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SUMMARY

The exponential growth of collected data from seismic surveys makes it impossible

for interpreters to manually inspect, analyze and annotate all collected data. Deep

learning has proved to be a potential mechanism to overcome big data problems in

various computer vision tasks such as image classification and semantic segmenta-

tion. However, the applications of deep learning are limited in the field of subsurface

volume characterization due to the limited availability of consistently-annotated seis-

mic datasets. Obtaining annotations of seismic data is a labor-intensive process that

requires field knowledge. Moreover, seismic interpreters rely on the few direct high-

resolution measurements of the subsurface from well-logs and core data to confirm

their interpretations. Different interpreters might arrive at different valid interpreta-

tions of the subsurface, all of which are in agreement with well-logs and core data.

Therefore, to successfully utilize deep learning for subsurface characterization, one

must address and circumvent the lack or shortage of consistent annotated data. In this

dissertation, we introduce a learning-based physics-guided subsurface volume charac-

terization framework that can learn from limited inconsistently-annotated data. The

introduced framework integrates seismic data and the limited well-log data to charac-

terize the subsurface at a higher-than-seismic resolution. The introduced framework

takes into account the physics that governs seismic data to overcome noise and arti-

facts that are often present in the data. Integrating a physical model in deep-learning

frameworks improves their generalization ability beyond the training data. Further-

more, the physical model enables deep networks to learn from unlabeled data, in addi-

tion to a few annotated examples, in a semi-supervised learning scheme. Applications

of the introduced framework are not limited to subsurface volume characterization,

it can be extended to other domains in which data represent a physical phenomenon

and annotated data is limited.

xviii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Technological Advances enable us to see beyond what is present before our eyes. In

various fields like astronomy, medical imaging, material sciences, and seismic imag-

ing, sensors are often used to measure physical properties, which are then turned into

visual data. For instance, in Magnetic Resonance Imaging (MRI), magnetic fields are

translated into images that enable visualizing body organs in a non-invasive proce-

dure. In oil exploration and production (E&P), the reflections of seismic waves from

the different layers of the subsurface are translated into a detailed 3-dimensional im-

ages of the subsurface. These images are then used to infer geological phenomena of

the subsurface. We refer to the process of inferring physical properties and phenomena

from indirect measurements as volume characterization.

Recent advances in data acquisition technology have resulted in the collection of

massive amounts of data. Big data, paired with recent advances in computing tech-

nology, make it possible to visually represent physical phenomena. In the field of oil

and gas exploration and production, massive amounts of data from the subsurface are

collected every day in seismic surveys that span tens or hundreds of square kilometers.

Moreover, the amounts of data grow exponentially with advances in seismic acquisi-

tion technology. For instance, CGG, a geophysical firm, reported that the number of

sensors per square kilometer in their seismic surveys has grown from 400,000 in 2005

to 36,000,000 in 2009 [1]. This growth in the number of sensors increased the average

data collected in an 8-hour shift from 100 gigabytes to more than 2 terabytes [1].

The collected seismic data is then processed and migrated into images of the sub-
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surface. Images are then used to interpret the different structures, and estimate rock

properties of the subsurface in a step we refer to as subsurface volume characteriza-

tion. Characterizing the subsurface helps field engineers plan wells to target areas

where oil reservoirs are highly likely. subsurface volume characterization is a labor-

intensive and time-consuming process that can take a team of geoscientists up to

several months to complete. With the exponential growth of collected data from dif-

ferent seismic surveys, it is impossible for geoscientists to manually inspect, analyze,

and interpret all collected data. Moreover, seismic data are indirect low-resolution

measurements of the subsurface that are often corrupted with noise and imaging

artifacts. To overcome this limitation, geoscientists improve their existing characteri-

zation of seismic volumes by integrating other types of data such as well-logs and core

data which are high-resolution and direct measurements of the subsurface. Well-logs

are 1-dimensional measurements of the rock properties such as porosity and density

at well locations. While seismic data are limited in resolution by their dominant

wavelet (vertical resolution ∼ 10m-60m) [2], well-logs offer much higher resolution

measurements of the subsurface with a vertical resolution up to a few inches depend-

ing on the logging equipment [3]. However, well-logs and core data are very sparse in

the survey area due to the high cost of drilling wells. U.S. Energy Information Ad-

ministration (UIE) reported an average cost of around $6,500,000 per well in Texas

and New Mexico in 2015[4]. Figure 1.1 shows p-impedance logs from wells F03-2

and F03-4 overlaid on seismic data to highlight the higher resolution of well-log data

compared to seismic.

Recent advances in deep learning have allowed the analysis of large amounts of

data, that would usually require thousands of man-hours, in a matter of minutes,

hours, or days. Deep learning enables artificial neural networks to learn various tasks

and achieve better-than-human results. They have been a driving force in many of

the advances in science and engineering fields. However, deep neural networks mostly
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Figure 1.1: P-impedance logs from wells F03-2 and F03-4 overlaid on a seismic section.
Data is from the Netherlands F3 block [5].

learn from examples, labeled data, to master certain tasks. This presents a major

limitation of deep learning in fields where labeled data is not vastly available and is

not easy to obtain such as the oil and gas E&P. Moreover, although seismic data is

a representation of a physical phenomenon (wave reflection from the subsurface), the

physics that governs seismic data is rarely integrated into deep-learning frameworks.

Instead, deep neural networks are expected to learn the physical characteristics of

the data in a data-driven manner. If the training data is noisy or is of a limited

resolution, as in the case of seismic data, deep neural networks might fail to learn an

adequate representation of the data.

1.2 Oil and Gas Exploration and Production Pipeline

In this section, we will introduce the main stages in the oil and gas exploration and

production pipeline. We divide this pipeline into seven main stages that are shown

in Figure 1.2.

The first stage in this pipeline is the geological study of a region of interest. In
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Figure 1.2: Oil and gas exploration and production pipeline.

this step, geologists review the full history of the region by going over maps and

photographs, or by field trips to examine the local geology of the region. Information

gathered from the geological study helps field experts determine the possibility of a

petroleum system in the area.

The second step is seismic acquisition through large seismic surveys. In seismic

surveys, a large 2-dimensional mesh of sensors is used to record the reflections of

seismic waves generated by a seismic source (vibration source) from the subsurface.

In onshore surveys, the sensors (geophones) are laid on land. An illustration of an

onshore seismic survey is shown in Figure 1.3. In offshore surveys, hydrophones

are towed by a seismic vessel on the surface of the water. Then, an energy source

(seismic source) is used to generate seismic waves that travel through the subsurface.

The reflections of those waves from the different layers of the subsurface are collected

at the surface. Data collected by the sensors is what is known as raw seismic data.

The raw seismic data goes through the data processing stage of the pipeline [2].

It consists of several steps including data preprocessing, deconvolution, normal move-

out correction, common-midpoint (CMP) sorting and stacking, velocity analysis, and

migration. Data processing improves the quality of the seismic data, enhances its

vertical resolution, align the events in the data with their true location in the subsur-

face. In this step, the data is converted to a field-specific data format such as SEG-Y

[7]. The results of this step are migrated seismic volumes whose z-axis can be time

or depth depending on the type of migration.

The next stage is the pre-drill interpretation which is the first part of the sub-

surface volume characterization. In pre-drill interpretation, the major events and
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Figure 1.3: An illustration of an offshore seismic survey (adapted from [6] with per-
mission)

structures of the subsurface volume are identified by interpreters. This step is critical

to identify potential oil traps such as salt bodies and faults. It is also important to

identify drilling hazards such as unconsolidated formations and over-pressured zones.

The structurally interpreted volume is then used to determine the optimal drilling

locations for the next stage.

The next stage of the pipeline is drilling in which wells are drilled to assess the

true geology of the subsurface. While drilling, rock property measurements such as

electrical, acoustic, electromagnetic measurements are recorded through sensors that

are lowered into the borehole or well. Figure 1.4 shows an example of a few logs,

including density, sonic, Gamma rays, porosity, p-impedance, and P-wave velocity,

from well F03-4 of the Netherlands F3 block [5]. Rock samples are also collected

from the borehole through the coring process to obtain core data. Drilling wells is

a costly process with the cost varying depending on the type of well, its depth and

the local geology. However, they reveal true properties of the subsurface at a higher

resolution compared to seismic data which is a low-resolution reflection data. The
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number of well-logs is limited in seismic survey whereas seismic data is abundantly

available throughout the survey. Figure 1.5 shows a time-migrated seismic volume

along with three wells from the Netherlands offshore F3 block [5].

Figure 1.4: Well-logs of well F03-4 from the Netherlands F3 block [5].

Well-log data and seismic data are then used for a more detailed interpretation

of the subsurface in a step we refer to as post-drill interpretation. At this stage,

knowledge about the properties of the subsurface from well-logs and core data is

extended beyond well locations guided by the seismic data. We refer to this type of

characterization as lithology characterization. Also, well-logs and seismic data are

integrated for stratigraphy characterization of the subsurface to identify the different

depositional and sedimentary environments in the area. Integration of well-log data
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Figure 1.5: A migrated seismic volume with density logs from the Netherlands F3
block [5].

and seismic data is a key element in characterizing the reservoir. Finally, the last

stage of of the pipeline is oil production through which oil fields are developed and

oil is extracted and sent to the downstream pipeline.

Seismic surveys can span tens or hundreds of square kilometers and large amounts

of data are collected in daily basis. Therefore, advances in signal processing and

computation power have been pivotal to the success of oil and gas exploration and

production. Moreover, with the exponential increase of collected data from seismic

surveys with high-resolution acquisition technology, recent advances in image pro-

cessing, machine learning, and deep learning have a great potential of accelerating

the various stages in the pipeline. One objective of this dissertation is to leverage

these recent advances to accelerate subsurface volume characterization using seismic

data in addition to the limited well-log data.
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1.3 Subsurface Volume Characterization

Subsurface volume characterization is a process through which the true geology of the

subsurface is inferred from seismic reflection data and the sparsely-available well-log

data. It can be categorized according to its objective into three categories: structure,

stratigraphy, and lithology characterization [2]. In structure characterization (pre-

drill), the objective is to use the recorded seismic data to identify and highlight

geological phenomena in the volume that have common structural characteristics

(e.g., salt bodies, channels, and faults). Such structures represent oil traps to be

targeted in drilling, or drilling hazards to be avoided. Note that only seismic data

is used in pre-drill interpretation. In stratigraphy characterization (post-drill), the

objective is to highlight the different depositional and sedimentary environments in

the volume. Finally, the objective of lithology characterization (post-drill) is to infer

the physical properties of the subsurface such as permeability and porosity from

the observed seismic data. Post-drill interpretation utilizes seismic data, well-logs

and core data to characterize the subsurface at a resolution higher than the seismic

resolution. Examples of the three types of characterization are depicted in Figure 1.6.
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Figure 1.6: Examples of the three types of subsurface characterization.
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As discussed earlier, subsurface volume characterization is a labor-intensive pro-

cess that can take a team of experienced geoscientists several months. It involves

several steps including making structure and facies maps, petrophysical analysis of

well-logs and core data, observing patterns in the data and linking them to geologic

phenomena, and eventually, highlighting regions of potential reservoirs. The outcomes

of this process are multiple valid interpretations of the subsurface, all of which are in

agreement with the data. Thus, interpreters often improve their existing interpreta-

tions when new findings or data are available including well-logs, core data, technical

reports from field engineers. For instance, in pre-drill interpretation where only low-

resolution seismic data is available, interpretation uncertainty is high. However, when

wells are drilled, data from those wells are used to compare the true geology with the

existing interpretation to improve the interpretation, and thus, reduce uncertainty.

In structure characterization (pre-drill), interpreters often rely on seismic at-

tributes to analyze seismic data. Seismic attributes are mathematical quantities that

are computed from the seismic data such as discontinuity, curvature, dip angle, and

semblance, and several others [8]. These attributes are also used to assess the similar-

ity of two different regions within the seismic volume. If two regions of the subsurface

volume have similar attribute values, they are likely to contain similar structures.

Some attributes analyze waveform variations of the seismic traces and evaluate the

attribute based on these variations. Examples of such attributes are frequency, the

cosine of phase, and amplitude. Alternatively, the analysis could be carried out using

image-oriented attributes of the seismic sections or on a local window of the section.

Examples of image-oriented attributes are semblance and texture attributes from the

gray level co-occurrence matrix (GLCM) [9].

Figure 1.7 shows a few waveform and texture attributes of a seismic section. The

figure shows that image-oriented attributes, such as texture, can highlight the differ-

ent subsurface structures since they operate on local 2-dimensional or 3-dimensional

9



windows of the seismic data. Thus, texture attributes have been widely used in struc-

ture interpretation of seismic data. In particular GLCM attributes have been used

extensively in the seismic domain to characterize seismic images from a structural

point of view [10, 11, 12, 13]. Seismic structures with similar characteristics have

similar responses across the various attributes. Therefore, interpreters analyze seis-

mic attributes to identify and distinguish seismic structures of interest which requires

inspecting several attributes at once. However, with the exponential growth of data,

interpreters relied on clustering and dimensionality reduction techniques to control

the amount of data to be analyzed, and to identify the most effective attributes to

distinguish subsurface structures [14]. However, a limitation of using classical ma-

chine learning techniques such as clustering methods is that they require a manual

choice of the input attributes to be computed or used (feature engineering). On the

other hand, deep learning methods can offer a more convenient way to characterize

the subsurface without the need to manually select attributes [15, 16, 17]. Deep

neural networks can compute their own features (attributes) that are optimized for

the task for which they are trained. However, deep learning models are known to

require tremendous amounts of annotated data to be trained properly which limits

the applications of deep learning in the seismic domain.

In post-drill characterization, additional data obtained from well-logs and core

data offer high-resolution measurements of the subsurface. Although well-log data is

sparely-available, they play a key role in the development of a seismic model (forward

model) that can adequately represent the seismic data [3]. Seismic modeling is a tool

that is used to simulate the seismic data from well-log data. The simulated data

(seismograms) is then compared with the recorded data. If the compared data do not

match, the error is used to update the parameters of the model such as its wavelet.

Figure 1.8 shows a seismogram generated from well-log data (density and P-wave

velocity) compared to the recorded seismic trace. Seismic models are based on the
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(a) Seismic section (b) Frequency attribute

(c) Cosine of phase attribute (d) Semblance attribute

(e) GLCM contrast attribute (f) GLCM variance attribute

Figure 1.7: A seismic section and its corresponding attributes. Data shown for inline
301 from Netherlands offshore F3 block.

physics governing wave-propagation to represent the seismic data. Once a seismic

model is obtained, it can be used in lithology characterization to generalize well-log

data beyond well locations guided by the seismic data. This process is referred to

as seismic inversion [18]. In seismic inversion, an initial guess of the lithology of the

subsurface is obtained from the few well-logs. Then, the seismic model is used to

simulate seismic data from the initial guess. The error between the simulated seismic

data and recorded seismic is then used to update the initial guess. The process is

repeated until convergence.

More recently, there have been several attempts to integrate seismic data and

well-logs in a learning-based lithology characterization framework [19, 20, 21, 22].

The problem is set up as a supervised learning problem with well-log data as labels

for seismic data. Then, a mapping from seismic data to rock properties is learned in

11



Figure 1.8: Synthetic seismogram generated from well-log data and its corresponding
recorded seismic trace at the well location.

a regression routine. The learned mapping is then used to estimate rock properties

throughout the seismic survey using the seismic data. However, the learned map-

ping often fails to generalize beyond the training data due to the limited number of

available well-logs for training. The limited available data also makes it difficult to

train a deep-learning model with hundreds of thousands or millions of parameters.

Finally, such learning-based methods do not utilize a seismic model. Instead, they

often rely on the training data to learn this complex mapping from seismic data to

rock properties.

To overcome the limitations of using deep learning in the seismic domain, we

introduce a learning-based framework that enables the characterization of subsurface

volumes with limited labeled data. Specifically, given a few manually-labeled images of

subsurface structures of interest, we utilize texture-based image similarity measures to

12



identify similar surface structures within a large seismic volume for pre-drill subsurface

structure characterization using seismic data only. With a structural interpretation

of a subsurface volume, wells are drilled which enable access to the true geology of the

subsurface. Well-log data is then used in the introduced framework as limited high-

resolution labels of the seismic data in a semi-supervised sequence modeling framework

to characterize the subsurface with high resolution from a lithological point of view.

The introduced framework offers an end-to-end subsurface characterization framework

that integrates seismic data, well-log data and seismic modeling to learn from limited

annotated data. An illustration of the different elements of the framework introduced

in this dissertation is shown in Figure 1.9.
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1.4 Outline

In Chapter 2, we introduce a novel multiresolution texture-based image similarity

measure that can characterize seismic images from a structural point of view. The

proposed similarity measure is then used to retrieve seismic images from the volume

that are similar to a few manually labeled images. The outcome of image retrieval is a

large dataset of labeled seismic images. We then present a learning-based framework

that uses the labeled dataset to characterize a subsurface volume from a structural

point of view. The presented framework is evaluated in a case study of structure

interpretation of the Netherlands offshore F3 block [5].

In Chapter 3, we introduce a sequence modeling framework for lithology charac-

terization using a shallow recurrent neural network that integrates well-logs data and

seismic data in a learning framework. This framework learns a mapping from seismic

data to rock property measurements from well-logs by using well-log data as labels

of the seismic data. It can then be used to characterize the lithology of the entire

subsurface volume from seismic data. We evaluate the proposed framework in two

case studies of rock property estimation from real and synthetic seismic data. We also

show the value of using a recurrent neural network for seismic modeling by comparing

the proposed framework with an identical feed-forward one.

In Chapter 4, we introduce a physics-guided semi-supervised deep sequence model-

ing framework for subsurface lithology characterization. The framework uses knowl-

edge from a seismic forward model based on wave-propagation physics to learn a better

mapping from seismic to rock properties. The predefined forward model enables the

framework to learn not only from seismic data for which well-logs are available, but it

can learn from all seismic traces in the survey with explicitly requiring corresponding

rock property measurements. We evaluate the proposed framework in two case stud-

ies of acoustic and elastic impedance estimation from noisy synthetic and migrated
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seismic data from Marmousi 2 dataset [23]. We also compare the results using the

proposed methods with classical seismic inversion methods that are commonly used

in the literature. In Chapter 5, we introduce an extension of the semi-supervised

framework that requires no modeling of the seismic data. Instead, it can learn the

seismic forward model solely from the training data. The proposed framework is then

used to estimate acoustic and elastic impedance from noisy synthetic and migrated

seismic data from Marmousi 2 dataset. We also compare the results using the pro-

posed method with classical inversion methods and the method proposed in Chapter

4. Finally, in Chapter 6, we present a summary of the proposed frameworks and main

contributions, and future research directions to conclude this dissertation.
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CHAPTER 2

MULTIRESOLUTION TEXTURE ANALYSIS FOR STRUCTURE

CHARACTERIZATION

2.1 Overview

With the exponential growth of collected seismic data, manual annotations of seismic

volumes becomes an increasingly demanding task. Moreover, uncertainty in seismic

imaging can result in different but valid manual interpretations of the subsurface. This

is especially true in pre-drill interpretation where seismic data is the only available

data from the subsurface. For instance, in structure interpretation, interpreters rely

on visual analysis of the seismic data to identify and highlight different subsurface

structures. Moreover, seismic attributes, such as texture, are used to identify regions

within the seismic volume that have a similar response which are then said to contain

a similar subsurface structure. Thus, quantifying the similarity of seismic images can

enable the acceleration of structure interpretation.

In this chapter, we introduce a framework to characterize seismic volumes us-

ing multiresolution texture analysis. We model seismic data as monochromatic im-

ages and use multiresolution texture analysis to characterize subsurface structures.

Specifically, we develop a texture-based image similarity measure that quantifies the

similarity between two images with respect to their textural content. The developed

similarity measure is then used to search large unlabeled seismic volumes for images

that are similar to a manually picked image of a given subsurface structure. Images

that have high similarity to the reference image are then given the same label as the

reference image. The process is repeated for different subsurface structures to obtain

a large dataset of labeled seismic images. Finally, the introduced similarity measure
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is integrated within a segmentation framework that uses the large labeled dataset

of seismic images to characterize the subsurface from structural point of view. The

objective of this chapter is illustrated in Figure 2.1

Chaotic
Chaotic

Salt
Salt

Fault Fault

Figure 2.1: The objective of the introduced structure characterization framework.

Section 2.2 presents an overview of image retrieval, texture similarity, and the

relevant literature. Then, in Section 2.2.3, we present an overview of image decompo-

sition methods that are commonly used to characterize texture images. In Section 2.3,

we present the details of the developed multiresolution texture similarity measure. In

addition, we evaluate the developed similarity measure in a retrieval experiment for

natural and synthetic texture images. In Section 2.4, we evaluate the similarity mea-

sure for subsurface structure characterization in retrieval and clustering experiments.

Finally, in Section 2.5, we present a framework to characterize the subsurface using

seismic data and only a few manually labeled images of the subsurface structures of

interest.

2.2 Background

2.2.1 Content-based Image Retrieval

The exponential growth of visual and pictorial content undoubtedly drives an in-

creasing need for image similarity measures that can be utilized for various computer

vision applications such as image retrieval, characterization, and recognition. The

similarity of two images is often measured with respect to some attributes such as

object presence, color, shape, and texture [24]. If these attributes are available with

the image, quantifying the similarity between two images is a matter of comparing
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their respective attributes. However, obtaining image attributes often requires human

input which is time-consuming and labor-intensive. Furthermore, the task becomes

even more demanding and expensive in areas where image attributes can only be

provided by subject-matter experts, e.g., medical images and seismic images. There

have been many attempts in the literature to develop systems that can compute such

attributes from a visual perspective, and use these computed attributes to compare

images. This field of research is known as Content-Based Image Retrieval (CBIR)

[24, 25, 26, 27]. The objective of CBIR is to quantify image similarity with respect

to some attributes without the need for human-generated labels or descriptive data

of images. Figure 2.2 shows a general CBIR framework to search a large dataset for

images, and retrieve the most similar ones to a given query image.

Reference Image Compute Attributes

Image Dataset Compute Attributes

Attribute Comparison
Retrieved

Images

Attributes

Attributes

Figure 2.2: A general content-based image retrieval workflow.

To characterize images, attributes are chosen depending on the application. For

instance, object presence is a pivotal attribute for image captioning applications where

the goal is to automatically generate a description of an image [28, 29, 30]. Moreover,

texture attributes have played a key role in the characterization of medical images,

especially for identify different tissues [31, 27, 32, 33]. Texture has also been used

extensively to characterize seismic images [34, 35] due their highly textural content

as shown in Figure 2.3. Texture attributes are often utilized to discriminate various

subsurface structures that are present within seismic images [36], i.e., subsurface

structure characterization.
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(a) Seismic image (b) Synthetic texture image

Figure 2.3: An illustration of the similarity between seismic images and texture im-
ages.

2.2.2 Image Similarity

Image similarity measures are functions that quantify the degree of similarity between

two images X1,X2 ∈ Rm×n, i.e.,

SIM(X1,X2) : Rm×n × Rm×n → R. (2.1)

Image similarity measures are developed for various applications such as image

retrieval, image quality assessment, and image synthesis. The similarity of two im-

ages is often measured with respect to an application-dependent attribute such as

shape, color or texture. For example, one can choose the attribute of interest to

be the texture such that two images are said to be similar if their textural contents

are similar. Texture-based image similarity (or distance) measures differ from their

generic counterpart measures such as Peak Signal-to-Noise Ratio (PSNR) and Mean

Square Error (MSE) in that they capture the content of an image rather than assum-

ing a pixel-to-pixel correspondence. Figure 2.4 shows an example of two images with

the same texture and their absolute difference. This example shows that pixel-based

comparisons are not fit for measuring texture similarity.

Texture similarity measures can be categorized, according to the domain on which
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(a) Image 1 (b) Image 2 (c) Absolute difference

Figure 2.4: Two images with similar texture and their absolute difference.

the feature extraction is carried out, into two main categories: spatial methods or

frequency-based methods. For instance, the gray level co-occurrence matrix (GLCM)

[9] is a popular spatial characterization method of texture images using local statistics

of quantized images. Structure SIMilarity (SSIM)[37] measures improve upon the

generic measures, e.g., MSE, by capturing structure using low-level local statistics

such as mean and variance in the spatial domain. Local Binary Patterns (LBP) [38]

is another spatial texture characterization method that constructs binary pattern

maps based on the value of a pixel relative to its neighbors. Then, statistics are

computed from the histograms of these patterns for different radii. Other variants of

LBP have been proposed to improve upon the original LBP such as Dominant Local

Binary Pattern (DLBP)[39], Local Derivative Pattern (LDB) [40], and Completed

Local Derivative Pattern (CLDB) [41].

Alternatively, texture analysis can be carried out in the frequency domain using

multiresolution analysis methods. For example, The Complex Wavelet Structure SIM-

ilarity (CW-SSIM)[42] improves on SSIM by comparing low-level statistics of images

in the frequency domain using the complex wavelet transform instead of the spatial

domain. Structural Texture SIMilarity metric (STSIM)[43] uses sub-band statistics

and correlations in the frequency domain using the steerable pyramid. Zhang et al.

[44] proposed the use of low-level statistics of the curvelet coefficients to quantify
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the similarity of texture images. Selvan and Ramakrishnan [45] proposed a texture

characterization model based on the probability density function of the singular val-

ues of the wavelet transform. Arivazhagan et al. [46] proposed a similarity measure

based on statistical and co-occurrence features of the curvelet coefficients for texture

characterization.

In general, the practice of using image decomposition (either in the frequency or

the spatial domain) followed by feature extraction and comparison is very common in

texture image characterization [47]. A generic texture similarity workflow is depicted

in Figure 2.5.

X1
Multiresolution
Decomposition

Feature Extraction

Texture Characterization

X2
Multiresolution
Decomposition

Feature Extraction

Texture Characterization

Feature
Comparison

Sim(X1,X2)

image features

image features

Figure 2.5: A generic block diagram of a texture similarity measure.

Texture characterization has been adopted widely to characterize seismic data by

viewing seismic sections as images. Texture has proved to be an effective attribute

to characterize seismic images due to the textural nature of migrated seismic data.

For instance, Pitas and Kotropoulos [34] proposed a texture analysis method based

on Hilbert transform features for seismic image segmentation. Röster and Spann [35]

characterized subsurface structures from seismic reflection data using Gabor filters.

Hegazy et al. [48] and Shafiq et al. [36] proposed methods for salt body detection

using the Gradient of Texture (GoT). Di et al. [49] utilized a set of texture attributes

to detect faults in seismic volumes. In addition, texture-based similarity measures
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have been proposed to assess the similarity of seismic images based on the subsurface

structures they contain. For example, Al-Marzouqi and AlRegib [50] proposed an

adaptive version of the curvelet transform to characterize seismic images. Long et

al. [51] proposed a similarity measure of seismic images using STSIM in addition to

a seismic attribute known as discontinuity maps. Alaudah [52] proposed a seismic

similarity measure that uses the histograms of the curvelet coefficients as features to

characterize subsurface structures. Long et al. [53] and Mattos et al. [54] presented

comparative studies of the use of texture attributes to retrieve seismic images that

contain similar subsurface structures. Their findings indicate that texture attributes

are suitable descriptors to characterize subsurface structures. This is especially true

when subsurface structures are not separated by clear edges. For instance, Shafiq

et al. [55] compared edge-based and texture-based methods for salt body detection.

The results of the study showed that texture features can detect salt bodies even in

the absence of strong reflections (edges). In general, a review of the literature shows

that texture is a critical attribute to characterize seismic data for a wide variety of

applications [11].

We identify four characteristics that we believe are important for a texture-based

seismic similarity measure. The first characteristic is the insensitivity to image con-

trast since seismic data are often acquired with different equipment which directly

affects the contrast of the seismic sections when viewed as images. The second charac-

teristic is the use of multiresolution analysis which enables the similarity measure to

characterize various subsurface features regardless of their physical dimensions. The

third characteristic is feature sparsity, which improves robustness to noise. Sparse fea-

tures allow the similarity measure to capture the most dominant features in seismic

images and suppress noise which is common in seismic images. Finally, the developed

measure must be cross-domain adaptable in order to work across different seismic

surveys seamlessly. We believe that a similarity measure that addresses these four
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characteristics is a good candidate for seismic images characterization.

2.2.3 Multiresolution Image Decomposition

In this section, we describe four multiresolution decomposition techniques that are

commonly used for texture image analysis. Namely, the Gaussian pyramid, the dis-

crete wavelet transform, Gabor filters, and the curvelet transform. The Gaussian

pyramid is a technique that is used to decompose an image into different scales each of

which comprises features of similar size. Pyramid decomposition, in general, laid the

groundwork for multiresolution analysis techniques. The discrete wavelet transform

improved on pyramid techniques by decomposing each scale into horizontal, vertical

and diagonal components. Gabor filters introduce a directional decomposition by

which the different scales are decomposed into more orientations than those obtained

from the discrete wavelet transform. It is worth noting that Gabor filters do not form

a transform, i.e., the image response to the filters does not fully represent the original

image. The curvelet transform is an extension of the wavelet transforms to overcome

its limited directionality. It decomposes an image into different frequency bands at

different scales and orientations. Throughout this section, we will use the seismic im-

age shown in Figure 2.6 to illustrate image decomposition using the aforementioned

multiresolution analysis techniques.

The Gaussian Pyramid

The Gaussian pyramid is a classical multiscale analysis technique, which is the prede-

cessor of multiresolution analysis techniques. It has been used for various applications

in image and video processing such as image coding, image and video compression,

and salient object detection [56, 57, 58]. In this work, the Gaussian pyramid serves

as an efficient multiscale analysis tool to exploit features of different sizes in a seismic

image. For a 2D seismic image, X0, the k-scale Gaussian pyramid is constructed as
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Figure 2.6: Part of a salt dome from inline 299 of the Netherlands offshore F3 block
[5]

follows: First, X0 is set as scale 0 of the pyramid which represents the full resolu-

tion scale. Then, scale 1 of the pyramid, X1, is computed by smoothing X0 with a

Gaussian filter, followed by downsampling it by a factor of 2. The remaining scales

are generated in a similar fashion. An illustration of a 4-scale Gaussian pyramid of

a seismic section is shown in Figure 2.7. Note that the dimensions of the image are

reduced by a factor of 2 each time a one-level decomposition is performed (i.e., pro-

ceeding upward along the pyramid by one level). The Gaussian blurring filter serves

as a low-pass filter and is followed by a downsampling step to avoid redundancy.

Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is an orthonormal transform that repre-

sents an image using a dyadic dilation and translation of a certain basis function (or

a mother wavelet). Different wavelet bases have been proposed and studied exten-

sively such as Haar, Daubechies, symlet, Mexican hat, and coiflet wavelets, among

many others [59]. A classical choice of such basis function is hL = 1
2

[1, 1]> and

hH = 1
2

[−1, 1]>, which is known as the Haar wavelet. The first-level discrete wavelet

coefficients of an image, X, are obtained by filtering along the horizontal direction
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Figure 2.7: 4-scale Gaussian pyramid workflow.

with low pass hL and high pass hH filters to obtain X
(1)
L and X

(1)
H respectively. Then,

X
(1)
L and X

(1)
H are filtered along the vertical direction with the same filter, and dec-

imated by a factor of 2. The resulting images are three detail images: X
(1)
HH , X

(1)
HL,

X
(1)
LH , and one approximation image X

(1)
LL. This process is illustrated in Figure 2.8(a).

For more levels, the same process is repeated on the approximation image X
(1)
LL. An

example of a 2-level DWT of a seismic image is shown in Figure 2.8(b). The total

number of subbands depends on the number of levels. For instance, a 4-level DWT

will result in 13 subbands (3 detail subbands × 4 levels + 1 approximation subband).

Gabor Filters

Gabor filters are linear filters that are the product of a 2D plane wave with a Gaus-

sian filter. Gabor filters are frequently used as models of the simple cell receptive

fields in the human visual system [60]. They have been utilized to characterize nat-

ural and texture images especially for applications such as edge detection [61] and

image segmentation [62]. Furthermore, Gabor filters have been used in seismic image

26



X

h>
H

h>
L

hH

hL

hH

hL

↓ 2× 2

↓ 2× 2

↓ 2× 2

↓ 2× 2

X
(1)
HH

X
(1)
HL

X
(1)
LH

X
(1)
LL

1-level DWT

(a) 1-level 2D discrete wavelet transform
workflow

(1)

HH
I

(1)

HL
I

(1)

LH
I

(2)

HH
I

(2)

HL
I

(2)

LH
I

(3)

HL
I

(3)

HH
I

(3)

LH
I

(3)

LL
I
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Figure 2.8: An illustration of the discrete wavelet transform.

processing to extract useful characteristic features and define some seismic attributes

[63]. Figure 2.9 shows the response of the image in Figure 2.6 to different Gabor

filters at three scales and four orientations.

The Curvelet Transform

The curvelet transform is a multiscale directional decomposition. Despite their pop-

ularity, wavelets fail to compactly represent images with highly directional elements

such as curves and edges. To the contrary, curvelet frames have been shown to repre-

sent images with geometrically regular edges (such as seismic images) more compactly

than other traditional multiscale representations [64]. For an image with N1×N2 pix-

els, the fast discrete curvelet transform (FDCT) allows the computation of curvelet

coefficients in O(N1N2 logN1N2) operations making the curvelet transform not only

fast to compute but also scalable to large images.

For the purposes of this work, we present a simplified overview of the FDCT. For

a detailed description, refer to [64]. Given an image, the FDCT divides the Fourier

support of the image into J scales and K(j) orientations as is shown in 2.10(a) such
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Figure 2.9: The image in Figure 2.6 filtered with Gabor filters at three scales and
four orientations. The filters are shown at the bottom left corners

that J = dlog2 min(N1, N2)− 3e, where d · e is the ceiling function. The number of

orientations at scale j is given by K(j) = 16× 2d(j−1)/2e. The curvelet coefficients are

then obtained by taking the Inverse Fast Fourier Transform (IFFT) of each subband

after multiplying it by a smoothing function and wrapping it around the origin. The

3-scale curvelet coefficients of the image in Figure 2.6 are shown in Figure 2.10(b).

Note that we use generic labels of the axes in Figure 2.10(a), namely, horizontal and

vertical frequency instead of wavenumber and frequency in order to generalize the

decomposition for inline/crossline as well as time slices.

2.3 Multiresolution Texture Similarity Measure

In this section, we present a multiresolution texture similarity measure based on the

effective singular values of the curvelet transform. We evaluate the proposed similarity
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Figure 2.10: An illustration of the curvelet transform of a seismic image. Orientations
and scales are represented by numbers and colors, respectively.

measure in a retrieval experiment on three natural and synthetic texture datasets.

2.3.1 Methodology

Following the general structure of texture similarity measure, the proposed similarity

measure consists of three main modules: multiresolution image decomposition, feature

extraction, and feature comparison as shown in Figure 2.11. The details of each of

the modules are presented in the next sections.

Multiresolution Image Decomposition

For an image, X, multiresolution decomposition methods represent the input image

using filters with different orientations and scales (sub-bands). Each sub-band Xj,k

captures certain features of the input image at scale j and orientation k(j) of the filter.

In the proposed texture similarity measure, we utilize the discrete curvelet transform

[65] to decompose images due to its effectiveness in capturing the directional content

of images. The details of the curvelet transform were discussed in Section 2.2.3.
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Figure 2.11: The proposed multiresolution texture similarity measure.

Feature Extraction and Comparison

As we have discussed in Chapter 2.2, it is common for texture characterization meth-

ods to extract features from statistics of each sub-band of the image, i.e., Xj,k, such as

mean and variance. Then, the feature vector, f , that represents the image is obtained

by concatenating all sub-band features. In the proposed similarity measure, we use

the largest reffective singular values of each sub-band as features. The largest reffective

singular values are referred to as the effective singular values, where reffective is an

estimate of the effective dimensionality of the matrix proposed by [66]. Ideally, if the

rank of a matrix is r, only the first r singular values are non-zero and the remaining

ones are identically equal to zero. However, when we consider SVD on digital images

that are subject to different types of noise, the number of non-zero singular values is

greater than r. In most cases, none of the singular values are identically zero even

for a rank-deficient image. To calculate the effective rank, a normalization function

of the singular values is defined as:

pj,k[i] =
σj,k[i]

‖σj,k‖1

, (2.2)
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where σj,k[i] is the ith largest singular value of the sub-band Xj,k and ‖σj,k‖1 is the `1

norm of the vector of all singular values of Xj,k. Then, the effective rank is calculated

as a function of the entropy of the expression in (2.2), i.e.,

reffective(j, k) = exp

(
−

L∑

k=1

pj,k log pj,k

)
. (2.3)

The effective rank of a matrix is a real number less than or equal to the smaller

dimension of the matrix, with equality if and only if all singular values are equal. We

use log to denote the natural logarithm and we follow the convention that 0 log 0 = 0.

For each sub-band, reffective is computed as in (2.3). A new vector of effective

singular values is formed by keeping the first breffectivec singular values, where breffectivec

is the integer part of reffective. The remaining singular values are set to 0, i.e. for scale

j and orientation k, we form the vector σj,k = [σj,k[1], . . . , σj,k[reffective] , 0, . . . , 0]. The

feature vector of the image X is obtained by concatenating all σj,k for all scales

and orientations. The feature vector of an image is expected to be sparse since the

non-effective singular values were set to zero.

Finally, the similarity of two images X1 and X2 is computed by comparing their

corresponding feature vectors, fX1 and fX2 . To compare the two feature vectors, we

use an `1-norm based metric, namely, the Czekanowski similarity as follows:

Sim(X1,X2) = 1− ‖fX1 − fX2‖1

‖fX1 + fX2‖1

. (2.4)

Since the singular values real matrices are non-negative by definition, Sim(fX1 , fX2) ∈

[0, 1] with a value of 1 for identical images.

2.3.2 Performance Evaluation

In order to assess the performance of the proposed multiresolution texture similarity

measure, we set up a retrieval experiment. With a dataset of N images that are
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uniquely grouped into C distinct classes, image retrieval is carried out as follows.

First, each image in the dataset is used as a query image. The similarity between the

query images and all images in the dataset is computed using a similarity measure.

Then, the top N
C
−1 images are retrieved. We then used information retrieval metrics

in order to assess the quality of the retrieved images.

We also compare the proposed multiresolution texture similarity measure with

various texture and generic similarity measures such as:

• Mean Squared Error (MSE).

• Mean Structural Similarity (M-SSIM) [37].

• Complex-Wavelet Structural SIMilaity (CW-SSIM) [42].

• Structural Texture SIMilarity (STSIM) [43].

• Local Binary Patterns (LBP) [38].

• Rotation-variant (RV) and rotation-invariant (RI) curvelet features [44].

Datasets

The retrieval experiments were carried out on three datasets of natural and synthetic

texture images. For each dataset, image retrieval was carried out independently. The

datasets used in this experiment are:

1. CUReT [67]: A dataset of 61 unique natural texture images. We extracted 3 non-

overlapping patches of size 128 × 128 from all images with viewing condition

number 55.

2. PerTex [68]: A dataset of 334 high resolution synthetic texture images. Each

image in the database was downsampled by a factor of 4 then divided into 4

non-overlapping quadrants of size 128× 128.
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3. Forrest [69]: A dataset of natural textures. In our experiments, we randomly

selected 100 images from Fabric, Stone and Wood albums. Then, we extracted

4 patches of size 128× 128 from each image with no more than 50% overlap.

The datasets are summarized in Table 2.1. Sample images from these datasets are

shown in Figure 2.12.

Dataset
Number of classes

(C)
Number of images

(N)

CUReT [67] 61 183
PerTex [68] 334 1336
Forrest [69] 100 400

Table 2.1: Summary of the texture datasets used in the retrieval experiments.
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Figure 2.12: Sample images from CURet [67], PerTex [68], and Forrest [69] datasets.
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2.3.3 Results

We evaluate the quality of the retrieved images using information retrieval metrics.

Namely, we use the following metrics:

1. Precision at one (P@1) is the percentage of the first retrieved images that are

of the same class as the query image.

2. Retrieval Accuracy (RA) is the percentage of images that have been correctly

retrieved after retrieving all relevant images.

3. Mean Reciprocal Rank (MRR) is the average reciprocal rank of the first cor-

rectly retrieved images. MRR values are within [0, 1] with a value of 1 indicat-

ing a perfect score.

4. Mean Average Precision (MAP) is a generalization of MRR that takes into

account all retrieved images instead of only the first correctly retrieved one.

Note that MRR differs from RA in that it takes into account the order in

which the images are retrieved.

5. Receiver Operating Characteristic (ROC) is a plot of the True Positive Rate

(TPR) versus the False Positive Rate (FPR) for different threshold values of

detection. The Area Under the ROC Curve (AUC), which is a value between 0

and 1, is a measure of the discriminative power of the similarity measure with

higher values indicating more discriminative power.

The details of these metrics are presented in Appendix A.

The results of the retrieval experiments for CUReT, PerTex, and Forrest datasets

are summarized in Table 2.2. The results show that the proposed multiresolution

texture similarity measure outperforms all other similarity measures across all three

datasets. The performance on PerTex dataset is higher than it is on the other datasets
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due to the fact that PerTex is a synthetic dataset of texture images. However, the pro-

posed similarity measure has shown consistent performance across all three datasets

despite the unique characteristics of each dataset. Furthermore, note that MSE,

SSIM, and CW-SSIM perform significantly lower than the other measures because

they are generic image similarity measures that were not designed for texture images.

Moreover, Figure 2.13 shows the ROC curves for the different similarity measures

along with the ROC curve for a random guess on the three texture datasets. The

ideal ROC curve is the one with than passes along the point (1, 0). Thus, an ROC

curve that is pushed towards the upper left corner reflects a high discriminate power

and, equivalently, has an AUC that is close to 1. The AUC curves are reported in

Table 2.2.
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Figure 2.13: Receiver Operating Characteristic curves (ROC) for different similarity
measures on three texture datasets.
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Table 2.2: Performance evaluation of texture similarity measures on CUReT [67],
PerTex [68], and Forrest [69] datasets.

Method P@1 MRR MAP RA AUC

MSE 0.1093 0.1867 0.1728 0.0902 0.7917

M-SSIM [37] 0.0546 0.0952 0.0935 0.0410 0.6080

CW-SSIM [42] 0.1366 0.2638 0.1967 0.1339 0.8533

STSIM [43] 0.8251 0.8893 0.8331 0.7596 0.9702

LBP [38] 0.8415 0.8843 0.8347 0.7732 0.7920

Zhang et. al. [70] (RV) 0.8142 0.8649 0.7669 0.7022 0.9624

Zhang et. al. [70] (RI) 0.8033 0.8562 0.7528 0.6803 0.9620

Ours [71] 0.9617 0.9732 0.9304 0.8880 0.9918

C
U
R
eT

[6
7]

Method P@1 MRR MAP RA AUC

MSE 0.1115 0.1296 0.0641 0.0469 0.6168

M-SSIM [37] 0.1572 0.1855 0.1051 0.0828 0.7092

CW-SSIM [42] 0.1826 0.2527 0.1665 0.1402 0.8897

STSIM [43] 0.9094 0.9405 0.8887 0.8507 0.9987

LBP [38] 0.9117 0.9407 0.8628 0.8161 0.9842

Zhang et. al. [70] (RV) 0.9499 0.9659 0.9098 0.8695 0.9876

Zhang et. al. [70] (RI) 0.7680 0.8112 0.6336 0.5833 0.9317

Ours [71] 0.9880 0.9917 0.9736 0.9601 1.0000

P
er
T
ex

[6
8]

Method P@1 MRR MAP RA AUC

MSE 0.1400 0.2010 0.1672 0.1117 0.7963

M-SSIM [37] 0.1625 0.2339 0.1920 0.1317 0.8264

CW-SSIM [42] 0.3550 0.4613 0.3273 0.2667 0.9114

STSIM [43] 0.9375 0.9597 0.9069 0.8692 0.9951

LBP [38] 0.9050 0.9328 0.8270 0.7767 0.9823

Zhang et. al. [70] (RV) 0.8375 0.8741 0.7370 0.6758 0.9687

Zhang et. al. [70] (RI) 0.7900 0.8387 0.6996 0.6333 0.9664

Ours [71] 0.9725 0.9780 0.9313 0.8992 0.9966

F
or
re
st

[6
9]

38



2.4 Similarity-based Retrieval of Subsurface Structures

In this section, we evaluate the introduced similarity measure in a image retrieval

experiment of seismic images. In this experiment, we use LANDMASS-2 [72] dataset

which contains 4000 images of size 150×300 pixels extracted from the public Nether-

lands offshore F3 block dataset [5]. Each image in the dataset is manually labeled

according to the dominant geological structure present in the image, i.e., horizon,

chaotic, faults, or salt. Example images from the dataset are shown in Figure

2.14.

(a) Horizon (b) Chaotic

(c) Fault (d) Salt

Figure 2.14: Sample images from LANDMASS-2 [72] depicting the four subsurface
structures in the dataset.

2.4.1 Experimental Procedure

Similar to the procedure detailed in Section 2.3, each image in the dataset is compared

against all other images in the dataset using a similarity (or distance) measure. The

images are then ordered according to their similarity to the reference image in de-

scending order and the top 999 images are retrieved. Then, the retrieval performance
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of the similarity measure is assessed by the number and order of correctly retrieved

images.

In practice, we first form a 4000 × 4000 similarity matrix, Msim, for the en-

tire dataset where Msim[i, j] is the similarity between the ith and jth images, i.e.,

Msim[i, j] = S(Xi,Xj) for 1 ≤ i, j ≤ 4000. Then, each row of Msim is ordered in

descending order. The top 999, excluding the reference image, are retrieved and are

said to belong to the same class as that of the reference image.

2.4.2 Results and Discussion

Image retrieval is carried out using the proposed similarity measure in addition to

other commonly used texture and seismic similarity (or distance) measures. These

measures are:

• Mean Squared Error (MSE).

• Structural SIMilarity (SSIM) [37].

• Complex Wavelet Structural SIMilarity (CW-SSIM) [42].

• Structural Texture SIMilarity (STSIM) [43].

• Seismic SIMilarity (SeiSIM) [51].

• Curvelet-based seismic distance measure [52].

Table 2.3 shows a quantitative evaluation of these measures on LANDMASS-2. Note

that we do not report first instance metrics such as P@1 and MRR because the

number of images that belong to a single class is large compared to the texture

dataset. Furthermore, the high correlation and similarity of seismic images that are

extracted from adjacent inline or crossline sections deem first instance metrics less

informative than all-instances metrics such as RA and MAP.
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Table 2.3: Quantitative evaluation of the proposed similarity measure on
LANDMASS-2 dataset.

Method MAP RA AUC

MSE 0.3944 0.3450 0.5145

M-SSIM [37] 0.4426 0.3222 0.5268

CW-SSIM [42] .8062 0.7211 0.8584

STSIM [43] 0.9255 0.8668 0.9655

SeiSIM [51] 0.8860 0.8192 0.9450

Alaudah and AlRegib [52] 0.9494 0.8962 0.9776

Ours [71] 0.9537 0.9105 0.9830

The results in Table 2.3 indicate that the proposed measure can distinguish sub-

surface structures in seismic images better than all other measures, including seismic

similarity measures such as [51] and [52]. We also show ROC curves for all similarity

measures used in the experiment in Figure 2.15.

To further analyze the retrieval results, we show in Figure 2.16 the precision after

retrieving n images (P@n curve) for each of the four classes in the dataset using the

proposed similarity measure. The cyan curve represents the horizon class, and it

shows that the precision is 1 for all values of n. This is mainly due to the simplicity

of the horizon structure. On the other hand, the curves of the other classes drop at

different rates depending on the complexity of their structures. For example, fault

images contain faults that are of different scales and dipping angles, which makes

them harder to distinguish using texture only. Hence, the fault precision curve

drops at a faster rate than those of other classes. The black curve is the average P@n

for all four classes.

In addition, in order to further assess the discriminative power of the proposed

similarity measure, we perform a clustering experiment using the similarity matrix

M . In this experiment, the similarity matrix is used solely to learn a 3-dimensional
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Figure 2.15: Receiver Operating Characteristic curves (ROC) for different similarity
measures on LANDMASS-2 [72] dataset.

100 200 300 400 500 600 700 800 900
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of retrieved images (n)

P
re

ci
si

on
@

n
(P

@
n

)

Horizon
Chaotic
Fault
Salt dome

All classes

Figure 2.16: Precision at n curves for different subsurface structure classes.

representation for each of the images in the dataset. The learned 3-dimensional

representation is then used to cluster the images into four unique clusters; a cluster for

each of the classes. The quality of the clusters is then evaluated by comparing with the
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ground-truth labels. Furthermore, visualization of the low dimensional representation

space reveals more details about which classes were better captured by the similarity

measure.

First, a 3-dimensional representation is learned for each image using Multi-dimensional

Scaling (MDS) [73]. MDS is a method used to geometrically represent the images in

the dataset using a single n-dimensional vector for each image. Images with the high-

est similarity score assigned by the similarity measure will be placed closer to each

other in the n-dimensional space. MDS learns a low-dimensional representation such

that the Euclidean distance between two points representing two images is inversely

proportional to the similarity between the images,

‖xi − xj‖2 ∝
1

Sim(Xi, Xj)
, (2.5)

where xi is the low-dimensional representation of the ith image, Xi.

Figure 2.17 shows the 3-dimensional representations of LANDMASS-2 dataset

obtained using the different similarity measures. It is evident from the figure that M-

SSIM does not group images of similar subsurface structures close to each other since it

is a generic image similarity measure. On the other hand, texture similarity measures

placed images that have similar structures within distinct clusters. However, the

clusters for some classes might overlap which indicates that the similarity measure

does not represent these classes very well. From a visual point of view, the low-

dimensional representation obtained using our proposed similarity measure is the

most distinctive out of all similarity measures used in this experiment.

In order to quantitatively evaluate the quality of the low-dimensional represen-

tation, we use k-means clustering algorithm to automatically cluster the images in

the low-dimensional representation into four clusters. Then, we use Rand index, and

the adjusted Rand index to evaluate the quality of these clusters with respect to the

ground-truth labels of the images. Rand index is the percentage of pairs of images
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Figure 2.17: Three-dimensional representation of LANDMASS-2 [72] dataset using
MDS based on similarity values.

that have been correctly identified by the clustering algorithm to belong to the same

cluster and the pairs that have been correctly identified to belong to different clusters.

One issue with Rand index is that its expected value for two random partitions is
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not constant. This issue is corrected with the adjusted Rand index. Both indices

are between [0, 1] with a value of 1 if and only if the clustering results match the

ground-truth labels. More details about Rand index and Adjusted Rand index are

discussed in Appendix A. The clustering results are summarized in Table 2.4.

Table 2.4: Evaluation of the quality of the clusters obtained by k-means clustering.

Method Rand Index Adjusted Rand Index

MSE 0.4254 0.0484

M-SSIM [37] 0.6114 0.0693

CW-SSIM [42] 0.9059 0.7510

STSIM [43] 0.9645 0.8779

SeiSIM [51] 0.8743 0.6665

Alaudah and AlRegib [52] 0.9067 0.7514

Ours [71] 0.9771 0.9390
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2.5 Structure Characterization of Subsurface Volumes

In this section, we utilize the introduced multiresolution texture similarity measure

to develop a large labeled dataset of seismic images. Given a few manually selected

exemplars for each of the subsurface structures of interest, the introduced multireso-

lution texture similarity measure is used to populate a large labeled dataset of seismic

images from an unlabeled seismic volume. The labeled dataset is then used to train

a structure labeling workflow introduced in [74]. The objective of structure labeling

is to identify and highlight the different subsurface structures present in the seismic

volume. The structure labeling workflow is depicted in Figure 2.18.

Figure 2.18: Structure labeling workflow using a few exemplar images for each of the
structures of interest.

2.5.1 Experimental Procedure

We choose four subsurface structures of interest to be identified in the seismic volume:

chaotic, faults, salt, and other. The other class serves the purpose of showing

negative examples of structures that do not belong to any of the first three classes.
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Then, using a single or a few exemplars for each subsurface structure, we retrieve 500

images for each class that have the highest similarity to the exemplar images as we

have shown in Section 2.4. The outcome is a populated dataset of labeled seismic

images, which is then used to train a classifier to label a large seismic volume. The

trained classifier is then used to label the subsurface structures in a large seismic

volume.

In this experiment, the structure labeling workflow using the introduced multires-

olution similarity measure is applied on inline 381 of the Netherlands offshore F3 block

[5]. Furthermore, we use different multiresolution image decomposition methods in

the similarity measure to show the effectiveness of the curvelet features in capturing

subsurface structures. Namely, instead of using the curvelet transform, we use the

Gaussian pyramid [56], the discrete wavelet transform, and Gabor filters [63]. We also

amplitude features of seismic images without multiresolution image decomposition as

a baseline in the experiment.

2.5.2 Results and Discussion

The labeling results and a manual labeling of inline 381 are shown in Figure 2.19. A

visual inspection of the results shows that the labeled section using our method is

superior in terms of consistency. Moreover, the quality of the labeling is evaluated

using objective measures that are commonly used in the semantic segmentation liter-

ature. These measures compare the labels obtained using the texture attributes with

the labels obtained manually. These measures are Pixel Accuracy (PA), Intersection

over Union (IoU) for each class, Mean Intersection over Union (MIoU) over all classes,

and Frequency-Weighted Mean Intersection over Union (FW-MIoU). The details of

these measures are presented in Appendix A. The quantitative results are reported

in Table 2.5.

The results indicate that using the curvelet transform and effective singular values
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Table 2.5: Quantitative evaluation of different multiresolution decomposition methods
for subsurface structure characterization.

Other Chaotic Fault Salt

Amplitude 0.5571 0.4925 0.2295 0.1728 0.4264 0.3303 0.4492

Gaussian Pyramid 0.5639 0.4778 0.2425 0.2662 0.4463 0.3582 0.4442

Wavelet Transform 0.5691 0.4909 0.2627 0.2127 0.4195 0.3465 0.4524

Gabor filters 0.7594 0.7223 0.5335 0.2452 0.4265 0.4819 0.6643

Ours [75] 0.8173 0.7807 0.5397 0.3373 0.5309 0.5472 0.7222

Method PA
IoU

MIoU FWIoU

(as in the proposed similarity measure) is an effective method to characterize sub-

surface structures. Also, better labeling performance indicates that the dataset on

which the classifier was trained describes the subsurface structures adequately. The

results also suggest that directional features play a more important role than scale

features for seismic image characterization. For example, the curvelet transform and

Gabor filters performed the best as they are the only two decomposition methods

with directional features. Moreover, the curvelet transform is superior to all other

attributes on all metrics; mainly because of its effectiveness in representing curve-like

features which constitute a large portion of the seismic section.

The IoU metric is computed for each class to provide more insight about the

effectiveness of the proposed measure in characterizing each class. For example, IoU

for faults indicates that faulty regions were not effectively labeled. However, this is

not a shortcoming of the characterization method but rather of the nature of the

labels that were used in the training. For example, a large number of fault images in

the training dataset have a strong reflector which is a much more dominant feature

than the faults themselves, making the classifier confuse images with strong reflectors

as faults. Since every image is labeled with one label, the classifier assumes that

all features present in the images belong to the same class, which is not true as we

have seen in the case of faults and strong reflectors. This drives the need for fine-
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grained labels of the subsurface. An example of such labels are ones obtained from

petrophysical studies of well-logs and core data. Such data is 1-dimensional but of

a high vertical resolution. In the next chapter, we discuss the details of using such

data as labels using sequence modeling.

2.6 Summary

In this chapter, we introduced a multiresolution texture similarity measure based

on the effective singular values of the curvelet transform. The introduced similarity

was shown to outperform the state-of-the-art texture and seismic similarity mea-

sures. Furthermore, it was shown that the introduced similarity measure effectively

represents seismic images in lower dimensional space such that different subsurface

structures were grouped into well-separated clusters. The introduced measure was

then used to form a large dataset of labeled seismic images from a few hand-labeled

exemplars, each highlighting a subsurface structure of interest. The dataset is then

used to train a classifier in a structure labeling framework. The trained classifier is

then used to label different subsurface structures in a large unlabeled seismic volume.

The developed multiresolution similarity measure, along with the structure labeling

framework, were shown to be effective in segmenting the most dominant structures

in the subsurface volumes such as salt bodies, faults, and chaotic structures. The

identification of such structures enables field engineering to accurately place wells to

be drilled in the survey area with minimal drilling hazards.
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CHAPTER 3

SEQUENCE MODELING FOR LITHOLOGY CHARACTERIZATION

3.1 Overview

In Chapter 2, we introduced a multiresolution texture similarity measure that was

used to create a large labeled dataset of seismic structures. The labeled dataset

was then used to structurally label a seismic volume using seismic data only. The

labeled volume can then be used for well-planning by drilling engineers to avoid

drilling hazards. In this chapter, we present a framework that integrates data obtained

from well-logs along with the seismic data to characterize the subsurface volume

from a lithological point of view. In the lithology characterization framework, we

use well-log data as labels for the seismic data around the wells. The proposed

framework is trained on the pairs of seismic data and their labels from well-logs

to learn a mapping function from seismic data to rock properties. Well-logs are 1-

dimensional measurements of the lithology of the subsurface. To utilize this data

in the characterization of subsurface volumes, we model seismic traces and well-log

data as time series. We introduce a supervised sequence modeling workflow based on

Gated Recurrent Units (GRUs) for lithology characterization of seismic data.

In Section 3.2.1, we present an overview of the literature of lithology characteriza-

tion in addition to an overview of sequence modeling. In Section 3.3, we present the

details of the proposed lithology characterization framework. Then, we evaluate the

proposed framework in two case studies on real and synthetic datasets in Section 3.4

and 3.5, respectively. Finally, we present a summary of this chapter in Section 3.6.

51



3.2 Background

In this section, we define subsurface lithology characterization and present relevant

literature. In addition, we present an overview of sequence modeling and their appli-

cations in the field of image and video processing.

3.2.1 Lithology Characterization

Lithology characterization is the process of estimating rock properties of the sub-

surface, such as density, porosity, and impedance, using seismic reflection data. It

is worth noting that the target domain of lithology characterization is continuous

(i.e., a range of possible rock property values) whereas the target domain of structure

and stratigraphy characterization is discrete. Therefore, characterizing the subsurface

lithologically provides a fine-grained characterization of the physical rock properties

of the subsurface.

In general, the goal of lithology characterization is to infer true model parameters

(rock properties, m ∈ X) through an indirect set of measurements (seismic data,

d ∈ Y ). Seismic data can be formulated mathematically as a function of subsurface

properties of through a forward operator F : X → Y , i.e.,

d = F(m) + n, (3.1)

where d is the measured data (seismic), m is the true model (rock properties), and

n ∈ Y is a random variable that represents noise in the measurements.

To estimate the model parameters from the measured data, one needs to solve

an inverse problem. The solution depends on the nature of the forward model and

observed data. In the case of seismic inversion, and due to the non-linearity and

heterogeneity of the subsurface, the inverse problem is highly ill-posed. In order to

find a stable solution to an ill-posed problem, the problem is often regularized by
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imposing constraints on the solution space and incorporating prior knowledge about

the model.

The classical approach to solve the seismic inversion problem is to set up the

problem as a Bayesian inference problem, and improve prior knowledge by optimizing

for a cost function based on the data likelihood,

m̂ = argmin
m∈X

[H (F(m), d) + λC(m)] , (3.2)

where m̂ is the estimated model parameters, H : Y × Y → R is an affine transform

of the data likelihood, C : X → R is a regularization function that incorporates prior

knowledge, and λ ∈ R is a regularization parameter that controls the influence of

the regularization function. Moreover, in this approach, a good initial guess of m is

needed to ensure the convergence of the optimization routine to a valid solution. The

literature of seismic inversion is rich in techniques to solve the inverse problem using

Bayesian inference and various regularization techniques (e.g., [76, 77, 78, 79, 80, 81,

82]). More details about classical inversion are presented in Chapter 4.

Recently, there have been several successful applications of machine and deep

learning methods in inverse problems in general [83], and to seismic inversion in

specific [84, 85]. For example, seismic inversion has been attempted using supervised-

learning algorithms such as Support Vector Regression (SVR) [86], artificial neural

networks [87, 21, 22], committee models [88], Convolutional Neural Networks (CNNs)

[20, 19], Bayesian learning [89], and transfer learning [90].

In general, machine learning algorithms can be used to invert seismic data by

learning a non-linear inverse mapping parameterized by Θ ∈ Z (F †Θ : Y → X) using

labels obtained from well-log data such that:

F †Θ(d) ≈m. (3.3)
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Neural networks are then used to learn such inverse mapping (inversion network). The

inversion network is learns by minimizing the following loss function over well-log data

(m∗), and their corresponding seismic data (d∗):

L(Θ) := D
(
F †Θ(d∗),m∗

)
, (3.4)

where D is a distance measure to compare the estimated rock properties with the

true rock property measurements from well-logs. The trained inversion network is

then used to estimate rock properties from seismic data for the entire seismic survey,

i.e., m̂ = F †Θ(d).

There are many challenges that might prevent neural networks from finding a

proper mapping that can be generalized beyond the training data. One of the chal-

lenges is the lack of data from a given survey area on which the network can be

trained. For this reason, such neural networks must have a limited number of learn-

able parameters and a good regularization method in order to prevent over-fitting and

to be able to generalize beyond the training data. In general, there are two common

approaches to characterize seismic data in a learning framework. The first approach is

to treat each data point of a seismic trace (in the z-direction) as an independent sam-

ple and try to estimate rock properties from the corresponding seismic data sample.

This method fails to capture the global trends and temporal dependencies in seismic

traces. An alternative approach is to treat each trace as a single training sample to

incorporate global features by using the all points in the depth direction as features

of a single sample. However, this approach severely limits the amount of data from

which the algorithm can learn since each trace is treated as a single training sample.

With a limited amount of training data, common machine learning algorithms might

fail to generalize beyond the training data because of their high data requirements.

Such a requirement might be difficult to meet in practical settings where the number

of well-logs is limited. In order to remedy this, we propose modeling seismic traces
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as sequential data via recurrent neural networks to capture the temporal dynamics

of the traces and generalize better beyond the training data.

3.2.2 Sequence Modeling

A sequence is an ordered list of objects or data points. Thus, sequence modeling is

used to represent data for which order is important. For example, sequence mod-

eling is commonly used in developing language models by modeling a sentence as a

set of ordered words that convey a specific meaning. Sequence modeling has been

utilized widely to represent various types of data such as speech and audio signals

[91], videos [92], and seismic traces [93]. Sequence modeling has been often attempted

using Hidden Markov Models (HMMs) by modeling the probabilities of observing one

output given the current observation using a set of discrete states. Recent advances

in machine learning extended the concept of HMMs using Recurrent Neural Networks

(RNN).

Hidden Markov Models

One of the applications of sequence modeling is sequence prediction or completion

where the task is to predict the next data point of a sequence given the previously

observed data points. The task is classically modeled using statistical sequence models

such as HMMs [94]. For instance, for a sequence {x(1), x(2), . . . }, and a finite set of

discrete states S, where x(i) ∈ S, an nth-order HMM assumes that the next point of

the sequence depends only on the past n points of the sequence, i.e.,

P (x(t)|x(t−1), x(t−2), . . . , x(1)) = P (x(t)|x(t−1), x(t−2), . . . , x(t−n)), for n < t− 1, (3.5)

where P (x(t)|x(t−1), x(t−2), . . . , x(t−n)) denotes the probability of observing x(t) given

that x(t−1), x(t−2), . . . , and x(t−n) have been observed. Then, the next point of the se-
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quence is predicted as the point that has the maximum probability of being observed.

Sequence prediction has been used for various applications such as text generation

[95], traffic observation [96], and text translation [97]. Furthermore, HMMs have been

utilized in the seismic domain for various applications. For example, Lomnitz [98]

used HMMs to predict earthquakes from past observations by modeling data recorder

by seismographs as time series. Godfrey et al. [99] utilized HMMs to model seismic

impedance using a discrete set of states obtained from well-log data. Amin et al. [100]

used HMMs to model the presence of salt bodies within subsurface volumes and used

the Expectation Maximization (EM) algorithm to delineate the edges of salt bodies.

Hidden Markov models are known as fixed-window models where the window

size refers to the order of the Markov model. Theoretically, HMMs are capable of

modeling a sequence of an arbitrary length given a sufficiently large window. However,

the number of states (the size of the set S) grows exponentially with the order of the

HMM. Such limitation makes it difficult to model long-term interactions in sequences.

Figure 3.1 shows three examples of state transition diagrams of S with different values

of n.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [101] are a class of artificial neural networks

that are designed to capture the temporal dynamics of sequential data. Unlike feed-

forward neural networks, RNNs have a hidden state variable that can be passed

between sequence samples which allows them to capture long temporal dependencies

in sequential data. Figure 3.2 shows a side-by-side comparison between a feed-forward

unit and a recurrent unit. Furthermore, RNNs overcome the exponential growth of

the number of states in HMMs by introducing a continuous state variable that can

represent an arbitrary number of states.

RNNs are widely used for sequence-to-sequence mapping where the task is to
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Figure 3.1: Examples of states transition diagrams for different orders of HMM (n).
The numbers on the arrows represent the transition probability.

predict one sequence x ∈ X, x =
[
x(1), x(2), . . . , x(Tx)

]
from another sequence y ∈ Y ,

y =
[
y(1), y(2), . . . , y(Ty)

]
. In sequence-to-sequence mapping, the objective is to find a

mapping function F : X → Y such that:

y(t) = F(x(t), y(1), y(2), . . . , y(t−1)). (3.6)

Note that sequence-to-sequence mapping reduces to sequence prediction when x =

{x(1), x(2), . . . , x(t−1)} and y = x(t). RNNs have been utilized widely for various se-

quence modeling tasks such as language modeling and natural language processing

(NLP) [102], speech and audio processing [103], and activity recognition in videos

[104]. In addition, RNNs have been utilized in the seismic domain to model long-
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Figure 3.2: An illustration of feed-forward and recurrent networks.

term interactions in seismic signals. For example, Wiszniowski et al. [105] used

real-time RNNs to detect small natural events in recorded seismic signals. Biswas et

al. [106] used RNNs to estimate stacking velocity from pre-stack 2D data by training

the network on a subset of the seismic traces using a given stacking velocity model.

The network is then used to estimate the stacking velocity of the remaining data.

Despite the success of RNNs in language, audio, and video domains, they have not

been widely utilized in the seismic domain, especially in subsurface characterization.

When RNNs were proposed in the 1980s, they were difficult to train because they

introduced temporal dependency which made gradients more difficult to compute.

The problem was later solved using backpropagation through time (BPTT) algo-

rithms [107], which turn the gradient into a long product of terms using the chain

rule. Theoretically, RNNs are capable of learning long-term dependencies through

their hidden state variables. However, even with BPTT, RNNs fail to learn long-

term dependencies mainly because the gradients tend to vanish for long sequences as

they are backpropagated through time. New RNN architectures have been proposed

to overcome this issue using gated units. Examples of such architectures are Long

Short-Term Memory (LSTM) [108] and Gated Recurrent Units (GRU) [109]. Such

architectures have been shown to capture long-term dependency and perform well for

various sequence modeling tasks.
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GRUs improve on the simple RNN by introducing reset-gate and update-gate

variables which are internal states that are used to evaluate the long-term dependency

and keep information from previous time steps only if they are needed. A forward

step through a GRU is given by the following equations:

u
(t)
i = sigmoid

(
Wxux

(t)
i + Wyuy

(t−1)
i + bu

)

r
(t)
i = sigmoid

(
Wxrx

(t)
i + Wyry

(t−1)
i + br

)

ŷ
(t)
i = tanh

(
Wxŷx

(t)
i + bŷ1 + r

(t)
i ◦

(
Whŷy

(t−1)
i + bŷ2

))

y
(t)
i = (1− u(t)) ◦ y

(t−1)
i + u(t) ◦ ŷ(t),

(3.7)

where x
(t)
i and y

(t)
i are the ith input sequence and its estimated output at time t,

respectively, u
(t)
i and r

(t)
i are the update-gate and reset-gate vectors, respectively, ŷ

(t)
i

is the candidate output for the current time step, W’s and b’s are the learnable

parameters, and the operator ◦ is the element-wise product. Figure 3.3 shows a GRU

network unfolded through time. Note that all GRUs in an unfolded network share

the same W and u parameters.

GRU GRU GRU…

"#
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Figure 3.3: Gated Recurrent Unit (GRU) unfolded through time.
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3.3 Proposed Method

Using neural networks, we can learn the inverse mapping (F †Θ in equation (3.3)) by

setting up the inversion problem as a supervised sequence-to-sequence. The neural

network (inversion network) is given a set of measurement-model pairs (d∗,m∗) (e.g.,

seismic traces and their corresponding property traces from well-logs) to learn the

inverse mapping by minimizing the loss function in (3.4).

In [110], we proposed a shallow sequence modeling network based on GRUs for

property estimation from seismic data. The network consists of two convolutional

layers to extract local features followed by 2-layer GRU to extract sequential features.

Then, sequential features are mapped to rock property using a simple linear layer.

The proposed network is trained on pairs of property traces and their corresponding

seismic traces. Then, the trained network is used to estimate the property for all

traces in the survey. The proposed network is shown in Figure 3.4.

Seismic
Trace

Conv Conv

Feature Extraction

GRU GRU

Sequence Modeling

Linear

Regression

Property
Trace

Figure 3.4: The architecture of the inversion network in the proposed framework.

The network in Figure 3.4 consists of three main modules. The first module is the

Feature extraction module which is a series of two convolutional blocks (Conv) with

small kernels size. A convolutional block consists of a convolutional layer followed by

a batch normalization layer and a non-linearity. This module extracts local features

from the input seismic traces. The next module is the sequence modeling which

consists of two in-series GRUs. The Sequence modeling module computed global

features from the input traces using its memory element. Finally, the computed

features are fed to the Regression module which is a linear layer that maps these

features to the output domain, i.e., the rock property domain.
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The network is trained on pairs of seismic traces and their corresponding lithology

traces from well-logs. We use the Mean Square Error (MSE) as a distance measure

to compute the error between the estimated traces and the true traces. Hence, (3.4)

reduces to:

L(Θ) =
1

N∗

∑

i

‖F †Θ(d∗i )−m∗i ‖2
2, (3.8)

where N∗ is the number of training samples.

3.4 Case Study: Density Estimation

We evaluate the proposed supervised sequence modeling lithology characterization

framework on data from Netherlands offshore F3 block [5]. The dataset contains

seismic data, and 4 wells: F02{1, F03{2, F03{4, and F06{1. The locations of these

wells within the seismic survey is shown in Figure 3.5.

F02-1

F06-1

F03-2

F03-4

Figure 3.5: A top view of the seismic survey area showing the locations of the wells
used in the density estimation experiment.

For each of the wells, we extracted a cube of seismic data of size [7 × 7 × depth]
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centered at the well. The proposed workflow is then trained using seismic cubes

as inputs and the density traces from well-logs as labels. It is worth noting that a

problem as difficult as property estimation might need a more complex and deeper

learning model; however, the number of model parameters increases with complexity

and thus much more data is required to train such models properly. The goal of

this experiment was to show the power of recurrent neural networks for property

estimation by utilizing their temporal dependencies.

3.4.1 Data Preprocessing

Since the well-log data is captured at a higher resolution than that of the seismic

data, we first smooth then downsample the well-log data to match the resolution of

the seismic data. We also normalize the seismic data by subtracting the mean and

dividing by the standard deviation.

3.4.2 Training the Network

A seismic trace is fed to the network to obtain an estimated property trace. The

error is then competed between the estimated property traces and the actual property

traces from well-logs. The gradients of the error, with respect to the parameters of

the network, are computed. Finally, the gradients are used to update the network

parameters. This process is repeated until a stopping criterion is met.

Due to the small size of the dataset, training regularization is needed to ensure

that the model does not over-fit to the training data. We used data augmentation

by rotating the seismic cubes along the time axis to increase the number of training

samples. Furthermore, we used early stopping where the training is stopped after a

small number of epochs. More training epochs will definitely improve the performance

on the training dataset, but the network will fail to generalize. In our experiments,

the training is stopped when the training correlation reaches 0.97.
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3.4.3 Results and Discussion

The performance of the models is assessed using 4-fold validation, where 3 of the

wells are used for training and the remaining well is used for testing. The process

is repeated 4 times, and the results are averaged for all experiments. The estimated

density traces are shown in Figure 3.6. Estimated density traces for the validation

well is shown red, estimated density traces for the training wells are shown in blue,

and the true density traces from well-logs are shown in black.

To quantitatively evaluate the estimated traces, we compute two goodness-of-fit

metrics that are commonly used in regression analysis. Namely, we compute the

Pearson Correlation Coefficient (PCC), and the coefficient of determination (r2).

PCC is a metric between 0 and 1 that measures the correlation between the estimated

and true traces that takes into account the global shapes of the traces. The coefficient

of determination is a more strict measure than PCC as it takes into account the local

variations in the traces. It gives a value in (−∞, 1] with a higher value indicating a

better fit. More details about PCC and r2 are presented in Appendix A. The results

are summarized in Table 3.1.

Training wells Validation well
PCC r2

Training Validation Training Validation

F03–2, F03–4, F06–1 F02–1 0.97 0.88 0.94 0.63
F02–1, F03–4, F06–1 F03–2 0.97 0.86 0.94 0.55
F02–1, F03–2, F06–1 F03–4 0.97 0.72 0.94 0.32
F02–1, F03–2, F03–4 F06–1 0.97 0.90 0.94 0.75

Table 3.1: Quantitative Evaluation of the estimated density traces using the proposed
network.

The results of this case study show that the network was able to learn a mapping

from seismic data to density using only 3 well-log traces for training. With such a

small dataset of real data, an average correlation of 0.90 indicates that the estimated

density follows the low-frequency trends in the true density. Moreover, an average r2
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(a) 1st fold (b) 2nd fold

(c) 3rd fold (d) 4th fold

Figure 3.6: Cross-validation results for density estimation from migrated seismic data.
Training traces are shown in blue, validations traces are shown in red, and actual
measurements are shown in black.

also indicated that the small variations also match between the estimated and true

traces. However, note that large variability in results between the different folds of

the experiments. This is mainly due to the locations of the wells within the survey

as shown in Figure 3.5. For instance, the wells F02-1 and F06-2 are close in distance

which makes them have highly similar characteristics. Thus, when one of them is used

for training, and the other is used for validation, the results are generally higher.
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3.5 Case Study: Acoustic Impedance Estimation

In the previous case study, we used real data to evaluate the performance of the

proposed workflow. Although real data is more challenging to characterize due to

noise and migration artifacts, we do not have a means of evaluating the generalization

power of the proposed workflow beyond areas near the wells. Therefore, in this

case study, we evaluate the performance of the proposed workflow on a synthetic

dataset for which the true lithology is available throughout the survey. In particular,

we use Marmousi 2 synthetic model [23] which is an elastic upgrade of the original

Marmousi model [111]. The original Marmousi model is based on a profile through

the North Quenguela Trough in the Cuanza Basin, Angola. It has been used for

numerous studies in geophysics for various applications including seismic inversion,

seismic modeling, and seismic imaging. Marmousi 2 spans 17 km in width and 3.5

km in depth with a vertical resolution of 1.25 m. Using a synthetic model, we can

quantitatively evaluate the quality of the estimated rock properties by comparing

with the ground-truth synthetic model.

In this case study, we estimate acoustic impedance from noise-free zero-offset

synthetic seismic data. We chose 10 uniformly-spaced acoustic impedance traces to

serve as pseudo-wells. For each pseudo-well, a seismic trace is extracted, and the

acoustic impedance value from the acoustic model is used as a label for the seismic

trace. Data preprocessing and network training is carried as detailed in Section 3.4.

In addition, we train the network, independently, on wave-equation-migrated seismic

data to test the robustness of the proposed workflow to migration artifacts that are

common in field seismic data. The synthetic seismic section, migrated seismic section,

and the corresponding acoustic impedance section are shown in Figure 3.7.
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(a) Noise-free synthetic zero-offset seismic

(b) Wave-equation migrated seismic
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(c) Acoustic impedance

Figure 3.7: A Synthetic seismic section, a wave-equation-migrated seismic section
from Marmousi 2 [23], and the true acoustic impedance section (in depth).
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3.5.1 Results and Discussion

The proposed supervised sequence modeling workflow is trained on 10 pseudo-well-

logs (N∗ = 10) and their corresponding seismic data. Then, the trained model is

used to estimate acoustic impedance for all traces in Marmousi 2 model. In addition,

to show the power of recurrent neural networks compared to feed-forward ones, we

train a convolutional network, similar to the one in Figure 3.4 where recurrent layers

are replaced by convolutional layers with the same number of parameters. The es-

timated acoustic impedance profiles from noise-free synthetic seismic data using the

two networks are shown in Figure 3.8.

The results in Figures 3.8 show the estimation of acoustic impedance using syn-

thetic noise-free seismic data. With noise-free synthetic seismic, all reflectors are

clearly visible which makes the estimation task relatively easier. However, in prac-

tice, seismic data is often noisy and has migration artifacts which make the reflectors

less visible, especially in deep and complex geology. To evaluate the performance

of the proposed network on migrated data, we repeat the same experiment using

wave-equation-migrated seismic data instead of the synthetic seismic data to esti-

mate acoustic impedance. The results are shown in Figure 3.9.

Visual inspection of the estimated acoustic impedance profile in Figure 3.8 shows

the superiority of the recurrent neural network to the convolutional neural network in

lithology characterization. This is clearly visible from the smoothness of the estimated

acoustic impedance using the recurrent neural network compared to those estimated

using the convolutional neural network. It is interesting that the recurrent network

produces a laterally-smooth estimation although the estimation was performed on a

trace-by-trace manner. On the other hand, the Convolutional network was able to

estimate the acoustic impedance in general but the results are noisy although the in-

put seismic was noise-free. The estimated acoustic impedance section using recurrent

layers is much more consistent and less noisy compared to the estimated acoustic
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(a) True acoustic impedance

(b) Estimated acoustic impedance using using a convolutional network

(c) Estimated acoustic impedance using a recurrent network

Figure 3.8: Estimated acoustic impedance from noise-free synthetic seismic data using
a convolutional network and a recurrent network.

impedance section using the feed-forward network, especially in thick layers where

state variables help in maintaining the estimated value. This indicates that global

features captured by the recurrent layers are important for such a task. This feature of
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(a) True acoustic impedance

(b) Estimated acoustic impedance using using a convolutional network

(c) Estimated acoustic impedance using a recurrent network

Figure 3.9: Estimated acoustic impedance from wave-equation-migrated seismic data
using a convolutional network and a recurrent network.

recurrent neural networks is more visible in Figure 3.9 when wave-equation-migrated

seismic are used to estimate acoustic impedance instead of noise-free synthetics.

To further analyze the results, the estimated acoustic impedance profiles are com-
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pared quantitatively to the true acoustic impedance using Pearson Correlation Co-

efficient (PCC) and the coefficient of determination (r2). The quantitative results

are summarized in Table 3.2 for noise-free synthetic seismic data and in Table 3.3 for

wave-equation-migrated seismic data.

Table 3.2: Quantitative evaluation of the estimated acoustic impedance from noise-
free synthetic seismic using recurrent and feed-forward networks.

PCC r2

Network Training Validation Training Validation

Feed-forward 0.9829 0.9253 0.9650 0.7778
Recurrent 0.9940 0.9728 0.9876 0.9249

Table 3.3: Quantitative evaluation of the estimated acoustic impedance from wave-
equation-migrated seismic using recurrent and feed-forward networks.

PCC r2

Network Training Validation Training Validation

Feed-forward 0.9776 0.8600 0.9513 0.6345
Recurrent 0.9887 0.9363 0.9774 0.8233

The results in Table 3.2 show that using sequence modeling improved the estima-

tion of acoustic impedance by 5% on PCC and 15% on r2 in the noise-free synthetic

case. Moreover, acoustic improved by 6%, 19% on PCC and r2 for the wave-equation-

migrated case. Furthermore, a smaller gap between the training and validation results

using a recurrent network indicates a better generalization ability of the network. Al-

though the performance of both networks has dropped significantly when estimating

acoustic impedance from wave-equation-migrated seismic data, the recurrent network

maintains the superior performance compared to the feed-forward network with even

larger margins on both metrics. The lower performance is excepted because of the

migration artifacts present in the wave-equation-migrated seismic which prevent the

network from resolving all reflectors. Although using a deeper network can help im-

prove the resolution of the estimated acoustic impedance, deeper networks cannot be
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trained with a limited number of labeled data in a supervised-learning scheme.

3.6 Summary

In this chapter, we present a learning-based lithology characterization framework

based on recurrent neural networks. Unlike classical inversion methods, the proposed

framework does not require an initial model of the subsurface lithology. Instead,

the initial model is inferred from the training data. The inversion network in the

proposed framework is trained on well-log data and their corresponding seismic data

in a supervised-learning paradigm. Then, the network is used to estimated rock

properties throughout the survey using seismic data. The performance of the proposed

framework was evaluated in two case studies for density and acoustic impedance

estimation from real and synthetic seismic data. The results showed the superiority

of recurrent neural networks over convolutional networks in modeling seismic and

property traces even with the presence of noise and migration artifacts.
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CHAPTER 4

SEMI-SUPERVISED LITHOLOGY CHARACTERIZATION WITH A

PREDEFINED FORWARD MODEL

4.1 Overview

In Chapter 3, we presented a supervised lithology characterization framework based

on a shallow recurrent neural network. The proposed framework was trained on well-

log and seismic data that were of the same vertical resolution. However, well-log data

is often sampled at a higher vertical resolution than that of the seismic. One way

to overcome this issue is to downsample well-log data to have the same resolution as

that of the seismic data. However, this approach limits the resolution of the estimated

rock properties. An alternative approach is to interpolate the seismic data to have

a similar resolution to that of the well-logs [85]. Interpolation artifacts added to the

already noisy seismic data can prevent the network from learning a proper inverse

mapping. Furthermore, the inversion network presented in Chapter 3 was shallow

due to the limited availability of well-log data. A shallow network does not have a

learning capacity to learn a complex mapping such as the mapping from seismic to

rock properties. Thus, in this chapter, we present a physics-guided semi-supervised

lithology characterization framework that enables training deep neural networks with

limited data, with the aid of a physical forward model. Using the physical forward

model enables the training of a deep network for lithology characterization with lim-

ited data by injecting the physics of wave propagation through the subsurface. The

forward model enables the proposed framework to learn from seismic data without

requiring a corresponding rock property measurement for each of the seismic traces

in the survey. In addition, the deep network in the semi-supervised lithology charac-
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terization framework can learn from the full resolution well-logs without the need to

downsample them to match that of the seismic data.

In Section 4.2, we present an overview of seismic modeling, and relevant seis-

mic inversion literature using classical and deep-learning methods. Then, in Section

4.3, we present the details of the proposed semi-supervised lithology characterization

framework. Sections 4.4 presents a case study of acoustic impedance estimation from

seismic data using the proposed framework. We evaluate the proposed framework for

elastic impedance estimation from multi-offset prestack seismic data in Section 4.5.

Finally, we present a summary of this chapter in Section 4.6.

4.2 Background

4.2.1 Seismic Modeling

When a plane wave (from the seismic source) strikes an interface between two media

at a normal incidence, part of the wave’s energy is transmitted and the remaining

part is reflected and picked up by the geophones at the surface. The ratio between

the reflected wave’s amplitude and the incident wave’s amplitude is known as the

Reflection Coefficient (RC). The Transmission Coefficient (TC) is the ratio of the

amplitude of the transmitted wave to that of the incident wave. The reflection and

transmission coefficients for a normal incident are fully determined by the acoustic

properties of the layers below and above the interface, as follows:

RC =
Vp2ρ2 − Vp1ρ1

Vp2ρ2 + Vp1ρ1

=
AI2 − AI1

AI2 + AI1

, (4.1)

TC = 1−RC, (4.2)

where Vp1 , ρ1, and AI1 are the P-wave velocity, density, and acoustic impedance of the

layer above the interface, and Vp2 , ρ2, and AI2 are the P-wave velocity, density, and
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acoustic impedance of layer below the interface. Higher acoustic impedance contrast

between the two media will result in a larger reflection coefficients in (4.2), which

gives an intuitive understanding of the relationship between the acoustic properties

of the media and the reflection coefficients.

Convolving the reflectively series RC(t) with a wavelet produces a synthetic seis-

mic trace (seismogram) as follows:

S(t) = w(t) ∗RC(t), (4.3)

where w(t) is the source wavelet, and ∗ is the linear convolution operator. This

process is illustrated in Figure 4.1.

The acoustic impedance trace undergoes two main operations to obtain the seis-

mogram. First, the reflectivity series is computed by taking the derivative of the

acoustic impedance trace (high-pass filtering). Then, the seismogram is computed

by convolving the reflectivity series with a wavelet which results in a low-pass sig-

nal. Hence, the seismograms can be seen as a band-limited version of the acoustic

impedance trace which makes the task of recovering acoustic impedance from seismic

data very challenging.

Moreover, when the plane wave strikes at an angle < 90◦, and due to shearing,

in addition to compression, part of the incident P-wave is also converted to S-waves.

Therefore, an incident P-wave at an acute angle gives rise to reflected P- and S-waves,

and transmitted P- and S-waves. In such scenario, (4.2) is no longer applicable.

However, the angles at which these waves are reflected or refracted can be computed

using Snell’s law depending on the elastic properties of the layers, i.e., P-wave velocity

Vp and S-wave velocity Vs,

sin θr
Vp1

=
sin θt
Vp2

=
sinφr
Vs1

=
sinφt
Vs2

, (4.4)
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Figure 4.1: Seismograms as a convolution of the reflectivity series with a wavelet.

where θr is the reflected P-wave angle which is also equal to the incident angle (θi),

θt is the transmitted P-wave angle, and φr and φt are the reflected and transmitted

S-wave angles, respectively. The ray paths are illustrated in Figure 4.2.

Hence, knowing the elastic properties of the two media and the incident angle,

one can find the reflection and refraction angles for P-wave and S-wave components.

Zoeppritz equations [112] give the reflection coefficients for these reflected and re-

fracted components as a function of the elastic properties and the incident angle.
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Vp2 , Vs2 , ρ2

Figure 4.2: An illustration of the reflected and refracted components of a plane wave
at an interface.

Zoeppritz equations are expressed in matrix form in [113] as follows:




cos θi
Vp1
Vs1

sinφr
Vp1
Vp2

cos θt −Vp1
Vs2

sinφr

− sin θi
Vp1
Vs1

cosφr
Vp1
Vp2

sin θt
Vp1
Vs2

cosφr

− cos 2φr − sin 2φr
ρ2
ρ1

cos 2φt −ρ2
ρ1

sin 2φt

sin 2φr −V 2
p1

V 2
s1

cos 2φr
ρ2
ρ1

V 2
s2

V 2
s1

Vp1
Vp2

sin 2θt
ρ2
ρ1

V 2
p1

V 2
s1

cos 2φt







RCp

RCs

TCp

TCs




=




cos θi

sin θi

cos 2φr

sin 2θi



, (4.5)

where RCp and RCs are the reflection coefficients for the P-wave and the S-wave

components, respectively, and TCp and TCs are the transmission coefficients of the

P-wave and the S-wave component, respectively.

The solution of Zoeppritz equations is quite complex due to the complexity of their

formulation. In addition, they do not reveal an intuitive understanding of how the

reflection coefficients are affected by the elastic properties as we have seen in (4.2)

[18]. Therefore, there have been many efforts to approximate Zoeppritz equations
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under different assumptions [114, 113, 115]. In particular, the Aki-Richards [113]

approximation of Zoeppritz equation has been used quite extensively in the literature.

It formulates amplitude variations with the offset or incident angle (AVO/AVA) [18]

based on the changes of elastic properties and the incident angle. The reflection

coefficient, for incident angles smaller than 35◦, Aki-Richards approximation is given

as a function of the incidence and transmission angle as follows:

RC(θ) = 1
2

(
1− 4V

2
s

V
2
p

sin2 θ

)
∆ρ
ρ

+ 1
2 cos2 θ

∆Vp
V p
−
(

4V
2
s

V
2
p

sin2 θ

)
∆Vs
V s
, (4.6)

where,

V p = 1
2

(Vp1 + Vp2), V s = 1
2

(Vs1 + Vs2), ρ = 1
2

(ρ1 + ρ2),

∆Vp = Vp2 − Vp1 , ∆Vs = Vs2 − Vs1 , ∆ρ = ρ2 − ρ1,

and θ = 1
2

(θi + θt) .

Based on Aki-Richards’ approximation, Connolly [116] formulated the Elastic

Impedance (EI) which is an extension of the acoustic impedance for different in-

cident angles. The elastic impedance was later normalized by Whitcombe [117] as

follows:

EI(θ) = Vp0ρ0

(
Vp
Vp0

)a(
Vs
Vs0

)b(
ρ

ρ0

)c
, (4.7)

where,

a = 1 + tan2 θ

b = −8K sin2 θ

c = 1− 4K sin2 θ

K =
V 2
s

V 2
p

,

and Vp,Vs and ρ are P-wave velocity, S-wave velocity, and density, respectively, and

Vp0 ,Vs0 and ρ0 are their respective averages. Note that for θ = 0→ a = c = 1, b = 0,
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the elastic impedance reduces to acoustic impedance, i.e. EI(0) = AI = Vpρ. Then,

the reflection coefficients can be computed from elastic impedance as follows:

RC(θ) =
EI2(θ)− EI1(θ)

EI2(θ) + EI1(θ)
. (4.8)

Finally, the multi-angle seismogram can be computed by convolving the multi-angle

reflectivity series with a wavelet,

S(t, θ) = w(t) ∗RC(t, θ). (4.9)

4.2.2 Linear Seismic Inversion

As discussed in Section 3.2.1, the goal of seismic inversion is to infer rock properties

(m ∈ X) through an indirect set of seismic reflection measurements (d ∈ Y ). For

example, seismic inversion can be used to infer acoustic impedance from zero-offset

seismic data, which is then used to estimate the porosity of the subsurface. Further-

more, elastic impedance inversion enables the characterization of the subsurface from

an elastic point of view as we have seen in Section 4.2.1 which reveals more details

about the lithology of the subsurface. For simplicity, we will present a linear inversion

method for acoustic impedance estimation from seismic reflection data [118, 18]. A

similar formulation can be used for elastic inversion.

A classical approach to solve the seismic inversion problem is to linearize equation

(3.1) the forward based on the seismic model in (4.3) as follows:

d = WDm + n, (4.10)

where d is the seismic data, m is the logarithm of acoustic impedance, n is a random

variable that represents noise in the measurements, D is the first derivative operator,

and W is the wavelet convolution operator. Thus, comparing (4.10) with (3.1), the
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forward operator F is approximated by WD.

Using an initial model, m0, which is a guess of the acoustic impedance of the sub-

surface that is obtained from the acoustic impedance logs, the trace-by-trace inversion

is carried out for ∆m = m−m0 as follows:

m̂ = m0 + arg min
∆m

‖d−WD(m0 + ∆m)‖2
2. (4.11)

Since seismic data does not contain the low-frequency component of the m, an

initial model m0 is needed to enable the inversion algorithm to estimate the absolute

values of the model’s parameters rather than relative ones.

The minimization problem in (4.11) can be solved using a least-squares approach

which works great for noise-free synthetic data. However, if the data is noisy or

the forward operator does not produce the same observed data, a good solution is

not guaranteed. Thus, the inverse problem is often regularized using Laplacian and

Tikhonov’s regularization methods [119, 120]. Moreover, additional constraints can

be used to incorporate prior knowledge in the optimization objective. Moreover,

the presented formulation is known as linear seismic inversion. Other approaches

have been proposed to solve the seismic inversion problem using nonlinear methods.

Relevant literature about such methods was presented in Section 3.2.1

Alternatively, as discussed in Section 3.2.1, machine learning algorithms can be

used to solve the seismic inversion problem. Using neural networks, one can learn

inverse mapping F †Θ (in (3.3)) in either a supervised manner or an unsupervised

manner [121]. In supervised learning, the machine learning algorithm is given a set

of measurement-model pairs (d∗,m∗) (e.g., seismic traces and their corresponding

property traces from well-logs). Then, the algorithm learns the inverse mapping by

minimizing the following loss function:

L(Θ) := D
(
m∗,F †Θ(d∗)

)
, (4.12)
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where D is a distance measure that compares the estimated rock property to the true

property. Therefore, supervised-learning algorithms seek a solution that minimizes

the inversion error over the given measurement-model pairs. Note that (4.12) is

computed only over a subset of all traces in the survey. This subset includes the

traces for which a corresponding property trace is available from well-logs.

The inverse mapping can also be sought in an unsupervised-learning scheme where

the learning algorithm is given a set of measurements (d), an initial model (m0), and

a forward model F [122]. The algorithm then learns by minimizing the following loss

function:

L(Θ) := D
(
F
(
F †Θ(d) + m0

)
,d
)
, (4.13)

which is computed over all seismic traces in the survey. The loss in (4.13) is known

as data misfit. It measures the distance between the input seismic traces and the

synthesized seismograms from the estimated property traces using the forward model.

Unsupervised-learning inversion follows a similar formulation of the classical inversion

presented earlier.

Although supervised methods are superior to unsupervised ones in various learning

tasks (e.g., image segmentation and object recognition), they require large labeled

datasets. In the case of the seismic inversion, the labels (i.e., property traces) are

sparse since they come from well-logs. Unsupervised methods, on the other hand, do

not require labeled data, and thus can be trained on all available seismic data only.

However, they require a good initial estimate of the subsurface model and do not

integrate well-logs directly in the learning.

A key difference between classical inversion methods and learning-based methods

is the optimization objective. In classical inversion, the objective is to find rock

properties, m, a posterior probability density function of the rock properties. On

the other hand, learning methods aim to find a mapping from the seismic domain to

rock property domain. This difference between the two approaches plays a key role in
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their computational efficiency. The number of parameters to be estimated in classical

inversion is the total number of measurements in the survey. In contrast, the number

of parameters to be estimated in learning-based inversion is equal to the number of

parameters in the neural network which is independent of the survey size.

Moreover, a key difference between the classical, the unsupervised, and the su-

pervised methods is their sensitivity to the initial model. In classical inversion and

unsupervised methods, the initial guess plays an important role in the convergence

of the method, and in the final solution. On the other hand, supervised-learning

methods are randomly initialized, and prior knowledge is integrated into the objec-

tive function and is inferred by the learning algorithm from the training data. Thus,

learning-based inversion is less sensitive to the initial guess.

In addition, classical and unsupervised-learning inversion methods are based on

a physical model (the seismic model) as we have seen earlier. On the other hand,

learning-based inversion methods do not often utilize or enforce a physical model that

can be used to check the validity of their outputs. In other words, there is a high

dependence on machine learning algorithms to understand the inherent properties of

the target output without explicitly specifying a physical model. Such dependence

can lead to undesirable or incorrect results, especially when training data is limited.

Finally, one limitation of both the classical inversion and learning-based inversion

methods presented so far is that they estimate the subsurface properties from the

seismic at the seismic resolution. Well-log data are often downsampled to match that

of the seismic. Then, the low-resolution well-log data is used to construct the initial

model (in classical inversion and unsupervised-learning methods), or they are used to

train the model in the supervised-learning methods.
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4.3 Proposed Framework

Given that well-log data is limited in a given survey area, the number of training

samples is limited. With such limitation, a combination of regularization techniques

must be used to train a learning-based model properly and ensure it generalizes

beyond the training dataset [110]. In addition, the data shortage limits the number of

layers (and hence parameters) that can be used in learning-based models. Therefore,

using deeper networks to capture the highly non-linear inverse mapping from seismic

data to rock properties is not be feasible using supervised learning. Thus, in [123,

124], we proposed a semi-supervised learning framework for seismic inversion that

integrates both well-log data in addition to data misfit in learning the parameters of

the inversion network without requiring an initial model. We utilize a seismic forward

model as another form of supervision in addition to well-log data. Formally, the loss

function of the proposed semi-supervised inversion framework is written as

L(Θ) := α · L1(Θ)︸ ︷︷ ︸
property loss

+ β · L2(Θ)︸ ︷︷ ︸
seismic loss

, (4.14)

L1(Θ) := D
(
m∗,F †Θ(d∗)

)
, (4.15)

L2(Θ) := D
(
F
(
F †Θ(d)

)
,d
)
, (4.16)

where α, β ∈ R are tuning parameters that govern the influence of each of the property

loss and seismic loss, respectively. For example, if the input seismic data is noisy, or

well-log data is corrupted, the values of α and β can be used to limit the role of the

corrupted data in the learning process. F is a physics-based forward model that can

be used to synthesize seismograms from the estimated property traces, and F †Θ is the

inverse mapping that is learned by the neural network (inversion network).

The property loss is computed over the traces for which we have access to rock
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properties form well-logs, d∗,m∗. The seismic loss, on the other hand, is computed

over all seismic traces in the survey, d. Naturally, the size of well-log data is small

compared to seismic data. The two losses are minimized simultaneously despite the

different number of data points over which they are computed. The seismic loss

learns from many more data points that are indirect measurements of the subsurface

lithology. On the other hand, the property loss learns from limited but direct and

high-resolution measurements of the lithology. Moreover, the vertical resolution of

well-log data is finer than that of the seismic traces. Hence, the inversion network

is not only required to estimate the lithology from seismic data, but to also learns

to interpolate lithology using knowledge from well-logs. It is worth noting that the

unsupervised seismic loss does not require an initial model. This is only possible

because the property loss is computed directly from well-logs which can help estimate

the low-frequency component of m (i.e. m0).

The inversion network (F †Θ) can, in principle, be trained using well-log data and

their corresponding seismic data only. However, as we have discussed earlier, a deep

neural network requires a large dataset of labeled data to train properly which is not

possible in a practical setting where the number of well-logs is limited. Integrating

a forward model allows the inversion network to learn from the seismic data without

requiring their corresponding property traces, in addition to learning from the few

available property traces from well-logs. The proposed framework is shown in Figure

4.3

The framework in Figure 4.3 consists of two main modules: the inversion network

(F †Θ) with learnable parameters, and a predefined physical forward model (F). The

proposed framework takes seismic traces as inputs, and outputs the best estimate of a

given rock property. Then, the forward model is used to synthesize seismograms from

the estimated rock property traces. The error (data misfit) is computed between the

synthesized seismogram and the input seismic traces using the seismic loss. Further-
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Figure 4.3: The proposed semi-supervised lithology characterization framework with
a predefined forward model.

more, the property loss is computed between estimated and true rock properties on

traces for which the true property values are available well-logs. The parameters of

the inversion network are learned by combining both losses as in (4.14). The details

of the inversion network are presented in the next section.

It is important to note that the choice of the forward model is critical in the pro-

posed framework for two reasons. First, the forward model must be able to synthesize

at a speed comparable to the speed at which the inversion network processes data.

Since deep learning models, in general, are capable of processing large amounts of

data in a very short time with GPU technology, the forward model must be fast.

Second, the proposed inversion network, like all other deep learning models, learns its

parameters according to the gradients with respect to a defined loss function, there-
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fore, the forward model must be differentiable in order to compute gradients with

respect to the seismic loss. Therefore, in this work, we chose a convolutional forward

model based on Zoeppritz equations since we are interested in impedance inversion

due to its simplicity and efficiency to reduce computation time. Other choices of the

forward model are possible as long as they satisfy the two conditions stated above.

We also choose Mean Squared Error as a distance measure (D), and α = β = 1.

Thus, (4.14) can be re-written as,

L(Θ) :=
1

N∗

∑

i

∥∥∥F †Θ(d∗i )−m∗i

∥∥∥
2

2
+

1

N

∑

i

∥∥∥F
(
F †Θ(di)

)
− di

∥∥∥
2

2
, (4.17)

where N∗, and N is the number of samples in d∗, and d, respectively.

The proposed framework offers two advantages over other methods in the litera-

ture. First, it allows the incorporation of geophysics into a machine learning paradigm

to ensure that the outputs of the networks are obeying physical laws. Second, it learns

from all available data without requiring labels for each data sample. The details of

the proposed framework are discussed in the next sections.

4.3.1 The Inversion Network

We propose a deep inversion network that consists of a combination of recurrent and

convolutional layers. The proposed inversion network (shown in Figure 4.4) consists

of four main submodules. These submodules are labeled as sequence modeling, local

pattern analysis, upscaling, and regression. Each of the four submodules performs a

different task in the inversion network.

The sequence modeling submodule models temporal dynamics of seismic traces

and produces features that best represent the low-frequency content of rock property

traces. The local pattern analysis submodule extracts local attributes from seismic

85



Seismic data
d

GRU GRU GRU

Sequence Modeling

Conv

Conv

Conv

C
on

ca
te
n
a
ti
o
n

Conv

Local Pattern Analysis

TConv TConv

Upscaling

GRU Linear

Regression

Estimated property
F†

Θ(d)

+

+

Figure 4.4: The architecture of the inversion network. GRU: Gated Recurrent Unit,
Conv: convolutional layer + group normalization + non-linearity, TConv: transposed
convolutional layer + group normalization + non-linearity, Linear: fully connected
layer.

traces that best model high-frequency trends of the rock property traces. The up-

scaling submodule takes the sum of the features produced by the previous modules

and upscales them vertically. This module is added based on the assumption that

seismic data are sampled (vertically) at a lower resolution than that of well-log data.

Finally, the regression submodule maps the upscaled outputs from features domain

to target domain (i.e., a given rock property). The details of each of the submodules

are discussed next.

Sequence Modeling

The sequence modeling submodule consists of a series of bidirectional Gated Recurrent

Units (GRU). Each bidirectional GRU computes a state variable from future and past

predictions and is equivalent to 2 GRUs where one models the trace from shallow to

deeper layers, and the other models the reverse trace. Assuming each input seismic

traces have c channels (one channel for each incident angle), the First GRU takes

these c channels as input features and computes temporal features based on the

temporal variations of the processed traces. The next two GRUs perform a similar
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task on the outputs of their respective preceding GRU. The series of all three GRUs

is equivalent to a 3-layer deep GRU. Deeper networks are able to model complex

input-output relationships that shallow networks might not capture. Moreover, deep

GRUs generally produce smooth outputs than shallow ones. Hence, the output of the

sequence modeling submodule is considered as the low-frequency trend of the target

property.

Local Pattern Analysis

Another submodule of the inversion network is the local pattern analysis submodule

which consists of a set of 1-dimensional convolutional blocks with different dilation

factors in parallel. The output features of each of the parallel convolutional blocks

are then combined using another convolutional block. Dilation refers to the spacing

between convolution kernel points in the convolutional layers [125]. Multiple dilation

factors of the kernel extract multiscale features by incorporating information from

trace samples that are direct neighbors to a reference sample (i.e., the center sam-

ple), in addition to the samples that are further from it. An illustration of dilated

convolution is shown in Figure 4.5 for a convolution kernel of size 5 and dilation

factors dilation = 1, 2 and 3.

Dilation=1

Dilation=2

Dilation=3

Convolution kernel point

Figure 4.5: An illustration of dilated convolution for multiscale feature extraction
(kernel size = 5, dilation factors = 1, 2, and 3).

A convolutional block (Conv) consists of a convolutional layer followed by group

87



normalization [126] and an activation function. Group normalization divides the out-

put of the convolutional layers into groups, and normalizes each group using a learned

mean and standard deviation. They have been shown to reduce the covariant shift in

the learned features and speed up the learning. In addition, activation functions are

one of the building blocks of any neural network. They are a source of non-linearity

that allows the neural networks to approximate highly non-linear functions. In this

work, we chose the Rectified Linear Unit (ReLU) as the activation function.

Convolutional layers operate on small windows of the input trace due to their

small kernel sizes. Therefore, they capture high-frequency (local) content. Since con-

volutional layers do not have a state variable (memory-less), they can not estimate

the low-frequency content of property traces. The outputs of the local pattern anal-

ysis submodule have the same dimensions as the outputs of the sequence modeling

submodule. Hence, the outputs of the two modules are added to obtain a full-band

frequency content.

Upscaling

Seismic data is sampled at a lower rate than that of well-logs data. The role of the

upscaling submodule is to compensate for this resolution mismatch. This submodule

consists of two transposed convolution blocks (T Conv) with different kernel strides.

The stride controls the factor by which the inputs are upscaled. A stride of (s = 2)

deconvolutional block produces an output that has twice the number of the input

samples (vertically).

Transposed convolutional layers (also known as fractionally-strided convolutional

layers) are upscaling modules with learnable kernel parameters unlike classical in-

terpolation methods with fixed kernel parameters (e.g., linear interpolation). They

learn kernel parameters from the training data. They have been used for various

applications like semantic segmentation and seismic structure labeling [127, 15]. The
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transposed convolutional blocks in Figure 4.4 have a similar structure as the convo-

lutional blocks introduced earlier. They are a series of deconvolutional layer followed

by a group normalization module and an activation function.

Regression

The final submodule in the inversion network is the regression submodule which

consists of a GRU followed by a linear mapping layer (fully-connected layer). Its

role is to regress the extracted features from the other submodules to the target

domain (rock property). The GRU in this module is a simple 1-layer GRU that

augments the upscaled outputs using global temporal features. Finally, a linear affine

transformation layer (fully-connected layer) takes the output features from the GRU

and maps them to the same number of features in the target domain.

4.3.2 The Forward Model

Forward modeling is the process of synthesizing seismograms from elastic properties of

the earth (i.e., P-wave velocity, S-wave velocity, and density) or from a function of the

elastic properties such as elastic impedance. In our work, we choose a convolutional

forward model based on Zoeppritz equations. When estimating acoustic impedance,

the forward model simply takes acoustic impedance and produces a seismogram. How-

ever, when estimating elastic impedance, the forward model takes multi-angle elastic

impedance, and generates corresponding multi-angle seismograms. The forward mod-

els used to synthesize seismograms from acoustic and elastic impedance are shown in

Figure 4.6. It is worth noting that the wavelet of the forward model is assumed to be

known. Thus, we refer to this model as a predefined forward model. We use Ormsby

wavelet (5-10-60-80 Hz) in the forward model as described in [23].
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Figure 4.6: The forward models used to synthesize seismograms from impedance.

4.4 Case Study: Acoustic Impedance Estimation

In order to validate the proposed framework, we present a case study on acoustic

impedance estimation from post-stack seismic data from Marmousi 2 model as a case

study [23]. However, since the forward model assumes inputs in time instead of depth,

we perform the estimation in the time domain. Furthermore, we compare the results

obtained using the proposed framework with the results obtained using the classical

trace-by-trace inversion presented in Section 4.2.2. The synthetic seismic section and

its corresponding acoustic impedance profile are shown in Figure 4.7.
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(a) Synthetic zero-offset seismic section

(b) Acoustic impedance

Figure 4.7: A Synthetic seismic section (in time) from Marmousi 2 [23] and its corre-
sponding acoustic impedance section.

In this experiment, we use zero-offset synthetic seismic data with 15 dB Gaussian

noise. Furthermore, the seismic data was downsampled by a factor of six to evaluate

the performance of the proposed framework for estimating a high-resolution acoustic

impedance from low-resolution seismic data.

4.4.1 Training the Network

We train the network using 10 evenly-spaced seismic traces and their corresponding

acoustic impedance traces (labels) (< 0.4% of the total number of traces in the
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model). All seismic traces are also used without labels. The inversion network is

initialized with random parameters. Seismic traces are fed to the inversion network

to get an estimate of acoustic impedance. If the input seismic trace is part of the

training dataset (i.e., a label is available), the error is computed between the estimated

acoustic impedance and the true one using the property loss. However, if the seismic

traces are not labeled, the forward model is used to synthesize a seismogram from

the estimated acoustic impedance trace. The seismic loss is computed as the MSE

between the seismogram and the input seismic trace. The total loss is computed as

the sum of the two losses. Then, the gradients of the total loss are computed, and the

parameters of the inversion network are updated accordingly. The process is repeated

until a convergence criterion is met.

The proposed framework was implemented in Python using PyTorch deep learn-

ing library [128]. For optimization, we used Adam [129] which is a gradient-based

stochastic optimization technique with an adaptive learning rate that was designed

specifically for training deep neural networks.

4.4.2 Results

The trained network is used to estimate the acoustic impedance for all seismic traces

in the model. In addition, we invert the seismic data for acoustic impedance using

the classical trace-by-trace linear inversion. We used a blurred version of the acous-

tic impedance section as an initial smooth model for the linear inversion methods.

Furthermore, since the seismic data is noisy, we used Tikhonov regularization. In

addition, the estimated acoustic impedance is then used as an initial model and the

inversion algorithm is run again with additional Laplacian regularization to reduce

the effect of the noise. The estimated acoustic impedance sections using the proposed

framework and linear inversion methods are shown in Figure 4.8.

The results show that the proposed framework was able to generate an acoustic
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impedance profile that is more detailed compared to the classical inversion approaches.

This is clearly visible in thin layers. However, linear inversion produces results that

are laterally smoother compared to our approach. This smoothness comes from the

smooth initial model used. Furthermore, the lateral discontinuity in the estimated

acoustic impedance using the proposed framework is due to the use of 1-dimensional

neural networks that perform the inversion for each trace independently. Although

the estimated acoustic impedance using the proposed framework are superior in terms

of resolution, there are a few areas in the estimated section that were not correctly

resolved. For example, the gas-charged pocked at t = 1.4s, x = 3 was not correctly

estimated. The error from this error propagated to nearby samples due to the use of

recurrent neural networks. However, the network recovers from this error for deeper

layers and estimates the acoustic impedance correctly.

To quantitatively evaluate the results, we compute the Pearson Correlation Coef-

ficient (PCC) and coefficient of determination (r2) for each trace in the section. The

results averaged over all traces in the model are reported in Table 4.1. We also report

the metrics computed on the smooth initial model use for linear inversion.

Table 4.1: Quantitative evaluation of the estimated acoustic impedance from syn-
thetic seismic data with a 15dB noise.

Method PCC r2

Smooth model 0.8957 0.7895
Inversion (Tikhonov) 0.9457 0.8890
Inversion (Tikhonov + Laplacian) 0.9534 0.9008
Ours [124] 0.9701 0.9158

The results in Table 4.1 show that the proposed method outperforms both inver-

sion approaches in PCC and r2 metrics. It is worth noting that the initial model,

before inversion, gives a good estimate of the low-frequency content of the acoustic

impedance as shown in the table. This smooth model was used as a starting point

for the two classical inversion approaches. However, our proposed method does not
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require an initial model. Instead, the network is randomly initialized.

Figure 4.9 shows scatter plots of the estimated acoustic impedance versus the true

acoustic impedance. It is evident from the scatter plots that the estimated acoustic

impedance using the proposed framework is linearly correlated with the true acoustic

impedance which was indicated by the high PCC value. Moreover, the proposed

framework estimates the high-impedance values better than the classical approach

as indicated by the scatter plots. Areas of the section that have high-impedance

are mostly thin layers that are not be clearly resolved in the low-resolution input

seismic. Using the upscaling module, our proposed framework can interpolate the

seismic using the learned interpolation kernels, which helps resolve such thin layers.

Note that in our experiments, we assumed that the true forward model is known,

including the wavelet used to generate the data. With the exception of noise present

in the data, the synthesized seismic data matches the input seismic data in both

the classical and learning-based approaches. However, the estimation of an accurate

forward model might not be possible for field data where the wavelet is not fully

known. Therefore, we repeat the experiments using wave-equation-migrated seismic

data. We use the same forward model that was used in the synthetic seismic case,

which does not match the one used to generate the data.

Linear inversion approaches, with regularization, did not converge when using

wave-equation-migrated data because the forward model did not match the one used

in the data. However, in our proposed framework, since we can control how much

the network learns directly from well-log data and the forward model through the

two-term loss, we used a small β value in (4.17) (β = 0.01). This limits the role of

the forward model in the learning in the case of wavelet mismatch. The estimation

acoustic impedance from wave-equation-migrated seismic data is shown in Figure

4.10.

The results are significantly worse when we used wave-equation-migrated seismic
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data instead of synthetic data. This is expected since the two terms of the loss

in (4.17) have different assumptions. The property loss assumes that the input is

migrated seismic data based on the input traces. On the other hand, the seismic loss

assumes that the inputs are synthetic based on the forward model. To resolve this

discrepancy, we used a small value of β to limit its role. The PCC and r2 for the

estimated acoustic impedance using wave-equation-migrated seismic data are 0.9091,

and 0.7892, respectively. We address the issue of mismatching forward model in the

next chapter. Although the results with migrated seismic data are not as good as the

results using synthetic data, the network converges to a valid solution guided by the

property loss. The thin layers and deep parts of the estimation acoustic impedance

were not estimated accurately since they were not clearly visible in the migrated

seismic data. Note that no spatial regularization was used in our approach, and the

results shown are the direct output of the network with no post-processing.
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(a) Smooth model (b) Classical inversion (Tikhonov)

(c) Classical inversion (Tikhonov+Laplacian) (d) Ours

Figure 4.9: Scatter plots of the true acoustic impedance versus the estimated acous-
tic impedance. The shaded region include all points that are within one standard
deviation of the true acoustic impedance. The black line is the best linear fit.

97



(a) Wave-equation-migrated seismic section

(b) True acoustic impedance

(c) Estimated acoustic impedance using the proposed semi-supervised framework

Figure 4.10: Estimated acoustic impedance from a migrated seismic section.
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4.5 Case Study: Elastic Impedance Estimation

The applications of the proposed framework are not limited to acoustic impedance

inversion. We can change the number of channels in the inversion network to es-

timate more than one property simultaneously. In this case study, we evaluate the

performance of the proposed framework for elastic impedance inversion from prestack

synthetic seismic data (in time) from Marmousi 2 dataset.

We used the elastic model of Marmousi 2 to compute elastic impedance for 4

incident angles θ = 0◦,10◦,20◦, and 30◦. Multi-angle seismic data (a total of N = 2720

traces) is then generated from the elastic impedance using a forward model with

Ormsby wavelet (5-10-60-80 Hz) following the synthesis procedure in [23]. The seismic

traces are then downsampled by a factor of six to simulate the resolution difference

between seismic and well-log data. Finally, a 15 dB white Gaussian noise is added

to assess the robustness of the proposed framework to noise. The multi-angle seismic

sections are the corresponding elastic impedance sections are shown in Figure 4.11

4.5.1 Results

To train the proposed inversion framework, we follow the same procedure that was

used in Section 4.4. We chose 10 evenly-spaced pseudo-wells for training. We assume

we have access to both elastic impedance and seismic data for the training traces.

For all other traces in the survey, we assume we have access to seismic data only. The

inversion network used in this case study is similar to the one used in Section 4.4.

However, we change the number of input and output channels of the neural network

to enable the network to estimate multi-angle elastic impedance. Furthermore, we use

the elastic version of the forward model shown in Figure 4.6 to synthesize multi-angle

seismic from the estimated elastic impedance.

We also compare with classical linear inversion approaches. We used a blurred
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(a) θ = 0◦ (b) θ = 0◦

(c) θ = 10◦ (d) θ = 10◦

(e) θ = 20◦ (f) θ = 20◦

(g) θ = 30◦ (h) θ = 30◦

Figure 4.11: Synthetic multi-angle seismic sections (left), and their corresponding
true elastic impedance sections.

initial model of the elastic impedance sections as an initial model for the inversion.

Also, since the seismic data is noisy, we used Tikhonov regularization and Laplacian

regularization to reduce the effect of the noise. The results using the proposed frame-

work in addition to linear inversion results are shown in Figures 4.12-4.15 for different

incident angles.

The results obtained using the proposed framework show more details compared
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to classical inversion approaches. This is visible in thin layers that are not clearly

resolved in the seismic. The high-resolution results are the result of using the learned-

interpolation network (upscaling submodule). Furthermore, we can also see that the

results for θ = 0◦ are better than the acoustic impedance results presented in the

previous case study. This improvement is the result of the simultaneous inversion

of all multi-angle traces. The changes of the seismic response between the multiple

angles are used in the proposed framework to estimate the elastic properties of the

subsurface which in turn improved the acoustic impedance estimate (θ = 0◦).

In order to evaluate the results quantitatively, we computed PCC and r2 coeffi-

cients between the true and estimated elastic impedance for all incident angles. The

results are summarized in Table 4.2. The numbers reported in Table 4.2 show that

the proposed framework outperforms linear inversion methods on all incident angles

on both PCC and r2. It is worth noting that the smooth model was only used for

the linear inversion methods. In the proposed framework, no initial model was used.

Finally, we show scatter plots of the true elastic impedance versus the estimated

elastic impedance for a few traces for all angles in Figure 4.16. It can be seen in the

figure that the classical inversion approaches do not estimate high impedance values

as well as the proposed framework. In addition, the majority of the points estimated

using the proposed framework are within the shaded region which includes all points

that are within one standard deviation of the true acoustic impedance. It is worth

noting that the high impedance values are mostly thin layers. Since seismic data do

not resolve thin layers due to their low-resolution, it is expected that all methods do

not estimate their impedance values accurately.

4.6 Summary

In summary, we presented a semi-supervised lithology characterization framework

based on recurrent and convolutional networks. The proposed framework uses a
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predefined physical forward model that enables it to learn from unlabeled data (i.e.,

seismic data without well-logs). Furthermore, the proposed framework does require

an initial model. Instead, the initial model is inferred using the training well-logs. The

proposed framework was used in two case studies for acoustic and elastic impedance

inversion from noisy synthetic seismic data. The semi-supervised framework was

trained on 10 impedance traces. Then, it was used to estimate the impedance for

the entire section. The results obtained using the proposed framework were more

detailed, especially in thin layers and complex geology, compared to classical inversion

methods. Furthermore, the proposed framework was evaluated on migrated seismic

data to estimate the acoustic impedance. Although the used forward model in the

migrated seismic experiment was not accurate, the two-term loss of the proposed

framework was used to limit the role of the forward model in the learning process.

102



(a
)

T
ru

e
el

a
st

ic
im

p
ed

a
n
ce

(b
)

S
m

o
ot

h
m

o
d

el
u
se

d
fo

r
(c

)
a
n
d

(d
)

(c
)

In
ve

rs
io

n
(T

ik
h

o
n

ov
)

(d
)

In
v
er

si
on

(T
ik

h
on

ov
+

L
a
p

la
ci

a
n

)
(e

)
O

u
rs

F
ig

u
re

4.
12

:
E

st
im

at
ed

el
as

ti
c

im
p

ed
an

ce
(θ

=
0◦

)
fr

om
sy

n
th

et
ic

m
u
lt

i-
an

gl
e

se
is

m
ic

d
at

a.

103



(a
)

T
ru

e
el

a
st

ic
im

p
ed

a
n
ce

(b
)

S
m

o
ot

h
m

o
d

el
u
se

d
fo

r
(c

)
a
n
d

(d
)

(c
)

In
ve

rs
io

n
(T

ik
h

o
n

ov
)

(d
)

In
v
er

si
on

(T
ik

h
on

ov
+

L
a
p

la
ci

a
n

)
(e

)
O

u
rs

F
ig

u
re

4.
13

:
E

st
im

at
ed

el
as

ti
c

im
p

ed
an

ce
(θ

=
10
◦ )

fr
om

sy
n
th

et
ic

m
u
lt

i-
an

gl
e

se
is

m
ic

d
at

a.

104



(a
)

T
ru

e
el

a
st

ic
im

p
ed

a
n
ce

(b
)

S
m

o
ot

h
m

o
d

el
u
se

d
fo

r
(c

)
a
n
d

(d
)

(c
)

In
ve

rs
io

n
(T

ik
h

o
n

ov
)

(d
)

In
v
er

si
on

(T
ik

h
on

ov
+

L
a
p

la
ci

a
n

)
(e

)
O

u
rs

F
ig

u
re

4.
14

:
E

st
im

at
ed

el
as

ti
c

im
p

ed
an

ce
(θ

=
20
◦ )

fr
om

sy
n
th

et
ic

m
u
lt

i-
an

gl
e

se
is

m
ic

d
at

a.

105



(a
)

T
ru

e
el

a
st

ic
im

p
ed

a
n
ce

(b
)

S
m

o
ot

h
m

o
d

el
u
se

d
fo

r
(c

)
a
n
d

(d
)

(c
)

In
ve

rs
io

n
(T

ik
h

o
n

ov
)

(d
)

In
v
er

si
on

(T
ik

h
on

ov
+

L
a
p

la
ci

a
n

)
(e

)
O

u
rs

F
ig

u
re

4.
15

:
E

st
im

at
ed

el
as

ti
c

im
p

ed
an

ce
(θ

=
30
◦ )

fr
om

sy
n
th

et
ic

m
u
lt

i-
an

gl
e

se
is

m
ic

d
at

a.

106



T
ab

le
4.

2:
Q

u
an

ti
ta

ti
ve

ev
al

u
at

io
n

of
th

e
es

ti
m

at
ed

el
as

ti
c

im
p

ed
an

ce
fr

om
m

u
lt

i-
an

gl
e

sy
n
th

et
ic

se
is

m
ic

d
at

a
w

it
h

a
15

d
B

n
oi

se
.

P
C

C
r2

M
et

h
o
d

0◦
10
◦

20
◦

30
◦

A
ve

ra
ge

0◦
10
◦

20
◦

30
◦

A
ve

ra
ge

S
m

o
ot

h
m

o
d

el
0.

91
01

0.
91

63
0.

93
25

0.
94

72
0.

92
65

0.
82

12
0.

83
29

0.
86

35
0.

88
99

0.
85

19

In
ve

rs
io

n
(T

ik
h

on
ov

)
0.

94
67

0.
94

94
0.

95
64

0.
96

12
0.

95
34

0.
89

07
0.

89
62

0.
90

96
0.

91
69

0.
90

34

In
ve

rs
io

n
(T

ik
h

on
ov

+
L

ap
la

ci
an

)
0.

95
34

0.
95

62
0.

96
35

0.
96

98
0.

96
07

0.
90

07
0.

90
67

0.
92

18
0
.9

3
3
1

0.
91

56

O
u

rs
[1

24
]

0
.9

7
8
9

0
.9

8
0
1

0
.9

8
1
7

0
.9

7
7
5

0
.9

7
9
5

0
.9

4
2
5

0
.9

4
3
4

0
.9

4
0
9

0.
91

89
0
.9

3
6
4

107



(a) Smooth model (b) Inversion (Tikhonov)

(c) Inversion (Tikhonov+Laplacian) (d) Ours

Figure 4.16: Scatter plots of the true elastic impedance versus the estimated elas-
tic impedance. The shaded region include all points that are within one standard
deviation of the true acoustic impedance. The black line is the best linear fit.
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CHAPTER 5

SEMI-SUPERVISED LITHOLOGY CHARACTERIZATION WITH A

LEARNED FORWARD MODEL

5.1 Overview

In Chapter 4, we presented a semi-supervised lithology characterization workflow

that uses a predefined physical model to enable the inversion network to learn from

unlabeled data. Although the forward model improved the estimation results for

both synthetic and migrated seismic data, estimating the parameters of the forward

model is not a trivial task. For example, when using a predefined forward model, it

was assumed that the wavelet used to generate the seismic data is known. When the

wavelet used in the forward model does not match that of the seismic data, linear

inversion methods did not converge to a valid solution. The proposed semi-supervised

framework in Chapter 4 was able to learn a valid inverse mapping by limiting the role

of the forward model in the learning process.

In addition, the forward model must be defined differently depending on the es-

timated property. For instance, when estimating acoustic or elastic impedance, the

forward model was defined based on Zoeppritz equations as we have seen in Chapter

4. However, when estimating other properties, the forward model might not be easily

defined using a physics-based equation. Thus, we believe that the use of a prede-

fined model might limit the applications of the proposed semi-supervised lithology

characterization framework. Therefore, in this chapter, we propose a semi-supervised

framework that can learn both the inverse and forward mapping simultaneously. The

forward model is learned from the data through a shallow neural network, and it

enables the inversion network to learn from unlabeled data.
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In Section 5.2, we present an overview of relevant literature from the fields of

machine learning and deep learning. In 5.3, we present the details of the proposed

semi-supervised lithology characterization framework with a learned forward model.

Section 4.4 presents a case study of acoustic impedance estimation from seismic data

using the proposed framework. Then, we incorporate multi-offset prestack seismic

data for elastic impedance estimation in Section 4.5. Finally, we present a summary

of this chapter in Section 4.6.

5.2 Background

Deep neural networks have achieved better-than-human performance in many com-

puter vision tasks such as image segmentation and image recognition [130]. Such

networks are often trained on a large dataset of labeled examples in a supervised-

learning scheme. However, the absence or shortage of such large labeled datasets

severely limits the ability of neural networks to learn.

In general, deep neural networks are trained to find a mapping FΘ : X → Y

from one domain (source domain, X) to another (target domain, Y ). Alternatively,

they can be trained to find an inverse mapping, F †Θ : Y → X where Y = F(X),

as we have seen in Chapters 3 and 4. Such inverse mapping can be often well-

approximated by a deep neural network given the availability of a large dataset of

training examples. However, with limited data, neural networks might overfit to

training data, and fail to generalize for new samples. As we have seen in Chapter 4,

knowledge of the forward model (F : X → Y ) can be used as a learning constraint to

enable the network to learn the task at hand without overfitting [121, 124]. However,

a precise forward model can often be difficult or impossible to define for computer

vision problems where the task is to densely estimate physical properties from visual

data. This gives rise to what is known as cycle consistency learning, where a neural

network is used to learn a forward mapping that helps the network in learning a stable
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representation of the data. Cycle consistency learning has been successfully applied

to various computer vision applications such as style-transfer, domain adaptation,

correspondence learning, and many others [131, 132, 133, 134, 135].

For x ∈ X,y ∈ Y , cycle inconsistency is defined as the distance between y and

its reconstructed version (i.e., FΘ2

(
F †Θ1

(y)
)

), where F †Θ1
and FΘ2 are the learned

forward and inverse mapping, respectively. Cycle inconsistency loss can be formally

written as follows:

L := D (y,FΘ2 (FΘ1(y))) , (5.1)

where D is a distance measure. Figure 5.1 illustrates the idea of cycle inconsistency

for inverse problems.

Y X

y

ŷ x̂

F †Θ1

FΘ2

cy
cl
e

in
co
ns
is
te
nc
y

Figure 5.1: An illustration of cycle inconsistency loss for inverse problems.

Minimizing the cycle inconsistency loss helps the inversion network to better rep-

resent the data and, therefore, generalize well beyond the training data. In addition,

it enables deep networks to learn data representation from unlabeled data since cycle

inconsistency is computed between inputs and their reconstructed versions through

the learned forward network.

5.3 Proposed Framework

In Chapter 4, we used a variant of the cycle inconsistency loss using a physical forward

model. However, it is also possible to learn the forward model from the data using
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a neural network. Learning the forward model enables neural networks to work on

other types of data for which a forward model is not well defined. Thus, in [123],

we proposed a semi-supervised lithology characterization framework using a learned

forward model instead of a predefined one. The proposed framework is shown in

Figure 5.2
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Figure 5.2: The proposed semi-supervised lithology characterization framework with
a learned forward model.

The proposed framework learns from a three-term loss function that is used to up-

date the parameters of the inverse and forward model simultaneously. The proposed

loss is given as follows:
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L(Θ) := α · L1(Θ1)︸ ︷︷ ︸
property loss

+ β · L2(Θ1,Θ2)︸ ︷︷ ︸
seismic loss

+ γ · L3(Θ2)︸ ︷︷ ︸
synthesis loss

, (5.2)

L1(Θ1) := D
(
m∗,F †Θ1

(d∗)
)
, (5.3)

L2(Θ1,Θ2) := D
(
FΘ2

(
F †Θ1

(d)
)
,d
)
, (5.4)

L3(Θ2) := D (FΘ2(m
∗),d) , (5.5)

where α, β, γ ∈ R are tuning parameters that govern the influence of each of the

three terms of the loss function. FΘ2 is a learned forward mapping that can be used

to synthesize seismograms from the property traces, and F †Θ1
is the learned inverse

mapping.

The property loss is computed over the traces for which we have access to rock

property measurements form well-logs, d∗,m∗. The property loss updates the param-

eters of the inversion network only since it is independent of the forward network.

The seismic loss, on the other hand, is computed over all traces in the survey by

comparing reconstructed seismic traces from the estimated rock property with the

input seismic traces. The seismic loss, which is the cycle inconsistency loss, updates

the parameters of the inverse and the forward networks because it is a function of

both. Finally, the synthesis loss is computed between the input seismic traces and

the synthesized seismic traces from well-logs. The synthesis loss is not a function of

the inversion network. Hence, it is only used to update the parameters of the forward

network.

In this work, we used MSE loss for all three terms, and we use α = β = γ = 1.

Thus, (5.2) can be re-written as follows:
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L(Θ) :=
1

N∗

∑

i

∥∥∥F †Θ1
(d∗i )−m∗i

∥∥∥
2

2
+

1

N

∑

i

∥∥∥FΘ2

(
F †Θ1

(di)
)
− di

∥∥∥
2

2

+
1

N∗

∑

i

‖FΘ2(m
∗
i )− d∗i ‖2

2 , (5.6)

where d, is the seismic data, m∗ and d∗ are rock property traces from well-logs and

their corresponding seismic data, respectively, N∗, and N is the number of samples

in d∗, and d, respectively.

The proposed framework offers two advantages over the framework presented in

Chapter 4. First, it enables learning from unlabeled data for which a forward model

can not be easily defined. Second, it requires no modeling of the data such as estimat-

ing wavelet for seismic data. The forward model is replaced with a neural network (the

forward network) to learn the forward model from the training data. However, the

inversion network in the proposed framework is identical to the one used in Chapter

4.

5.3.1 Learning the Forward Model

The seismic forward model, defined in Section 4.2.2, is comprised of two operations.

The first operation computes the reflection coefficients from input elastic or acoustic

impedance. Then, the next step convolves the reflection coefficients with a predefined

wavelet. In order to use a neural network to approximate the forward model, we use

a 3-layer neural network. The choice of a shallow network is because of the simple

function of the forward model compared to the inverse function. Furthermore, since

the seismic response is local, unlike rock properties, we use only convolutional layers

in the forward network. The proposed forward network is shown in Figure 5.3.

Similar to the predefined forward model, the proposed forward network consists of

two modules. The first module is the feature extraction module which comprises two

114



Property Trace
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Conv
(kernel = 5)

Conv
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Wavelet Convolution

Synthesized Seismic
FΘ1 (m)

Figure 5.3: The architecture of the forward network in the semi-supervised lithology
characterization framework.

convolutional blocks (Conv). A convolutional block consists of a convolutional layer

followed by a batch normalization layer and a ReLU activation. We choose a small

kernel size (k = 5) for the convolutional layers in the features extraction. The choice of

the small kernel is to enable the feature extraction module to compute local features

that resemble the reflection coefficients computation (high-pass filter). The other

module is the wavelet convolution module which consists of a single convolutional

block with a kernel of size 50 (low-pass filter). The large-kernel-convolution enables

the forward network to learn the characteristics of the wavelet.

The proposed forward network is applicable to single- and multi-angle synthesis of

seismograms from acoustic or elastic impedance, respectively. The only parameter to

be adjusted in the number of input and output channels of the network. Furthermore,

the proposed forward network can be used to synthesize seismic from properties other

than acoustic and elastic impedance where a forward model is not well defined.

5.4 Case Study: Acoustic Impedance Estimation

We evaluate the semi-supervised lithology characterization framework with a learned

forward model on a case study of acoustic impedance estimation from post-stack

seismic data from Marmousi 2 model. We follow a similar procedure in this case

study as the one detailed in Section 4.4. The proposed framework is trained on

a zero-offset synthetic seismic data with 15 dB Gaussian noise and a 10 uniformly

sampled acoustic impedance traces with a resolution that is six times higher than

that of the seismic traces. The trained network is then used to estimate the acoustic
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impedance for all seismic traces in the model.

We show the results obtained using the proposed framework with the results

presented in Chapter 4 using classical approaches in addition to using the proposed

framework with a predefined forward model in Figure 5.4. The results show that using

a learned forward model gives a similar estimate of the impedance to one obtained

using a predefined forward model. The forward network is able to learn the behavior

of the forward model without being explicitly modeled as in the case of using a

predefined forward model.

To quantitatively evaluate the results, we compute PCC and r2 for each trace

in estimation acoustic impedance section. The results, averaged over all traces in

the section, are reported in Table 5.1. We also report the metrics computed on the

smooth initial model used for linear inversion approaches. The results in Table 5.1

indicate that the proposed framework with a learned forward model resulted in better

estimation compared to classical approaches. The results, however, are slightly worse

than the ones obtained using the predefined forward model. Note that in the case

of a predefined forward model, it was assumed that the seismic wavelet is known.

Therefore, we do not expect the learned model to work as well as the predefined

one in cases where the predefined forward model matches the ones used to generate

the data. However, producing comparable results indicates that the learned forward

model is able to learn the true forward model. The distributions of PCC and r2

values over all traces are shown in Figure 5.5 which indicate that using the proposed

framework (with a predefined or a learned model) results in better overall metrics

values for all traces.

We also show scatter plots of the true acoustic impedance versus the estimated

acoustic impedance in Figure 5.6. The figure shows that the estimated acoustic

impedance using the learned forward model is linearly correlated with the true acous-

tic impedance. This is true even for high-impedance values which are not well esti-
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Table 5.1: Quantitative evaluation of the estimated acoustic impedance from syn-
thetic seismic data with a 15dB noise.

Method PCC r2

Smooth model 0.8957 0.7895
Inversion (Tikhonov) 0.9457 0.8890
Inversion (Tikhonov + Laplacian) 0.9534 0.9008
Ours (predefined)[124] 0.9701 0.9158
Ours (learned)[123] 0.9656 0.9020

mated using the classical inversion approaches. However, we can see in the figure that

low-impedance points are not well estimated using the learned forward model. These

points are mostly the points close to the gas-charged pocket (t = 1.4s, x = 3km).

The gas-charged pocket is an anomalous phenomenon in the data that is not present

in the training data. Since we are using a recurrent neural network, the error is

expected to propagate to nearby samples.

Figure 5.7 shows selected traces from the estimated acoustic impedance section us-

ing the two classical inversion approaches and the proposed method with a learned for-

ward model or a predefined forward model. The estimated traces show the advantage

of using the proposed workflow, especially for estimating high-contrast impedance

values. Both classical inversion approaches do not estimate the acoustic impedance

values correctly for thin layers. However, the proposed frameworks (learned and pre-

defined) provide better estimates of these layers. By examining the trace at x = 15km,

we can see that the estimated acoustic impedance using the proposed framework the

thin layer at t = 1.6s matches the true acoustic impedance with high accuracy. In

addition, although the results of using the predefined and learned forward model

are very comparable, we do expect the predefined forward model to produce better

estimates since it is using the true forward model that describes the data.
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(a) Pearson Correlation Coefficient (PCC)

(b) Coefficient of determination (r2)

Figure 5.5: The distribution of the PCC and r2 for the estimated acoustic impedance
from synthetic seismic data.
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(a) Inversion (Tikhonov) (b) Inversion (Tikhonov+Laplacian)

(c) Ours with a predefined forward model (d) Ours with a learned forward model

Figure 5.6: Scatter plots of the true acoustic impedance versus the estimated acous-
tic impedance. The shaded region include all points that are within one standard
deviation of the true acoustic impedance. The black line is the best linear fit.
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Figure 5.7: Selected traces from the estimated acoustic impedance section.
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To further analyze the performance of the proposed framework, we repeat the

experiments using wave-equation-migrated seismic data instead of noisy synthetic

seismic data. In our experiments, classical inversion approaches did not converge

to a solution using migrated data. Thus, we show the results obtained using the

proposed framework for both cases of a predefined and a learned forward model in

Figure 5.8. In the case of wave-equation-migrated seismic, the predefined forward

model was misleading the inversion network since the seismic data did not match the

synthesized seismic. Thus, we limited the role of the predefined forward model by

using a small weight for the seismic loss. On the other hand, the learned forward

network can learn how to synthesize seismic data that matches the input seismic

using the seismic loss and the synthesis loss. Thus, we use equal weights for all three

terms of the loss function (α = β = γ = 1). The acoustic impedance estimated with

a learned forward model has a better resolution of the layers, although they were not

clearly visible in the seismic data. This improvement is clear in the faulty region on

the model (x = 8km), and in the gas-charged pocket (t = 1.4s, x = 3km). The

quantitative results (reported in Table 5.2) also reflect the gains of using the learned

forward model. Both PCC and r2 improved by about 2.7% compared to results with

a predefined forward model. The distributions of PCC and r2 values over all traces

are shown in Figure 5.9.

Table 5.2: Quantitative evaluation of the estimated acoustic impedance from migrated
seismic data.

Method PCC r2

Ours with a predefined forward model [124] 0.9091 0.7892
Ours with a learned forward model [123] 0.9321 0.8168

Finally, we show selected traces from the estimated acoustic impedance section

using migrated seismic data in Figure 5.10. The figure shows that the estimated

traces using a learned forward model are comparable to the estimated traces using
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(a) Pearson Correlation Coefficient (PCC)

(b) Coefficient of determination (r2)

Figure 5.9: The distribution of the PCC and r2 for the estimated acoustic impedance
from migrated seismic data.

the predefined model. However, the traces estimated with a learned forward model

show a better match to the true acoustic impedance in complex or thin layers. For

example, the trace at x = 3km indicated that the forward model is closer to the true

impedance values for the areas near the gas-charged pocket (tbetween0.8s and 1.6s).

Since both methods use an identical inversion network, we expect the high-frequency

components of their estimates to be very similar. However, for the low-frequency

components, they have small differences where the learned forward model produces

better results.
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Figure 5.10: Selected traces from the acoustic impedance estimated from section from
wave-equation-migrated seismic data.
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5.5 Case Study: Elastic Impedance Estimation

We also extend the proposed framework to estimate the elastic impedance from

prestack seismic data. We use Synthetic noisy seismic data (SNR=15dB) from Mar-

mousi 2 with incident angles θ = 0◦, 10◦, 20◦, and, 30◦ to estimate the corresponding

elastic impedance. The seismic data and corresponding elastic impedance sections

are shown in Figure 4.11. We use 10 uniformly-sampled elastic impedance traces

for training. Then, the trained network is used to estimate elastic impedance for all

traces in the model. The resolution of the seismic data is six times lower than that of

the elastic impedance. The number of input and output channels of both the inverse

and forward networks is changed to 4.

Furthermore, we compare the results with results from linear inversion approaches

and the proposed framework with a predefined forward model in Chapter 4. The

results are shown in Figures 5.11-5.14 for different incident angles.

Similar to the acoustic impedance case, the learned forward model gives a similar

high-resolution estimation of the elastic impedance. The quantitative results on PCC

and r2 are summarized in Table 5.3.

The numbers reported in Table 5.3 show that the proposed framework with a

learned forward model performs better than the classic inversion approaches. In

addition, its estimates are comparable to the estimates using the predefined forward

model. We also show the scatter plots of the true acoustic impedance versus the

estimated acoustic impedance in Figure 5.16. Comparing the scatter plot of the

learned and predefined forward models, the latter shows a slightly better fit due to

the use of the true forward model. Overall, both the learned and predefined forward

model show a better fit than the classical inversion methods which is indicated by

the large number of points that are within the shaded area of the scatter plot. The

distributions of PCC and r2 values over all traces are shown in Figure 5.15.
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Selected traces from the estimated elastic impedance sections are shown in Figure

5.17. Similar to the results presented in Section 5.4, the estimated traces using both

the learned and the predefined forward models match the true elastic impedance bet-

ter than the classical inversion approaches, especially in thin layers. Moreover, results

using the predefined forward model are better since the true model predefined for-

ward model since we assumed the true wavelet was known for the predefined forward

model.

5.6 Summary

In summary, we presented a learning-based semi-supervised lithology characterization

that can learn the inverse and forward model using the training data. The use of the

learned forward model enables the proposed framework to learn from data without

any modeling requirements as in the case of a predefined forward model. The pro-

posed framework learns from a three-term loss function that utilizes all training data

in addition to unlabeled seismic data to better estimate the true lithology of the sub-

surface. The proposed framework was evaluated in two case studies for acoustic and

elastic impedance inversion from noisy synthetic seismic data. The semi-supervised

framework was trained on 10 impedance traces, and was then used to estimate the

impedance for the entire section. Furthermore, the proposed framework was evaluated

on migrated seismic data to estimate the acoustic impedance. Results obtained using

the introduced framework with a learned forward model were close to results obtained

using a predefined forward model. The predefined forward model worked better in

cases where the forward model accurately described the data (i.e., synthetic seismic

data). However, when the wavelet is unknown or modeled incorrectly, the learned

forward model produces better results as in the case of migrated seismic data. Al-

though we have used the proposed framework for acoustic and impedance estimation,

it can be used to estimate any given rock property from seismic data given that a few
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training examples are available.
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(a) Pearson Correlation Coefficient (PCC)

(b) Coefficient of determination (r2)

Figure 5.15: The distribution of PCC and r2 values for the estimated elastic
impedance from synthetic multi-angle seismic data.
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(a) Inversion (Tikhonov) (b) Inversion (Tikhonov+Laplacian)

(c) Ours with a predefined forward model (d) Ours with a learned forward model

Figure 5.16: Scatter plots of the true elastic impedance versus the estimated elas-
tic impedance. The shaded region include all points that are within one standard
deviation of the true acoustic impedance. The black line is the best linear fit.
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(a) θ = 0◦ (b) θ = 10◦

(c) θ = 20◦ (d) θ = 30◦

Figure 5.17: Selected traces from the estimated elastic impedance sections for all
incident angles.
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CHAPTER 6

CONCLUSION

Subsurface volume characterization is a labor-intensive and time-consuming process

through which various geological events are inferred from indirect measurements of

the subsurface properties. The exponential growth of collected data from different

seismic surveys makes it impossible for interpreters to manually inspect, analyze and

annotate all collected data. While deep learning has proved to be a viable solution for

big data problems in various computer vision tasks such as image classification, image

captioning, and semantic segmentation, deep learning applications are limited in the

field of subsurface volume characterization due to the limited availability of large an-

notated seismic datasets. Obtaining such annotations by manual interpretation is a

labor-intensive process that requires field knowledge. Also, due to the limited resolu-

tion of the seismic data, seismic interpreters might arrive at different interpretations

of the subsurface that are valid (i.e., they agree with the data). In addition, obtaining

such annotations from true measurements of the subsurface (e.g., well-log data) is ex-

pensive due to the high costs of drilling. Furthermore, since deep neural networks are

mainly data-driven, they might fail to generalize and adequately represent noisy and

low-resolution data such as seismic data. Injecting the physics governing the seismic

data allows deep neural networks to learn a geologically valid representation of the

data. Also, it enables deep neural networks to learn from unlabeled data. There-

fore, to successfully utilize deep learning methods in this field, one must address and

circumvent the lack or shortage of annotated consistent datasets. Therefore, in this

dissertation, we have presented a physics-guided learning-based subsurface volume

characterization framework that can learn from a few annotated data samples includ-

ing manually annotated examples or true subsurface measurements such as well-logs
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and core data. First, we presented a framework to characterize seismic images from

a structural point of view using multiresolution texture analysis. In this framework,

we introduced a novel texture similarity measure that was used to obtain a large

dataset of labeled seismic images from an unlabeled seismic volume and a few labeled

examples. The obtained dataset was then used to train a machine learning framework

to characterize a large seismic volume from a structural point of view. Furthermore,

we presented a semi-supervised sequence modeling framework that models seismic

data as time series using recurrent neural networks. The introduced framework uses

the sparsely-available rock property measurements from well-logs as labels for seismic

data. In addition, it utilizes physical seismic models to learn from unlabeled seismic

data. The trained framework can then be used to estimate rock properties for the

entire seismic volume. The presented framework, unlike classical inversion methods,

does not require an initial model to be manually estimated. Instead, it can infer

such a model from the training data. Furthermore, the introduced framework learns

to map low-resolution seismic traces to high-resolution rock property traces using a

learned upscaling network. It was shown to outperform classical seismic inversion

frameworks in case studies of elastic and acoustic impedance estimation from noisy

synthetic and migrated seismic data. Finally, we presented an end-to-end learning-

based semi-supervised sequence modeling framework for lithology characterization

framework that can also learn the seismic physical model from the training data in-

stead of being explicitly modeled. The presented framework was shown to be robust

to noise and artifacts that are often present in migrated seismic data.

6.1 Contributions

The main contributions of this dissertation can be summarized as follows:

• A state-of-the-art texture-based image similarity measure for seismic structures.

We show that the introduced similarity measure can characterize seismic struc-
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tures present in seismic images with high accuracy. In addition, we show that

the introduced similarly measure maintains a robust performance across dif-

ferent datasets of natural and synthetic texture images in addition to seismic

images.

• A novel method to model seismic traces as sequential data using recurrent neural

networks. We show that modeling seismic traces as time series enable neural

networks to learn global and local features which play a key role in lithology

characterization of subsurface volumes. We also show that recurrent neural

networks outperform feed-forward ones such as convolutional neural networks

to characterize seismic data from a lithology point of view.

• A semi-supervised physics-guided deep sequence modeling lithology character-

ization framework. The framework uses well-log data as labels for the seismic

data In addition, the physical seismic forward model enables neural networks

to learn from unlabeled seismic data. The introduced framework learns to map

low-resolution seismic data to high-resolution lithology characterization of the

subsurface using a specialized upscaling neural network. We show that the in-

troduced framework outperforms classical seismic inversion methods without

requiring low-frequency content of the true lithology of the subsurface as in the

case of classical inversion.

• A semi-supervised deep sequence modeling lithology characterization framework

with a learned forward model. The introduced framework requires no physical

modeling of the seismic data. Instead, it learns the inverse and forward models

from seismic data to rock properties from the limited well-logs as annotations

for seismic data. We have shown that it can estimate rock properties from

seismic data even with the presence of noise and migration artifacts.
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6.2 Future Research Directions

In this dissertation, we have focused on applications of image processing and deep

learning for subsurface volume characterization with the limited availability of labeled

data. In light of what we have presented in this dissertation, we identify promising

research directions that can bridge the gap between the fields deep learning and

subsurface volume characterization. These research directions are summarized next.

• In Chapter 2, we focused on 2-dimensional image-based characterization of seis-

mic data. However, since the structures of the subsurface are 3-dimensional, it

is expected that 3-dimensional characterization can help identify these struc-

tures better. Furthermore, the use of multi-angle (prestack) seismic data adds

another dimension to the three spatial ones. Prestack seismic data reveal de-

tails that are not visible in the poststack data. This can be achieved using

high-dimensional signal processing and analysis tools.

• In this thesis, we utilized 1-dimensional recurrent neural networks as sequence

models for seismic data. Although the results obtained using the introduced

framework outperform classical methods, incorporating spatial constraints in

the introduced framework would improve the lateral resolution of the results.

This can be achieved by incorporating multi-dimensional recurrent neural net-

works or a combination of 3-dimensional convolutional neural networks with

1-dimensional sequence models.

• In Chapter 4, we introduced the use of a physical forward model to enable the

neural network to learn from unlabeled data. However, the forward model we

used was a relatively simple one that might not describe the data accurately.

The forward model must be fast to keep up with the deep neural inversion

network. Accurate forward models such as wave-propagating simulation are
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computationally expensive. A fast physics- or learning-based realistic forward

models can be easily used in the presented semi-supervised framework, which

would help the neural network to learn to characterize seismic data more accu-

rately.

• The applications of the introduced semi-supervised sequence modeling frame-

work presented in Chapters 4 and 5 are not only limited to lithology character-

ization of subsurface volumes. It can be applied for structure and stratigraphy

characterization of the subsurface.

• The introduced physics-based semi-supervised framework can be used to inject

physical knowledge to solve various problems in a learning-based paradigm.

This includes applications of geothermal exploration, medical imaging, metrical

characterization, and structure integrity testing.
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APPENDIX A

EVALUATION METRICS

A.1 Image Retrieval

To assess the retrieval performance of a similarity measure, we set each image xi in

the dataset as a query and use the similarity measure to retrieve the images that are

similar to the query image. Then, information retrieval metrics are used to quantify

the performance of the retrieval method. Let us first define the following sets:

• I is the set of all images in the dataset.

• Ik is the set of all images in the dataset that belong to the kth class.

• Ci = Iclass(xi)\{xi} = {z : z ∈ Iclass(xi), z /∈ {xi}} is the set of all images that

are of the same class as xi; excluding the image itself.

• R(j)
i =

{
r

(1)
i , r

(2)
i , . . . , r

(j)
i

}
is the set top j images in terms of their similarity to

xi. Note that the elements of R(j)
i are sorted according to their similarity to xi

such that: Similarity
(
xi, r

(k)
i

)
≥ Similarity

(
xi, r

(k+1)
i

)
.

• R(j)
i ∩ Ci is the set that contains all images that are of the same class as the

query image xi in the set of retrieved images R(j)
i .

The following information retrieval metrics are used to assess the performance of the

similarity measures:

• Precision at n (P@n) is the average percentage of correctly retrieved images

out of n retrieved images. Precision at n (P@n) is defined as follows:

P@n =
1

|I|

|I|∑

i=1

∣∣∣R(n)
i ∩ Ci

∣∣∣
∣∣∣R(n)

i

∣∣∣
, (A.1)
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where | · | is the number of elements in the set.

• Retrieval Accuracy (RA) is the P@n when n is equal to the number of

elements that are of the same class the query images, i.e. n = |Ci|.

RA =
1

|I|

|I|∑

i=1

∣∣∣R(|Ci|)
i ∩ Ci

∣∣∣
∣∣∣R(|Ci|)

i

∣∣∣
. (A.2)

• Average Precision (AP) for query image xi is a measure of precision that

takes into account the order of which the correct images are retrieved. It is

defined as:

APi =
1

|Ci|
Ns−1∑

j=1

∣∣∣R(j)
i ∩ Ci

∣∣∣
∣∣∣R(j)

i

∣∣∣
× 1{r(j)i ∈ Ci}

, (A.3)

where 1{r(j)i ∈ Ci}
is the indicator function and it is equal to 1 if and only if

r
(j)
i ∈ Ci, and 0 otherwise. Mean Average Precision (MAP) is the mean

value of AP for all images in the dataset.

• Receiver Operating Characteristics (ROC) is a plot of the True Positive

Rate (TPR) versus False Positive Rate (FPR) for different similarity thresholds.

TPR is the percentage of pairs of images that are correctly identified as similar

by the similarity measure. FPR is the percentage of pairs of images that are not

similar but were identified as similar by the similarity measure. The area under

the ROC curve, denoted as AUC, is used as a measure of the discriminative

power of a similarity measure. The ideal ROC curve would have perfect TPR

(TPR=1) for all values of FPR, and in this case, the area under the curve would

be maximum AUC = 1.
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A.2 Clustering

To evaluate the quality of clusters obtained with a clustering algorithm, we use Rand

index [136] and adjusted Rand index [137].

Rand index is defined as the percentage of pairs of objects that have been either

correctly clustered. Formally, for each pair of images, xi and xj, in the dataset, is

said to be correctly clustered in the following cases:

• xi and xj are of the same class and are also put in the same cluster by the

clustering algorithm (true positive).

• xi and xj are of different classes and are in different clusters and are also put

in different clusters by the clustering algorithm (true negative).

Before we define Rand index mathematically, let us define the contingency table

which is used to compute Rand index. Let I be a dataset of N samples with a ground-

truth clustering of its elements into L clusters, {I1, I2, . . . , IK}, where Ii is the set

of elements that belong to the ith cluster. Let {J1,J2, . . . ,JL} be the clustering

obtained by a clustering algorithm. The contingency table (T ), is defined as follows:

J1 J2 . . . Jl Sum

I1 T1,1 T1,2 . . . T1,l a1 =
∑

i T1,i

I2 T2,1 T2,2 . . . T2,l a2 =
∑

i T2,i

...
...

...
. . .

...
...

IK TK,1 TK,2 . . . TK,L aK =
∑

i TK,i

Sum
∑

i b1 = Ti,1 b2 =
∑

i Ti,2 . . . bL =
∑

i Ti,L N =
∑

i,j Ti,j

where Ti,j is the set of elements are are in both Ii and Jj. Note that
∑

i,j Ti,j = |I|

which is the total number of elements in the dataset. Then, we define the true positive
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(TP), false positive (FP), false negative (FN), and true negative (TN) as follows:

TP =

∑

i,j

(
Ti,j
2

)
,

FP =

∑

i

(
ai
2

)
− TP,

FN =

∑

i

(
bi
2

)
− TP,

TN =

(
N

2

)
− (TP + FP + FN),

where
(
n
k

)
= n!

k!(n−k)!
, and n! is the factorial of n. Rand index is then defined as:

Rand Index =
TP + TN

TP + TN + FN + FP
. (A.4)

Rand index gives a value in the range [0, 1] with 1 being a perfect clustering that

matches the ground truth. However, Rand index mostly lies in a narrow range of

[0.5− 1]. In addition, it does not take a constant value when comparing two random

clustering partitions [138]. The adjusted Rand index was then proposed in [137] to

address this issue. The adjusted Rand index is defined as follows:

Adjusted Rand Index =

∑
i,j

(
Ti,j

2

)
−∑i

(
ai
2

)∑
j

(
bi
2

)
/
(
N
2

)

1
2

[∑
i

(
a
2

)∑
i

(
b
i

)]
−
[∑

i

(
ai
2

)∑
i

(
bi
2

)]
/
(
N
2

) . (A.5)

The adjusted Rand index is no longer bounded by zero. However, it gives a value of

zero when the clustering is as good as a random one.
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A.3 Segmentation

To evaluate the quality of a labeling of an image or volume with respect to the ground-

truth labeling of the image, we use semantic segmentation metrics. Before we define

these metrics, we will define the following sets and constants:

• Gi is the set of all pixels that belong to the ith in the ground-truth labeling.

• Hi is the set of all pixels that labeled as i by a classification or a segmentation

algorithm.

• Nc is the number of classes, or the number of possible labels for a pixel.

• |A| is the number of items in a set A.

These sets are used to determine the quality of the labeling obtained using a classifi-

cation or a segmentation algorithm with the following metrics:

• Pixel Accuracy (PA) is defined as the percentage of pixels that are labeled

correctly.

PA =

∑
i|Gi ∩Hi|∑

i|Gi|
. (A.6)

• Class Accuracy for the ith class (CAi) is the percentage of pixels that belong

to the ith and have been correctly labeled as i,

CAi =
|Gi ∩Hi|
|Gi|

. (A.7)

Then, the average of CA over all classes gives Mean Class Accuracy (MCA),

MCA =
1

Nc

|Gi ∩Hi|
|Gi|

. (A.8)
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• Intersection over Union (IoUi) measures the overlap between Gi and Hi. It is

defined as the ratio between the size of the intersection set of Gi and Hi to the

size of their union set,

IoUi =
|Gi ∩Hi|
|Gi ∪Hi|

. (A.9)

Averaging IoUi over all classes give Mean Intersection over Union (MIoU),

MIoUi =
1

Nc

∑

i

|Gi ∩Hi|
|Gi ∪Hi|

. (A.10)

Alternatively, we can use Frequency-Weighted Mean Intersection over Union

(FW-MIoU) which gives more weight to the more frequent classes,

FW-MIoUi =
1

|Gi|
∑

i

|Gi| ·
|Gi ∩Hi|
|Gi ∪Hi|

. (A.11)

A.4 Goodness-of-fit

To measure the goodness-of-fit of one 1-d discrete signal to another, we use Pearson

Correlation Coefficient (PCC), and the coefficient of determination. Let y be the

reference signal, and ŷ be an estimation of y. Pearson correlation coefficient is defined

as follows:

PCC =

∑
i (y[i]− µy) (ŷ[y]− µŷ)

σyσŷ
, (A.12)

where µy and µŷ are the average values of y and ŷ, respectively, and σy and σŷ, are

their standard deviation values, respectively. PCC is in the range [−1, 1], with values

of -1 and 1 indicating perfect positive and negative linear correlation, respectively. A

value of 0 indicates no correlation.
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The coefficient of determination (r2) is defined as follows:

r2 = 1−
∑

i (y[i]− ŷ[i])2

∑
i (y[i]− µy)2 . (A.13)

The range of coefficient of determination is [−∞, 1], with a value of 1 indicating a

perfect match between y and ŷ.
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