1,574 research outputs found

    A metacognitive feedback scaffolding system for pedagogical apprenticeship

    Get PDF
    This thesis addresses the issue of how to help staff in Universities learn to give feedback with the main focus on helping teaching assistants (TAs) learn to give feedback while marking programming assignments. The result is an innovative approach which has been implemented in a novel computer support system called McFeSPA. The design of McFeSPA is based on an extensive review of the research literature on feedback. McFeSPA has been developed based on relevant work in educational psychology and Artificial Intelligence in EDucation (AIED) e.g. scaffolding the learner, ideas about andragogy, feedback patterns, research into the nature and quality of feedback and cognitive apprenticeship. McFeSPA draws on work on feedback patterns that have been proposed within the Pedagogical Patterns Project (PPP) to provide guidance on structuring the feedback report given to the student by the TA. The design also draws on the notion of andragogy to support the TA. McFeSPA is the first Intelligent Tutoring System (ITS) that supports adults learning to help students by giving quality feedback. The approach taken is more than a synthesis of these key ideas: the scaffolding framework has been implemented both for the domain of programming and the feedback domain itself; the programming domain has been structured for training TAs to give better feedback and as a framework for the analysis of students’ performance. The construction of feedback was validated by a small group of TAs. The TAs employed McFeSPA in a realistic situation that was supported by McFeSPA which uses scaffolding to support the TA and then fade. The approach to helping TAs become better feedback givers, which is instantiated in McFeSPA, has been validated through an experimental study with a small group of TAs using a triangulation approach. We found that our participants learned differently by using McFeSPA. The evaluation indicates that 1) providing content scaffolding (i.e. detailed feedback about the content using contingent hints) in McFeSPA can help almost all TAs increase their knowledge/understanding of the issues of learning to give feedback; 2) providing metacognitive scaffolding (i.e. each level of detailed feedback in contingent hint, this can also be general pop-up messages in using the system apart from feedback that encourage the participants to give good feedback) in McFeSPA helped all TAs reflect on/rethink their skills in giving feedback; and 3) when the TAs obtained knowledge about giving quality feedback, providing adaptable fading of TAs using McFeSPA allowed the TAs to learn alone without any support

    Instructional Scaffolding in STEM Education: Strategies and Efficacy Evidence

    Get PDF
    science education; educational technology; learning and instructio

    Learning programming via worked-examples: the effects of cognitive load and learning styles

    Get PDF
    This research explored strategies for learning programming via worked-examples that promote schema acquisition and transfer. However, learning style is a factor in how much learners are willing to expend serious effort on understanding worked-examples, with active learners tending to be more impatient of them than reflective learners. It was hypothesised that these two learning styles might also interact with learners’ cognitive load. The research proposed a worked-example format, called a Paired-method strategy that combines a Structure-emphasising strategy with a Completion strategy. An experiment was conducted to compare the effects of the three worked-examples strategies on cognitive load measures and on learning performance. The experiment also examined the degree to which individual learning style influenced the learning process and performance. Overall, the results of the experiment were inconsistent. In comparing the effects of the three strategies, there were significant differences in reported difficulty and effort during the learning phase, with difficulty but not effort in favour of the Completion strategy. However no significant differences were detected in reported mental effort during the post-tests in the transfer phase. This was also the case for the performance on the post-tests. Concerning efficiency measures, the results revealed significant differences between the three strategy groups in terms of the learning process and task involvement, with the learning process in favour of the Completion strategy. Unexpectedly, no significant differences were observed in learning outcome efficiencies. Despite this, there was a trend in the data that suggested a partial reversal effect for the Completion strategy. Moreover, the results partially replicated earlier findings on the explanation effect. In comparing the effects of the two learning styles, there were no significant differences between active and reflective learners in the three strategy groups on cognitive load measures and on learning performance (nor between reflective learners in the Paired-method strategy and the other strategies). Finally, concerning efficiency measures, there was a significant difference between active learners in the three strategy groups on task involvement. Despite all these, effect sizes ranging from a medium to large suggested that learning styles might have interacted with learners’ cognitive load

    Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications

    Full text link
    In this work a physical modelling framework is presented, describing the intelligent, non-local, and anisotropic behaviour of pedestrians. Its phenomenological basics and constitutive elements are detailed, and a qualitative analysis is provided. Within this common framework, two first-order mathematical models, along with related numerical solution techniques, are derived. The models are oriented to specific real world applications: a one-dimensional model of crowd-structure interaction in footbridges and a two-dimensional model of pedestrian flow in an underground station with several obstacles and exits. The noticeable heterogeneity of the applications demonstrates the significance of the physical framework and its versatility in addressing different engineering problems. The results of the simulations point out the key role played by the physiological and psychological features of human perception on the overall crowd dynamics.Comment: 26 pages, 17 figure

    A Cybernetic Perspective on Escalation: Lessons from the Volkswagen Emissions Scandal

    Get PDF
    This paper examines how and why initially well-intentioned organizations can find themselves ethically adrift. Drawing on a qualitative analysis of the Volkswagen emissions scandal, we investigate what planted the seed of deception, why the company’s deceptive behavior changed from one stage to the next, and which factors catalyzed these shifts. Furthermore, we scrutinize the management’s response to the disclosure of their misconduct. We employ a cybernetic perspective, envisioning the dynamics of deception as a multi-stage, goal-directed process, in which shifts in behavior are driven by a need to resolve discrepancies between past and anticipated future states. Our analysis reveals two dominant dysfunctional feedback loops underlying the company’s ethical descent. We conclude by discussing the theoretical implications of this case study and derive propositions about the emergence of such dysfunctional feedback loops, as well as strategies that may help to de-escalate such situations by strengthening ethical feedback loops

    Scaffolding in Technology-Enhanced Science Education

    Get PDF
    This dissertation focuses on the effectiveness of scaffolding in technology-enhanced science learning environments, and specifically the relative merits of computer- and teacher-based scaffolding in science inquiry. Scaffolding is an instructional support that helps learners solve problems, carry out tasks, or achieve goals that they are unable to accomplish on their own. Although support such as scaffolding is necessary when students engage in complex learning environments, many issues must be resolved before educators can effectively implement scaffolding in instruction. To achieve this, this dissertation includes two studies: a systematic literature review and an experimental study. The two studies attempted to reveal some important issues which are not widely recognized in the existing literature. The primary problem confronting the educator is how to determine which of the numerous kinds of scaffolding will allow them to educate students most effectively. The scaffolding forms that researchers create are often confusing, overlapping, or contradictory. In response to this, the first study critically analyzed the ways that researchers have defined and applied scaffolding, and provided suggestions for future scaffolding design and research. Moreover, studies tend to focus only on computer-based scaffolding rather than examining ways to integrate it with teacher-based instruction. Although researchers generally recognize that teacher-based support is important, research in this area is limited. The second study of this dissertation employed a quasi-experimental design with four experimental conditions, each of which include a type of computer-based procedural scaffolding (continuous vs. faded) paired with a type of teacher-based metacognitive scaffolding (early vs. late). Each class was assigned to use one of the four conditions. The findings indicated that students receiving continuous computer-based procedural and early teacher-based metacognitive scaffolding performed statistically better at learning scientific inquiry skills than other treatment groups. Students using faded computer-based procedural and early teacher-based metacognitive scaffolding showed the worst performance. However, among the four groups there existed no statistically significant difference in terms of the effect on students? ability to learn science knowledge. Moreover, teacher-based metacognitive scaffolding did not have a significant impact on either science content knowledge or scientific inquiry skills

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    A Preliminary Evaluation of the Millennial Shopping Experience: Preferences and Plateaus

    Get PDF
    This study identified and examined the concerns of hotel general managers regarding ethics in the hospitality industry. Thirty-five managers were interviewed during and immediately following the economic recession to determine which ethical issues in the hotel industry and at their own properties concerned them the most. Results showed that more people and organizations attempted to renegotiate hotel rates, which actions, in turn, led to some lapses in ethical behavior. Managers said that because of the economic downturn, they felt pressure from both private owners and corporate headquarters. They also said a lack of work ethic, low motivation, and low pay caused many workers to underperform in ways that raised ethical issues. Managers also mentioned diversity issues and theft by both guests and employees as ethical issues of concern, and shared stories about their experiences
    • …
    corecore