2,883 research outputs found

    Predictive Analysis for Cloud Infrastructure Metrics

    Get PDF
    In a cloud computing environment, enterprises have the flexibility to request resources according to their application demands. This elastic feature of cloud computing makes it an attractive option for enterprises to host their applications on the cloud. Cloud providers usually exploit this elasticity by auto-scaling the application resources for quality assurance. However, there is a setup-time delay that may take minutes between the demand for a new resource and it being prepared for utilization. This causes the static resource provisioning techniques, which request allocation of a new resource only when the application breaches a specific threshold, to be slow and inefficient for the resource allocation task. To overcome this limitation, it is important to foresee the upcoming resource demand for an application before it becomes overloaded and trigger resource allocation in advance to allow setup time for the newly allocated resource. Machine learning techniques like time-series forecasting can be leveraged to provide promising results for dynamic resource allocation. In this research project, I developed a predictive analysis model for dynamic resource provisioning for cloud infrastructure. The researched solution demonstrates that it can predict the upcoming workload for various cloud infrastructure metrics upto 4 hours in future to allow allocation of virtual machines in advance

    Burst-aware predictive autoscaling for containerized microservices

    Get PDF
    Autoscaling methods are used for cloud-hosted applications to dynamically scale the allocated resources for guaranteeing Quality-of-Service (QoS). The public-facing application serves dynamic workloads, which contain bursts and pose challenges for autoscaling methods to ensure application performance. Existing State-of-the-art autoscaling methods are burst-oblivious to determine and provision the appropriate resources. For dynamic workloads, it is hard to detect and handle bursts online for maintaining application performance. In this article, we propose a novel burst-aware autoscaling method which detects burst in dynamic workloads using workload forecasting, resource prediction, and scaling decision making while minimizing response time service-level objectives (SLO) violations. We evaluated our approach through a trace-driven simulation, using multiple synthetic and realistic bursty workloads for containerized microservices, improving performance when comparing against existing state-of-the-art autoscaling methods. Such experiments show an increase of Ă— 1.09 in total processed requests, a reduction of Ă— 5.17 for SLO violations, and an increase of Ă— 0.767 cost as compared to the baseline method.This work was partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitiveness (TIN2015-65316-P and IJCI2016-27485) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Data-Driven Methods for Data Center Operations Support

    Get PDF
    During the last decade, cloud technologies have been evolving at an impressive pace, such that we are now living in a cloud-native era where developers can leverage on an unprecedented landscape of (possibly managed) services for orchestration, compute, storage, load-balancing, monitoring, etc. The possibility to have on-demand access to a diverse set of configurable virtualized resources allows for building more elastic, flexible and highly-resilient distributed applications. Behind the scenes, cloud providers sustain the heavy burden of maintaining the underlying infrastructures, consisting in large-scale distributed systems, partitioned and replicated among many geographically dislocated data centers to guarantee scalability, robustness to failures, high availability and low latency. The larger the scale, the more cloud providers have to deal with complex interactions among the various components, such that monitoring, diagnosing and troubleshooting issues become incredibly daunting tasks. To keep up with these challenges, development and operations practices have undergone significant transformations, especially in terms of improving the automations that make releasing new software, and responding to unforeseen issues, faster and sustainable at scale. The resulting paradigm is nowadays referred to as DevOps. However, while such automations can be very sophisticated, traditional DevOps practices fundamentally rely on reactive mechanisms, that typically require careful manual tuning and supervision from human experts. To minimize the risk of outages—and the related costs—it is crucial to provide DevOps teams with suitable tools that can enable a proactive approach to data center operations. This work presents a comprehensive data-driven framework to address the most relevant problems that can be experienced in large-scale distributed cloud infrastructures. These environments are indeed characterized by a very large availability of diverse data, collected at each level of the stack, such as: time-series (e.g., physical host measurements, virtual machine or container metrics, networking components logs, application KPIs); graphs (e.g., network topologies, fault graphs reporting dependencies among hardware and software components, performance issues propagation networks); and text (e.g., source code, system logs, version control system history, code review feedbacks). Such data are also typically updated with relatively high frequency, and subject to distribution drifts caused by continuous configuration changes to the underlying infrastructure. In such a highly dynamic scenario, traditional model-driven approaches alone may be inadequate at capturing the complexity of the interactions among system components. DevOps teams would certainly benefit from having robust data-driven methods to support their decisions based on historical information. For instance, effective anomaly detection capabilities may also help in conducting more precise and efficient root-cause analysis. Also, leveraging on accurate forecasting and intelligent control strategies would improve resource management. Given their ability to deal with high-dimensional, complex data, Deep Learning-based methods are the most straightforward option for the realization of the aforementioned support tools. On the other hand, because of their complexity, this kind of models often requires huge processing power, and suitable hardware, to be operated effectively at scale. These aspects must be carefully addressed when applying such methods in the context of data center operations. Automated operations approaches must be dependable and cost-efficient, not to degrade the services they are built to improve. i

    RHAS: robust hybrid auto-scaling for web applications in cloud computing

    Get PDF

    A Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using Heterogeneous Spot Instances

    Full text link
    Cloud providers sell their idle capacity on markets through an auction-like mechanism to increase their return on investment. The instances sold in this way are called spot instances. In spite that spot instances are usually 90% cheaper than on-demand instances, they can be terminated by provider when their bidding prices are lower than market prices. Thus, they are largely used to provision fault-tolerant applications only. In this paper, we explore how to utilize spot instances to provision web applications, which are usually considered availability-critical. The idea is to take advantage of differences in price among various types of spot instances to reach both high availability and significant cost saving. We first propose a fault-tolerant model for web applications provisioned by spot instances. Based on that, we devise novel auto-scaling polices for hourly billed cloud markets. We implemented the proposed model and policies both on a simulation testbed for repeatable validation and Amazon EC2. The experiments on the simulation testbed and the real platform against the benchmarks show that the proposed approach can greatly reduce resource cost and still achieve satisfactory Quality of Service (QoS) in terms of response time and availability
    • …
    corecore