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REVIEW ARTICLE

AI-Enhanced Diagnosis of Challenging
Lesions in Breast MRI: A Methodology and

Application Primer
Anke Meyer-Base, PhD,1,2 Lia Morra, PhD,3 Amirhessam Tahmassebi, PhD,1

Marc Lobbes, MD,2,4,8 Uwe Meyer-Base, PhD,5 and Katja Pinker, MD6,7*

Computer-aided diagnosis (CAD) systems have become an important tool in the assessment of breast tumors with
magnetic resonance imaging (MRI). CAD systems can be used for the detection and diagnosis of breast tumors as a “sec-
ond opinion” review complementing the radiologist’s review. CAD systems have many common parts, such as image
preprocessing, tumor feature extraction, and data classification that are mostly based on machine-learning
(ML) techniques. In this review article, we describe applications of ML-based CAD systems in MRI covering the detection
of diagnostically challenging lesions of the breast such as nonmass enhancing (NME) lesions, and furthermore discuss how
multiparametric MRI and radiomics can be applied to the study of NME, including prediction of response to neoadjuvant
chemotherapy (NAC). Since ML has been widely used in the medical imaging community, we provide an overview about
the state-of-the-art and novel techniques applied as classifiers to CAD systems. The differences in the CAD systems in MRI
of the breast for several standard and novel applications for NME are explained in detail to provide important examples,
illustrating: 1) CAD for detection and diagnosis, 2) CAD in multiparametric imaging, 3) CAD in NAC, and 4) breast cancer
radiomics. We aim to provide a comparison between these CAD applications and to illustrate a global view on intelligent
CAD systems based on machine and deep learning in MRI of the breast.
Level of Evidence: 2
Technical Efficacy Stage: 2

J. MAGN. RESON. IMAGING 2020.

BREAST CANCER is the most common cancer among
women but has an encouraging cure rate if diagnosed at

an early stage. Thus, early detection of breast cancer con-
tinues to be key for effective treatment. Magnetic resonance
imaging (MRI) is an established essential tool in breast
imaging for high-risk screening, assessment, diagnosis, stag-
ing, and follow-up of breast cancer.1,2 It has a proven value
in important areas such as evaluating local extent of disease,
multicentricity, response to neoadjuvant chemotherapy, and
in the assessment of the integrity of implants.1,3 Currently

dynamic contrast-enhanced MRI (DCE-MRI) is the most
sensitive imaging technique for breast cancer diagnosis with
a high specificity, is independent of breast density, and
detects noninvasive breast cancer. The limitations in speci-
ficity can be overcome by employing additional functional
MRI techniques such as diffusion-weighted imaging (DWI)
and proton MR spectroscopy. These techniques have dem-
onstrated an improved diagnostic accuracy as well as
response assessment4; their combined application is called
multiparametric MRI and can be utilized for the detection
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and characterization of breast tumors.5,6 However, the
acquisition of multilayered multidimensional data poses
new challenges to radiologists; and thus new tools for reli-
able, reproducible, and quantitative assessments are
warranted for improved diagnosis, tumor characterization,
and treatment monitoring.

Inspired by computer-aided diagnosis (CAD) systems to
support diagnostic and screening activities in conventional
X-ray mammography, research initiatives nowadays focus on
similar techniques to aid or even automatize the diagnosis in
MRI of the breast. These efforts started as early as 2002 with
the application of the multilayer perceptron (MLP) as a classi-
fier of tumor-extracted features describing dynamic, morpho-
logical, or combined characteristics7–9 for breast MR
segmentation and lesion detection,10 while achieving results
comparable to that of an expert radiologist. Other machine-
learning (ML) techniques used in the early days were the
fuzzy c-means clustering-based technique for automatically
identifying characteristic kinetics from breast lesions11 and
the mean shift clustering for determining accurate regions of
interest (ROIs) in breast MRI lesions.12 All these techniques
for CAD systems of mass lesions outperformed an experi-
enced radiologist and demonstrated that ML techniques can
support the radiologist in the diagnosis of breast lesions.

However, the delineation, detection, and diagnosis of
nonmass enhancing (NME) lesions is clinically very challeng-
ing since the standard morphological and kinetic features that
are relevant for masses fail to achieve equally good results for
NME lesions.13 Thus, CAD systems strongly relying on mor-
phological and kinetic parameters are proven to be insuffi-
cient to obtain a satisfactory performance for NME lesions.
Designing robust and reliable CAD systems for these NME

lesions represents a challenge for the medical imaging special-
ist. Few studies in the literature explore CAD systems based
on ML techniques are reported for this type of lesion.

To provide useful insights for ML techniques in con-
nection with important CAD systems of NME lesions in
MRI of the breast, this review article consists of seven sec-
tions. Section Application of ML and Dynamic Contrast
Enhancement (DCE) Kinetics of Breast Tumors describes the
basic kinetics aspects in breast MRI, while Section Application
of ML and Morphology of Breast Tumors explains the equally
important morphological criteria used in detection and diag-
nosis. Section Machine Learning Techniques provides an over-
view about the most important standard and novel ML
techniques and their processing steps. The next sections pre-
sent applications of ML to relevant topics in MRI of the
breast and include all necessary preprocessing steps to achieve
a diagnostic solution. Section CAD in MRI of the breast pres-
ents intelligent diagnostic solutions based on tumor-extracted
features and enhancement curves. Section Future Trends:
CAD Systems for Novel Applications covers future trends
including novel applications of ML in MRI of the breast.

Application of ML and Dynamic Contrast
Enhancement (DCE) Kinetics of Breast Tumors
As mentioned in the previous section, morphologic, kinetic,
or combined features represent important lesion characteris-
tics for a computer-assisted interpretation. For example,
time–signal series, as measured during a DCE-MRI examina-
tion for each image voxel, represents an important compo-
nent in designing CAD systems for MRI of the breast. Early
studies have demonstrated that the shape of the time–signal
intensity curve provides an important biomarker for discrimi-
nating between benign and malignant enhancing lesions in
DCE-MRI and it is a key step of reporting MRI of the
breast.14 It has been shown that the enhancement kinetics, as
represented by the time–signal intensity curves, visualized in
Fig. 1, differ significantly for benign and malignant enhanc-
ing tumors and thus are representative of differential diagno-
sis: plateau or washout-time courses (type II or III) are mostly
found in cancerous tissue. Steadily progressive signal intensity
time courses (type I) are typical of benign enhancing lesions.
Typical features representative of kinetics are maximum
enhancement, time to peak, uptake rate, washout rate,
enhancement at first postcontrast timepoint and signal
enhancement ratio.

Recently, new k-space acquisition strategies have been
introduced for dynamic breast MRI such as time-resolved
angiography with stochastic trajectories (TWIST) and differ-
ential subsampling with Cartesian ordering (DISCO).15,16

These ultrafast sequences can be used to capture the inflow of
contrast in breast lesions, heavily undersampling the outer
part of the k-space in order to increase the spatial resolution

FIGURE 1: Schematic drawing of the time–signal intensity (SI)
curve types. KMK+ 99 Type I corresponds to a straight (Ia) or
curved (Ib) line; enhancement continues over the entire dynamic
study. Type II is a plateau curve with a sharp bend after the
initial upstroke. Type III is a washout time course. In breast
cancer, plateau or washout–time courses (type II or III) prevail.
Steadily progressive signal intensity time courses (type I) are
exhibited by benign enhancing lesions.
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for an improved diagnostic quality. Thus, it can be employed
in clinical settings to acquire breast DCE-MRI data with both
high spatial resolution for accurate tumor morphology assess-
ment and high temporal resolution for accurate representation
of the contrast agent kinetics.2,17 The potential of these new
breast MRI techniques for screening and automated charac-
terization of breast lesions has not yet been explored. A single
study2 has shown that the ultrafast protocol yielded a high
diagnostic accuracy compared with the standard protocol
when the maximum slope of the relative enhancement
vs. time curve (MS) was used as a kinetic information vs. the
Breast Imaging-Reporting and Data System (BI-RADS) curve
types. A more precise evaluation can be achieved based on
advanced computer tools that could additionally incorporate
the morphologic information and assist the radiologist in
image interpretation and patient workup.

There is clinical evidence that novel enhancement curve
parameters combined with morphological features are
improving the diagnostic accuracy for the ultrafast protocol.18

Although signal characteristics represent an important
biomarker for a radiologist to distinguish between different
tissue states, their assessment is quite a time-consuming task.
This becomes challenging when the heterogeneity of lesion
tissue is considered, which causes the spatial variation of sig-
nal characteristics. In addition, this variation reflects specific
tissue properties that should be considered when assessing the
state of lesions. Kinetic parameters extracted either from qual-
itative BI-RADS or quantitative empirical mathematical
models measures of kinetics have proven to be insufficient
when it comes to the differential diagnosis of NME lesions.19

Application of ML and Morphology of Breast
Tumors
Morphological parameters describing either the shape or
structure of the ROI are obtained from manual or semiauto-
matic detection. They are either qualitatively or quantitatively
extracted from lesions and represent valuable diagnostic bio-
markers.20 The most important morphological features are
area, compactness, perimeter, smoothness, radial length,
roughness, sphericity, volume, spiculation, curvature, and
edge. While qualitative morphological features have a high
interobserver variability,21 quantitative ones provide a more
standardized and objective diagnosis. Other nonkinetic fea-
tures besides the morphological are histogram features, spicu-
lation, textural, geometric, and binary object features. Since
the NME lesions exhibit ambiguous characteristics when lim-
ited to only dynamical or morphological parameters alone, a
fusion of different dynamic and morphologic characteristics
proved beneficial in terms of diagnostic sensitivities and
specificities.22,23

Based on morphology and type of enhancement, lesions
are assigned according to risk assessment and a quality

assurance tool, the BI-RADS lexicon, to mass enhancement,
nonmass, and focus.13,24,25 Masses are 3D tumors that have
either a round, oval, lobular, or irregular shape; nonmasses
have poorly defined boundaries and considerable overlap in
kinetic characteristics between malignant and benign lesions;
and foci represent small spots of enhancement that cannot be
characterized as a mass. The diagnosis of mass enhancement
lesions is straightforward and employs typical characteristic
parameters such as spiculation (morphology), rim enhance-
ment (texture), and washout kinetics. However, the diagnosis
of foci and nonmass-like enhancing lesions pose a challenge
to both clinical reading and CAD systems. Therefore, stan-
dard parameters cannot be applied, and novel image and sig-
nal processing techniques need to be developed and
integrated into the CAD system. While for mass-enhancing
lesions several BI-RADs descriptors are used for the differen-
tial diagnosis, the existing BI-RADS descriptors for NME
lesions have proven to be insufficient for the automated dif-
ferential diagnosis. Nonmass-enhancing lesions represent a
diagnostic challenge in MR, as exemplified in Fig. 2.

The correct detection of these lesions, in combination
with many clinical applications ranging from diagnosis to
therapeutic solutions, demand sophisticated image processing
paradigms in connection with feature extraction. The
response to these challenging processing tasks has guided the
development of novel ML techniques, which will be
described further below.

Machine-Learning Techniques
Several ML techniques are incorporated as a classifier in CAD
pipelines for breast cancer detection, prediction of neo-
adjuvant chemotherapy outcome, and diagnosis. A brief
description of the most important techniques is given in this
section. We start with “classical” ML approaches such as sup-
port vector machine and random forest and conclude with a
brief discussion of deep learning.

Artificial Neural Networks Classifiers
Artificial neural network (ANN) classifiers are an attempt to
emulate the processing capabilities of biological neural sys-
tems. The architecture of the MLP is completely defined by
an input layer, one or more hidden layers, and an output
layer. Each layer consists of at least one neuron. The input
vector is processed by the MLP in a forward direction, pass-
ing through each single layer. A neuron in a hidden layer is
connected to every neuron in the layers above and below
it. MLPs have been applied successfully to sophisticated clas-
sification problems. The training of the network is accom-
plished based on a supervised learning technique that requires
given input–output data pairs. The training technique,
known as the error backpropagation algorithm, is bidirec-
tional, consisting of a forward and backward direction. Dur-
ing the forward direction a training vector is presented to the
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FIGURE 2: Morphological and dynamic representations of segmented benign (diffusely enhancing glandular tissue) and malignant (invasive
ductal carcinoma) nonmass-like-enhancing lesions. The time-scans in the first row are without motion compensation, while those in the
second row are motion-corrected. The left image in the last row shows the segmented tumor, while the right one shows the SI curve.
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network and classified. The backward direction consists of a
recursive updating of the weights in all layers based on the
computed errors.

Random Forests
The random forest represents a powerful statistical learning
technique and is an ensemble method26 composed of many
smaller models. The classification and prediction are achieved
by combining the outputs of these smaller models that are
usually classification and regression trees (CART). CART
operates based on a repeated partitioning of the input data in
order to estimate the conditional distribution of a response
(output class) for a given set of feature variables. The algo-
rithm implements a binary decision tree where every single
feature of the input is considered a candidate for the split.
Binary decision trees are nonlinear multistage classifiers. This
classification system operates by rejecting sequentially classes
until the correct class is found. In other words, the correct
class corresponding to a feature vector is determined by
searching a tree-based decision system. The feature space is
divided into regions corresponding to the different classes.
The goal of CART is that the emerging subgroups after the
split are homogeneous. The trees are combined to a forest
based on bagging. The variance of the predictions of a model
is decreased by fitting several models and then taking the
average over their predictions to achieve in the end a regular-
ized prediction. To avoid overfitting, each model is fitted only
to a sample of the same size as the original input data but
selected with replacement. This sample technique is known as
the bootstrap sample.

Support Vector Machines
The support vector machine (SVM) represents a feedforward
single layer classifier that can be employed either for linear or
nonlinear separable datasets.27–29 It became for many classifi-
cation problems in biomedical imaging the first-choice
classifier.

The basic idea of the SVM algorithm is to design a
hyperplane:

f w,b xð Þ =w � x +w0 ð1Þ

characterized by its direction vector w � Rn and its
exact position in space or bias w0. The hyperplane separates
the labeled input or training data into two classes by leaving
the maximum-margin from both classes. A given set of
N labeled training examples {(x, y)i}, i = 1,…, N, xi � Rn

assigned to two different classes yi � {−1, 1}, is separated by a
maximum-margin hyperplane such that the distance between
the hyperplane and the closest examples (the margin γ) is maxi-
mized. This hyperplane is fully specified by a subset of those
training examples that lie closest to the decision surface and
pose a challenge for a correct classification. The training

samples that lie closest to the hyperplane represent the sup-
port vectors. To employ the SVM for nonlinearly classifi-
able data, we need to employ the so-called “kernel trick.”
This symmetric and nonlinear kernel function evaluates the
inner product between two examples after their transforma-
tion by a nonlinear function by maintaining the original
architecture of the linear SVM.

KNN Classifier
K-nearest neighbors (KNN) is a supervised classifier. This
algorithm stores all available patterns and classifies new
patterns based on a similarity measure (eg, distance func-
tions). This procedure can be very easily elucidated based
on a two-class classification task: an unknown pattern x
should be assigned to one of the two classes C1 or C2. The
decision is made by determining its Euclidean distance
d from all the trainings vectors belonging to various classes.
We define two hyperspheres with the radius r1 and r2,
respectively centered at x. Let V1 and V2 be the two
hypersphere volumes corresponding to the two classes C1
and C2.

The k-nearest neighbor classification rule can be easily
formulated in the case of two classes C1 and respectively
C2 as:

Assign x to classC1 C2ð Þ if V 2

V 1
> <ð ÞN 1P C 2ð Þ

N 2P C 1ð Þ ð2Þ

Bayesian Classifier
Bayes decision theory represents a fundamental statistical
approach in pattern classification assuming mutually exclusive
and exhaustive classifications with known prior probabilities.
Simplified formulated, the probability that a pattern belongs
to a given class is determined.

A simple example represents the two-class case with C1,
C2. The a priori probabilities P (C1) and P (C2) are assumed
to be known a priori since they can be easily determined from
the available training dataset. Given are the pdfs p(xijCi), i
= 1, 2. These pdfs p(xijCi) are known as likelihood functions
of Ci with respect to x.

The Bayes classification rule can be easily stated for the
two–class case ω1, ω2 as:

If P C1P C2xð Þ, x is assigned toC1ð ð3Þ
If P C1P C2xð Þ, x is assigned toC2ð

Based on the above classification algorithm, a feature
vector can be either assigned to one class or the other. This is
equivalent to determining the maximum of the conditional
pdfs evaluated at x.
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Bayes Classification Based on LDA and QDA
As stated before, the Bayes classification30 is based on deter-
mining the prior probabilities πi for each class Ci. This value
describes the prior estimates about how probable a class is.

This classification method assigns each new training
sample to the class with the highest posterior probability.

Thus, the classification rule becomes:

Cj = xi−μjð ÞT Σjð Þ−1 xi−μjð Þ + log jΣj j −2 logπj ð4Þ

where μj represent the means of the classes and Σj is the
corresponding covariance matrix. The assignment to a certain
class j for a certain input pattern is made based on the
smallest computed value of Cj .

The covariance matrices can be either different for each
class or identical. In the first case, we have a quadratic dis-
criminant analysis (QDA) classifier, while in the latter case
we have a linear discriminant analysis (LDA) classifier.

Fisher’s Linear Discriminant Analysis
Fisher’s linear discriminant analysis (FLDA) is both a projec-
tion and classification method. Similar to SVM, we are
looking for a linear function f (x) = wT x + b that is used to
discriminate multiclass data labels. The method employs ade-
quate dimension reduction from the initial data space to dis-
criminate between q classes. The optimization problem
becomes finding w defined by q − 1 basis vectors.

This technique identifies the first discriminating compo-
nent based on finding the vector w that maximizes the dis-
crimination index, given as:

wT Bw= wTWw
� � ð5Þ

with B denoting the interclass sum-of-squares matrix
and W the intraclass sum-of-squares matrix.

Decision Trees
Decision trees represent a nonlinear multistage classifier in
which classes are rejected over a sequence of decisions until a
finally accepted class is reached. This means that the feature
space is split sequentially in specific regions that correspond
to the classes. Each feature vector traverses an existing tree
based on a sequence of decisions and follows a path of nodes
until it reaches the region where it belongs. In other words,
the correct class corresponding to a feature vector is deter-
mined by searching a tree-based decision system. This classifi-
cation scheme is extremely beneficial when a large number of
classes is given.

The most popular decision trees are binary decision
trees. Binary decision trees separate the search space into hyp-
errectangles with sides parallel to the axis. The tree is searched

in a sequential manner and a decision of the form xi ≤ α,
with xi being a feature and α a threshold value, is made at
each node for individual features.

This processing scheme is an essential part of many
tree-based vector quantization algorithms.

Fuzzy Classifiers
In crisp classification the membership of each sample from
the dataset to a given class is either zero or one. In fuzzy clus-
tering, a sample can belong to more than one class and its
membership takes any value between zero and one. A fuzzy
classifier is described by the classical fuzzy IF-THEN
rules.31,32 A popular algorithm is the fuzzy c-means algo-
rithm, being an unsupervised classification algorithm applied
in medical imaging mostly to pixel segmentation. In the
beginning, a set of classes has to be determined and the cen-
troid of each class is computed. Each pixel is then classified
by its membership values of the classes according to its attri-
butes. Membership value for a certain class indicates the
probability of the pixel belonging to that class. The objective
of the fuzzy c-means algorithm is to compute membership
values to minimize the within-cluster distances and maximize
the between-cluster distances. The cluster centers are updated
iteratively.

Deep Learning
Classical ML techniques cannot be applied to images directly,
and hence it is required to define suitable features (mathemat-
ical descriptors) to encode discriminative properties of the
lesions of interest. The emergence of deep-learning
(DL) architectures allows working directly with images, and
not with extracted or “engineered” features from these
images, by learning the feature representation along with the
classifiers.33

Inspired from the brain processing in the visual cortex,
an architecture achieving several layers of abstraction based
on a hierarchy of transformation appears as a well-suited
answer to the above problem. The most common architecture
of this type is the convolutional neural network (CNN). Like
the human brain, the first layer of this hierarchical network
detects edges, then further layers primitive shapes and subse-
quently more complex visual shapes until a semantics concept
is built. The number of layers determines the depth of the
network and those networks with up to two hidden layers are
considered shallow, while those with more than three are
deep. Each layer can be viewed as creating a feature vector
while the DL network can be viewed as a modality for learn-
ing a hierarchy of features. Thus, the higher layers implement
a higher abstraction of the representation or mapping as
reflected by the respective feature vector of that layer. With
this novel “coding scheme,” the network is generating the
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features by itself without the need of human intervention. A
typical deep CNN is shown in Fig. 3.

Due to the complex nature of DCE-MRI, with both
spatial (volumetric) and temporal variations, feature extraction
either through conventional or DL-based techniques is crucial
to achieve good performance. Hundreds of features have been
proposed in the literature to encode both morphological (spa-
tial) and kinetics (temporal) properties of the tumor and its
enhancement. CNNs were initially proposed to deal with
2D, low-resolution, RGB images, and therefore need to be
adapted in order to effectively process multiparametric inputs
and encode both volumetric (spatial) and temporal changes.34

At the same time, CNNs are complex networks with millions
of parameters that require large datasets for effective training.
The combination of these two factors make DL particularly
challenging for breast MRI, and especially for lesions such as
NMEs, for which collecting large datasets is especially chal-
lenging. Indeed, most the reviewed techniques are still firmly
based on traditional feature extraction.

Evaluation Criteria
ML techniques have to be evaluated regarding their perfor-
mance in the testing phase based on new, previously unseen
data samples.

The ability of a classifier to discriminate diseased malig-
nant from benign cases is based on receiver operating charac-
teristic (ROC) analysis. The most important evaluation
metrics are accuracy, sensitivity, specificity, and area under
the curve (AUC). Accuracy determines the ratio of the correct
classified samples in relation to the total samples. The sensi-
tivity (Sn) is the probability that a test result will be positive
when the disease is present (true positive rate, expressed as a
percentage). The specificity (Sp) is the probability that a test
result will be negative when the disease is not present (true
negative rate, expressed as a percentage). The AUC represents
the degree of separability between the two classes and is a
common figure of merit to compare the performance of dif-
ferent classifiers.

CAD in MRI of the Breast
CAD in the Detection of Diagnostically Challenging
Lesions Based on Tumor-Extracted Quantitative
Features
NME lesions show a heterogeneous appearance in MRI, with
high variations in kinetics and morphological characteris-
tics13,24,35 and have a lower reported specificity and sensitivity
than mass-enhancing lesions. Most research initiatives in the
past have been centered on automated analysis of mass
lesions, since they were more straightforward,9–11,36–43 while
very few studies have investigated the characterization of the
morphology and/or enhancement kinetic features of NME
lesions.19,44–46 These studies showed a much lower sensitivity
and specificity for NME lesions compared with masses,
suggesting the need for more advanced algorithms for the
diagnosis of nonmass-like enhancement. The diagnosis of
NME lesions is more challenging, as both benign conditions
and tumors such as fibrocystic or proliferative changes, and
malignant lesions such as ductal carcinoma in situ (DCIS)
and invasive lobular cancer (ILC) often present as such.46

A systematic classification of NME lesions would be highly
beneficial and cost-effective for clinical management, and
would contribute towards a reduction of the number of biop-
sies and follow-up exams.

A search through the most important databases was per-
formed to identify various studies related to the employed
ML techniques. The primary aim was to categorize the stud-
ies according to the following research questions47: What are
the ML techniques?48 What are the evaluation criteria used
for their assessment? and49 What are the datasets used? Sev-
eral databases were searched including Springer Link, Web of
Science, IEEE Xplore, and PubMed. The following search
keywords were used: “breast cancer,” “MR imaging,” “non-
mass lesion,” and “machine learning.”

It is important to provide an improved differential diag-
nosis for these diagnostically challenging lesions based on a
CAD system that ideally incorporates the spatiotemporal
properties of these lesions and provides the radiologist with a
fast and accurate computational diagnosis support. Available

FIGURE 3: A DL architecture with hidden layers and one output layer.
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features describe the breast signal in the 4D space and may
capture the temporal dynamics, the morphological character-
istics, and also the spatial variations within the tumor. In this
subsection, techniques that are rooted in quantitative feature
extraction are reviewed. Table 1 shows a summary of the arti-
cles describing CAD systems for NME lesions based on solely
tumor-extracted morphological features, whereas Table 2
shows a summary of articles describing CAD systems for
NME lesions based on both dynamics- and tumor-extracted
enhancement curves or spatiotemporal features. The highest
predictive value in NME lesions is achieved by both morpho-
logical and kinetic parameters.13,35A variety of ML techniques
have been used for NME analysis, as shown in Tables 1 and
2, with random forest and SVM being the most common
choices.

Based on the reviewed literature, it appears that ML
techniques are a promising solution towards NME detection
and characterization. There are, however, several challenges to
be tackled.First, new techniques are needed for the simulta-
neous movement correction and segmentation considering
spatial and temporal profiles: automatic motion correction
represents an important prerequisite for a correct automated
lesion evaluation.57,58 Therefore, spatial registration has to be
performed before enhancement curve analysis. At the same
time, accurate segmentation of the lesion is critical, since the
spatiotemporal features have to be extracted from the tumor
region. Current segmentation algorithms include only spatial
properties and are suitable for mass-enhancing lesions11,59–61

and will require modifications for NME lesions. Novel elastic
combined image registration and segmentation methods
based on a variational model and level set approach are
needed. These should incorporate spatial as well as temporal
contrast-enhanced images.

Another important point is the development of novel
feature extraction for spatiotemporal modeling algorithms

that can capture the subtle local variations in NME lesions.
BI-RADS-based features proved to be insufficient to differen-
tiate between malignant and benign for NME lesions, and
therefore additional descriptors are needed to reduce the high
proportion of false-positive diagnosis and unnecessary biop-
sies.46 Automated extracted features that have been applied to
lesion characterization capture either variations in their tem-
poral enhancement or in spatial (morphological) structures, or
are computed as global features that are unable to capture
and describe local variations in the morphological and tempo-
ral characteristics of NME lesions. This latter shortcoming
can be addressed by implementing novel mathematical spatio-
temporal feature descriptors that are able to capture the prop-
erties of segmental, focal, dendritic, and clustered ring
enhancement.

At the moment, the most known spatiotemporal feature
descriptors are: Zernike velocity moments,62 the scaling index
method,63 and voxel-based adaptive spatiotemporal model-
ing.64,65 Ngo et al showed that spatiotemporal features such
as Zernike velocity moments have achieved the highest sensi-
tivity (87.5%) compared with morphologic (62.5%) or
kinetic features (70.8%) alone.54

The scaling index method is a technique that can cap-
ture both morphology and kinetics. Originating from the the-
ory of complex systems, the scaling index extracts the local
structure around a given point in an arbitrary dataset. This
technique requires converting the image in point distribution,
where each voxel corresponds to a point and its state is given
by its coordinate and its gray scale intensity value. In the con-
text of MRI of the breast, each point (or voxel) is thus
described by its sagittal, coronal, and transverse positions
along with the observed intensity value.

In clinical practice, dynamic medical images (ie, images
acquired over time) are often assessed qualitatively. However,
there is a need to quantify the results from these images in

TABLE 1. CAD Based on Tumor-Extracted Morphological Features

ML technique Performance Dataset Reference

Random forest AUC = 0.9, Acc = 0.88, TP = 0.91, FP = 0.21 106 lesions 50

Random forest Sn = 0.92 50 lesions 38

Random forest Naïve Bayes
SVM

AUC = 0.74 for RF, AUC = 0.73 for NB,
AUC = 0.68 for SVM

162 nonmass lesions 51

Quadratic discriminant analysis AUC = 0.87 84 images 52

Random forest Sn = 0.45, Sp = 0.96 18 lesions 53

SVM AUC = 0.60, Acc = 0.60, Sn = 0.70, Sp = 0.5 46 lesions 54

ANN AUC = 0.76, Sn = 0.87, Sp = 0.56, Acc = 0.81, 54 lesions 45

SVM Sn = 0.87, Sp = 0.56, Acc = 0.81 54 lesions 55
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order to provide an objective and effective method for the
diagnosis for evaluation of treatment efficacy. Voxel-based
adaptive spatiotemporal modeling can accomplish this. Typi-
cally, images suffer from low signal-to-noise ratio, which
makes quantitative voxelwise evaluation hard. One way to
overcome this problem is to aggregate imaging data in an
ROI. When using an ROI, however, one obviously loses the
spatial information of the image.65,66 To this end, a Bayesian
approach can be used to gain robust estimates of the
voxelwise dynamic.65,67 This approach uses the spatial infor-
mation inherent in the image, to strengthen the local model-
ing in each voxel. These approaches are usually based on
Markov Random Fields (MRF).68

CAD in the Detection of Diagnostically Challenging
Lesions Based on Tumor-Extracted Enhancement
Curves
Kinetic parameters extracted either from qualitative BI-RADS
or quantitative empirical mathematical model measures of
kinetics have proven not to be useful when it comes to the
differential diagnosis of NME lesions.19

Table 3 shows a summary of articles describing CAD
systems for NME lesions based on tumor-extracted enhance-
ment curves. The same search criteria were applied as for
Table 1.

A simultaneous registration and segmentation can be
achieved with independent component analysis (ICA). This
technique facilitates the challenging segmentation of NME
lesions and does not require a predefined ROI mandatory for

manual analysis or an accurate threshold for semiautomated
analysis. It incorporates spatial as well as temporal properties
and provides an accurate motion correction and segmenta-
tion, even for noisy images and spatial smoothness compared
with conventional level set methods or clustering-based tech-
niques. This method detects the interior contours automati-
cally, filters out the noise, and is robust with respect to noise,
and includes and evaluates tumor-specific enhancement cur-
ves. ICA has proven to be an excellent method to separate
motion artifacts in biomedical image processing71–76 and
recover underlying signals. The task of classifying pixels with
similar time-courses corresponds to finding clusters based on
ICA techniques such as topographical ICA77 or tree-
dependent component analysis.78 Figure 4 shows two cluster
assignment maps and the associated time curves for one
benign and two malignant lesions. We can see that each
lesion has a unique enhancement pattern. Thus, it can be
hypothesized that the spatiotemporal behavior of these lesions
is determined not by a single ROI-derived kinetic curve but
by two specific interacting signal intensity time curves.

Future Trends: CAD Systems for Novel
Applications
CAD for Multiparametric MRI
To overcome limitations in specificity, additional functional
MRI techniques such as DWI and proton MR spectroscopy
have been explored and have demonstrated improved diag-
nostic accuracy as well as response assessment.79 Their

TABLE 2. CAD Based on Both Dynamics- and Tumor-Extracted Features or Spatiotemporal Features

ML technique Performance Dataset Reference

Random forest AUC = 0.91, Sn = 0.87, Sp = 0.76, 77 lesions 56

SVM AUC = 0.60, Acc = 0.69, Sn = 0.87, Sp = 0.50 46 lesions 54

TABLE 3. CAD Based on Tumor-Extracted Enhancement Curves

ML technique Performance Dataset Reference

SVM ACC = 0.94, Sn = 0.98, Sp = 0.9, AUC = 0.94 17 images 69

Random forest Naïve Bayes
SVM

AUC = 0.74 for RF, AUC = 0.73 for NB,
AUC = 0.68 for SVM

162 nonmass lesions 51

SVM AUC = 0.77 84 images 52

Random forest Sn = 0.88, Sp = 0.98 18 lesions 53

SVM AUC = 0.65, Sn = 0.65, Sp = 0.75 84 lesions 70

SVM AUC = 0.58, Acc = 0.58, Sn = 0.62, Sp = 0.54, 46 lesions 54

ANN AUC = 0.55, Sn = 0.79, Sp = 0.33, Acc = 0.72 54 lesions 45
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combined application is defined as multiparametric MRI for
detection and characterization of breast tumors.13,24,35,80

Few CAD systems81–83 for breast masses were proposed
for multiparametric MRI. It has been shown83 that there is
the potential for development of multiparametric CAD that
incorporates information from both DWI and DCE-MRI in
breast lesion classification. The multiparametric imaging via
MRI / positron emission tomography (PET) and the combi-
nation of extracted parameters was shown to improve diag-
nostic accuracy for breast and prostate lesions 81,82 All studies
have elucidated that the amount and complexity of the
acquired multiparametric data requires the development of
advanced analysis tools.

The bottleneck that remains for providing an improved dif-
ferential diagnosis, and thus contribute to advancing CAD sys-
tems beyond the current level, are determining the descriptors
that incorporate the diagnostic information from multiparametric
MR images for NME lesions. Important steps include:

1. Development of a novel image normalization framework
for these multiparametric images. The normalization step
represents a crucial step for the subsequent feature
extraction and classification, since the images stem from
heterogeneous sources. Usually, standard preprocessing
step is followed by a novel joint segmentation and regis-
tration algorithm. A better solution is represented by
novel joint segmentation and registration algorithm
based on a variational model and level set approach that
incorporates spatial as well as temporal contrast-
enhanced images. The multiparametric images are

registered such that all segmented images will be in the
same reference frame.

The multiparametric MR images arise from heteroge-
neous sources and need to be regularized before relevant fea-
tures for the CAD system can be extracted. This step includes
a preprocessing stage and a joint tumor segmentation and reg-
istration stage such that all images are in the same reference
frame. The preprocessing step includes noise filtering per-
formed based on wavelet shrinkage,84 bias correction,85 and
SI normalization/standardization based on z-score computa-
tion to remove the variability between patients and to enforce
the repeatability of the MRI examinations.

Due to the elasticity and heterogeneity of breast tissue,
only nonrigid image registration methods are suitable. At the
same time, accurate segmentation of the lesion is critical since
the spatiotemporal features have to be extracted from the
tumor region. Different solutions have been proposed to solve
this problem: these range from purely image-based statistical
and geometrical models for regularization86 to more accurate
physics-based models for mechanical deformation87 and
nonrigid diffeomorphic registration algorithms for volumetric
3D images.88,89 The segmentation algorithm is applied to 3D
images and uses the information from all available images
when determining obscured boundaries, as in the case of
NME lesions. This new algorithm can detect the interior con-
tours automatically and provide an accurate motion correc-
tion and segmentation even for noisy images and spatial
smoothness compared with conventional level set methods or
clustering-based techniques.

FIGURE 4: ICA segmentation at 1.5T for a benign (cylindrical cell changes) and two malignant lesions (carcinosarcoma and IDC with
surrounding DCIS) showing cluster assignment maps (left of each image) and associated enhancement curves (right of each image) in
red and their EMM based on the Gompertzian law in blue.
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2. Identifying novel descriptors such as structure tensors and
texture from T2-MRI and advanced DWI methods such
as intravoxel incoherent motion (IVIM) maps, restriction
spectrum imaging, or multidimensional DWI. The appar-
ent diffusion coefficient (ADC) is the most prevalent
method for quantifying diffusion in clinical practice and is
based on fitting a monoexponential model usually to two
images acquired without diffusion-weighting and with rel-
atively high diffusion-weighting. However, lesion hetero-
geneity is insufficiently described by a single ADC
threshold and thus more detailed structural and functional
image features have to be extracted from T2-MRI and
DWI. Novel descriptors should include additional infor-
mation from multiparametric MRI and capture the struc-
ture of the breast tissue in a unique manner.
Experimentally, the monoexponential fit provided by the
ADC was in practice found to be only applicable to simple
cysts, whereas malignant and benign lesions required a
more complex biexponential model fitted from six or more
images with varying diffusion-weighting parameters.90

Techniques such as IVIM provide separatequantitative
parameters for tissue diffusivity, perfusion fraction, and
pseudodiffusion and has been shown to be helpful for the
differentiation between benign and malignant breast
lesions.90 This provides motivation for further research
regarding the suitability of the IVIM features in DWI for
nonmass-enhancing lesions.

A few studies have exploited first-order texture measurements
statistics reflecting the lesion ADC heterogeneity,91 an
approach that has already demonstrated increased potential in
MRI for prostate cancer. Nineteen different texture features
were extracted describing the image from the gray-level co-
occurrence matrix (GLCM): contrast, correlation, cluster
prominence, cluster shade, dissimilarity, energy, entropy,
homogeneity, maximum probability, sum of squares, sum
average, sum variance, sum entropy, difference variance, dif-
ference entropy, information measure of correlation, inverse
difference, inverse difference normalized, and inverse differ-
ence moment normalized. These features have the potential
to characterize homogeneity, gray-level transitions, and the
presence of organized structures.

3. Identifying novel spatiotemporal descriptors from DCE-MRI
images as the most powerful discriminators. Some lesions
exhibit a high variance in morphological and kinetic char-
acteristics and the consequence is a high proportion of
false-positive diagnoses.46 Automated extracted features
that have been applied to lesion characterization are either
features that capture the variations in their temporal
enhancement or in spatial (morphological) structures or
are global features that are unable to describe local infor-
mation. To address this latter shortcoming, novel mathe-
matical spatiotemporal feature descriptors are needed such

as local velocity moments, scaling index, and dynamic tex-
ture derived from geometrical multiscale decomposition
that are able to capture the segmental, focal, linear,
regional, and diffuse, and internal enhancement patterns
(homogeneous, heterogeneous, clumped, clustered ring
enhancement, dendritic), and lesion heterogeneity.

Dynamic texture features can be extracted based on the
2D+T curvelet transform.92 It yields a spatiotemporal decom-
position that represents an extension of the temporal domain
of the 2D curvelet transform.

This novel technique is relevant for extracting nonlocal
phenomena propagating temporally and operates based on a
geometrical multiscale decomposition. As in the 2D case, a
separable 3D convolution can be factored into 1D convolu-
tion along rows, columns, and image indexes of the MRI
scans. As a result of this transform, a spatiotemporal segmen-
tation algorithm is produced. The coefficients of the 2D+T
curvelet transform contain discriminative information that
can be employed for recognizing different dynamic textures.
As in the case of 2D texture, the wavelet decomposition is
employed to build feature vectors from detail subbands. The
feature vector is composed by the average, standard deviation,
energy, and entropy of the detail subbands. By adding a dis-
crete cosine transformation to the 2D+T curvelet transform a
morphological transformation can be implemented that con-
siders also the local phenomena. Thus, the geometry of the
dynamic texture can be additionally captured. This novel des-
criptorcould sufficiently represent the dynamical properties of
the temporal texture characterizing the heterogeneous behav-
ior of diagnostically challenging lesions.

A possible CAD system for multiparametric breast MR
images is shown in Fig. 5. Key components should be: spatio-
temporal descriptors and tensor fields for the evaluation of
diagnostically challenging lesions from multiparametric 3T
images, thus increasing specificity without compromising the
sensitivity of DCE-MRI.

CAD in Neoadjuvant Chemotherapy
Neoadjuvant chemotherapy (NAC) is the standard of care
and is widely used in patients with locally advanced breast
cancer, offering several advantages, such as reduction of
tumor and enabling breast-conservation surgery instead of
mastectomy as well as response-guided NAC approaches. In
patients undergoing NAC for breast cancer the achievement
of a pathological complete response (pCR) is associated with
a significantly improved disease-free and overall survival.
However, a pCR is achieved in only 30% of the patients after
the completion of NAC and clinical studies have shown that
the therapeutic outcome can be improved after treatment
modifications during NAC. Predicting the pathological
response after NAC in breast cancer patients is crucial and
quantitative computerized methods represent an important
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step towards an accurate and effective breast cancer treatment.
The first study assessing the role of an automatic CAD system
in DCE-MRI predicting the pathological response to NAC
has been described.93

Tumor response is monitored in the latest clinical studies
with PET/MRI. These techniques vary a lot in the performance
of NAC response monitoring of different breast cancer types
and the combined use of PET and MRI has been shown to
have a complementary value94,95; however, there is still room
for improvement. The success of therapeutics in breast cancer
could be improved based on developing novel distinctive and
consistent imaging parameters extracted from a combined use
of PET and MRI that are tailored for enhancing the pCR after
NAC and validating them in a CAD scheme. Such a possible
CAD scheme is shown in Fig. 6.

Several ML techniques were applied for NAC, mostly
for breast masses. A CAD scheme based on a Bayesian classi-
fier93 used DCE-MRI data and extracted texture features
from an automatically segmented 3D mask of the tumor and
predicted pathological response to NAC. A similar method
based on radiomics was employed.96 A Gaussian SVM
processing quantitative kinetic and texture-based image fea-
tures from MR images for NAC has been proposed.48 An
SVM was also applied for NAC.97,98 An ANN processes a
new clinical marker based on quantitative kinetic image fea-
tures analysis and assessing its feasibility for NAC was pres-
ented.49 Fuzzy c-means clustering was employed for NAC in
connection with level set segmentation.60

DL methods have been applied to automatically score
HER2, a biomarker that determines the patients who are eli-
gible for anti-HER2 targeted therapies.99 That study shows
that DL is able to identify cases that are most likely misdi-
agnosed in the traditional clinical decision-making. An impor-
tant application of DL applied to NAC when analyzing
different contrast timepoints has been shown100: they applied
CNNs to extract features from DCE-MRI and determined
that the image acquired before contrast injection was the
most effective at predicting response to therapy, with perfor-
mance moderately increasing when including also images
acquired after contrast injection.

Breast Cancer Radiomics
In the past 3 years, a novel computational approach—radio-
mics—is emerging to represent oncological tissues based on
quantitative descriptors.47 Currently, in computational radiol-
ogy there are two concurrent research lines: radiomics and
artificial intelligence (AI). Radiomics is the ML-based
approach of extracting handcrafted features descriptive of a
tumor, while AI employs DL techniques and works directly
with the medical images.

Radiomics represents a novel approach to achieve a
detailed quantification of the tumor phenotypes by analyzing
a large number of image descriptors. It has been hypothesized
that a large number of radiomic features tremendously
increase the diagnostic, prognostic, and predictive power.
With the increasing importance of “personalized medicine,”

FIGURE 5: CAD system for multiparametric breast MR images.

FIGURE 6: CAD system for NAC.
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new treatment strategies are being sought to respond to the
specific characteristics of each patient and cancer phenotype.
So far, personalized medicine is centered around molecular
characteristics with genomics and proteomics data analysis. In
Hoffman et al,101 a quantitative radiomics approach was
applied based on shape, texture, and kinetics tumor features
and was evaluated in comparison with a reduced-order feature
approach in a CAD system applied to diagnostically challeng-
ing lesions.

The potential of radiomics as a training-independent
diagnostic decision tool has been shown.102 The radiomics
classifiers performed well in the differentiation of malignant
and benign lesion; however, their performance was lower than
that of an experienced radiologist. Prasanna et al introduced a
new radiomics descriptor, the Co-occurrence of Local Aniso-
tropic Gradient Orientations (CoLlAGe).103 It is able to dis-
tinguish benign and pathologic phenotypes when they appear
similar to each other on anatomic imaging. This new descrip-
tor can capture their local entropy patterns and thus reflect
hidden local differences in the tissue microarchitecture.

A comparison between DL and radiomics was per-
formed104,105 and a fusion between DL and CNN-extracted
features.106 The benefit of including multiple radiomic fea-
tures, automatically extracted, in a lesion signature signifi-
cantly improved the ability to distinguish between benign
lesions and luminal A breast cancers, compared to using max-
imum linear size alone.107 The diagnostic accuracy was evalu-
ated108 using ROI-based, radiomics, and DL methods, by
taking peritumor tissue into consideration. A few studies are
employing the radiomics approach in connection with multi-
parametric breast images for NAC prediction.90,109 The only
large study including NME lesions was presented in Ref.
110. The specifics of this study are described in Table 4.

Standardization and Repeatibility in Breast
DCE-MRI
Advanced breast imaging techniques such as DCE-MRI and
DWI are complex and highly adjustable procedures. The differ-
ence in hardware and software implemented by different ven-
dors can produce noticeable differences in image quality and
appearance. In addition, acquisition protocols vary across and
within studies, vendors, and acquisition centers, and may
include different spatiotemporal resolutions, contrast agents, or
imaging parameters (TR, TE, fat suppression, etc.).

Postprocessing, including delineation and segmentation of the
tumoral area, may further complicate this picture. ML models
rely on quantitative features, either hand-engineered or learned
by CNNs, which may be heavily affected by such changes.
Since collecting data for all possible acquisition protocols is
unfeasible, these aspects need to be carefully considered in the
design, training, and validation of ML models. The problem of
how to design robust ML models that can generalize to multi-
ple settings is still, in many ways, an open research question.

There are two main approaches in order to build ML
models robust to acquisition parameters: image standardiza-
tion/harmonization and more robust feature extraction/selec-
tion. Besides working alongside vendors to standardize image
acquisition, a laudable but notoriously difficult quest, image
or feature harmonization may be more feasible. Feature har-
monization was demonstrated to significantly improve benign
vs. malignant lesion classification in an DCE-MRI dataset
acquired from multiple international institutions.111 The har-
monization was applied separately within features categories,
that is, morphology, texture, and kinetics, by aligning the dis-
tribution of features from multiple centers, after adjusting for
covariates. Still, a large dataset including more than 1000 can-
cer cases per institution was available, which may be
unfeasible to collect for lesion subtypes such as NME.

Another line of research analyzes repeatability and repro-
ducibility of individual features in order to select those features
that guarantee a higher reproducibility.112 In a systematic litera-
ture review published in 2018, this aspect was extensively inves-
tigated for imaging modalities such as CT and PET, whereas
only study was available for MRI.112 Indeed, MRI involves
larger variability in imaging parameters and requires extending
the analysis to temporal as well as spatial features. A recent
study analyzed the effect of acquisition parameters (specifically,
scanner model, magnetic field strength, and slice thickness) on
features related to lesion and fibroglandular tissue morphology,
texture, and enhancement.113 The authors found that these fea-
tures have a significant effect on the extracted radiomics/radio-
genomic features; however, those extracted from fibroglandular
tissue are more susceptible to image parameters than those
extracted from the tumor area, which is encouraging, as the lat-
ter are of higher clinical interest. However, more studies are
needed to cover a wider range of imaging parameters and fea-
tures. Another important issue to be settled is whether CNN-
based features are more robust than hand-engineered features to
such variations.

Discussion
This systematic review aimed to give an overview of the cur-
rently available methodology and applications of ML-based
CAD systems for diagnostically challenging lesions in MRI of
the breast. ML techniques have been successfully applied in
medical image processing. Over the past decades, we have

TABLE 4. CAD Based on Tumor Radiomics-Extracted
Features

ML
technique

Evaluation
results

Used
dataset References

SVM AUC = 0.9 509
patients

110
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witnessed the transition of ML techniques from feature
extraction from medical images to working directly with the
raw images, as enabled by newer models such as CNNs.

To date, applications of state-of-the-art CAD systems
are based on established feature engineering and enhancement
curves extraction from DCE-MRI; these techniques have
proven to be valuable tools for the detection and diagnosis in
clinical praxis. Radiologists can benefit from such ML-based
CAD systems, resulting in reduced interobserver variability
and improved interpretation of breast imaging for the pres-
ence or absence of breast cancer.

Future directions for research and development aim to
develop ML-based CAD systems not only for diagnostic but
also predictive and prognostic purposes, by including other
MRI methods such as T2-weighted or DW sequences or
hybrid (PET/MRI) techniques, as well as extracted quantita-
tive radiomics features. Such advanced multiparametric ML-
based CAD systems are expected to further improve not only
diagnostic accuracy for challenging lesions but also provide
predictive and prognostic indicators for breast cancer. It has
to be noted that, despite encouraging results, we are still at
the dawn of a widespread implementation of ML-based CAD
systems in breast MRI. To date, studies have been mainly ret-
rospective, single-institution, using different equipment, scan
protocols, sequence parameters, and postprocessing steps, and
have included relatively small numbers of patients, which
limits the statistical power of the studies and may compro-
mise the generalizability of the results. Rigorous standardiza-
tion of MRI hardware and software, quantitative MRI
techniques, and multicenter large-scale studies are needed to
build and validate robust machine-learning models that are
applicable across patients and institutions to provide clinical
value.
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