images for land use land cover class detection then Tiramisu and Deeplabv3+. U-Net achieved accuracy 84%, Deelabv3+ achieved 29% whereas Tiramisu achieved accuracy 33%

    AI-enhanced diagnosis of challenging lesions in breast MRI: a methodology and application primer

    Get PDF
    Computer-aided diagnosis (CAD) systems have become an important tool in the assessment of breast tumors with magnetic resonance imaging (MRI). CAD systems can be used for the detection and diagnosis of breast tumors as a “second opinion” review complementing the radiologist’s review. CAD systems have many common parts such as image pre-processing, tumor feature extraction and data classification that are mostly based on machine learning (ML) techniques. In this review paper, we describe the application of ML-based CAD systems in MRI of the breast covering the detection of diagnostically challenging lesions such as non-mass enhancing (NME) lesions, multiparametric MRI, neo-adjuvant chemotherapy (NAC) and radiomics all applied to NME. Since ML has been widely used in the medical imaging community, we provide an overview about the state-ofthe-art and novel techniques applied as classifiers to CAD systems. The differences in the CAD systems in MRI of the breast for several standard and novel applications for NME are explained in detail to provide important examples illustrating: (i) CAD for the detection and diagnosis, (ii) CAD in multi-parametric imaging (iii) CAD in NAC and (iv) breast cancer radiomics. We aim to provide a comparison between these CAD applications and to illustrate a global view on intelligent CAD systems based on ANN in MRI of the breast

    Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis : Principles and Recent Advances

    Get PDF
    This work was supported in part by the National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT) under Grant NRF 2020R1A2B5B02002478, and in part by Sejong University through its Faculty Research Program under Grant 20212023.Peer reviewedPublisher PD

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable
    • …
    corecore