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ABSTRACT

Predictive Analysis for Cloud Infrastructure Metrics

by Paridhi Agrawal

In a cloud computing environment, enterprises have the flexibility to request

resources according to their application demands. This elastic feature of cloud

computing makes it an attractive option for enterprises to host their applications

on the cloud. Cloud providers usually exploit this elasticity by auto-scaling the

application resources for quality assurance. However, there is a setup-time delay that

may take minutes between the demand for a new resource and it being prepared for

utilization. This causes the static resource provisioning techniques, which request

allocation of a new resource only when the application breaches a specific threshold,

to be slow and inefficient for the resource allocation task. To overcome this limitation,

it is important to foresee the upcoming resource demand for an application before it

becomes overloaded and trigger resource allocation in advance to allow setup time for

the newly allocated resource. Machine learning techniques like time-series forecasting

can be leveraged to provide promising results for dynamic resource allocation.

In this research project, I developed a predictive analysis model for dynamic

resource provisioning for cloud infrastructure. The researched solution demonstrates

that it can predict the upcoming workload for various cloud infrastructure metrics

upto 4 hours in future to allow allocation of virtual machines in advance.

Keyword - Cloud computing, time-series analytics, resource allocation.
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CHAPTER 1

Introduction

Legacy applications are increasingly migrating to the cloud for higher reachability

and availability to their clients. Cloud computing is a form of virtualization that

allows provisioning of on-demand resources to the client by allocating a network

of remote servers hosted on the internet. In order to host an application on the

cloud, services like elastic load balancers, storage, and servers are made available on

a pay-as-you-go manner by cloud-providers such as Amazon through Amazon Web

Services (AWS) [1].

As these applications are usually tied with a service level agreement (SLA) between

the enterprise user and cloud provider, in order to assure the quality of service (QoS),

the cloud provider has to perform resource provisioning, which is the process of

allocating resources on the internet to the cloud hosted application [2] [3] . Resources

can be automatically allocated during periods of high demand, and de-allocated during

periods of low demand. Resource provisioning based only on SLA defined thresholds

tends to be slow and inefficient. Hence, a need for pro-active/dynamic resource

provisioning has arisen in the cloud industry.

Over the years, the resource provisioning systems have been developed in a

reactive manner, i.e., they fulfill the threshold as per the SLA(s) defined between the

enterprise and the cloud-provider. Such an approach is reactive, i.e., the resource

allocation is triggered once the defined threshold is breached and often the time to

react is insufficient. The setup time caused by the cloud-provider can be hazardous

for the enterprise’s business. These drawbacks motivate to research in alternative

methodologies like dynamic/pro-active resource provisioning which can take advantage

of time-series forecasting machine learning techniques to predict resource allocation

1



well in advance and avoid shortages.

Pro-active resource allocation can help prevent SLA breaches and enable cloud

service providers to forecast their customer needs in advance. This technique enables

them to trigger resource allocation ahead of time. It can also ensure higher uptime for

the service.

The project aims at experimenting with time-series forecasting techniques to

develop a machine learning model to make prediction about when to up-scale/down-

scale the resources; in turn, these improved predictions enable the cloud provider

to comply with the defined SLAs and avoid QoS breaches by triggering resource

provisioning in a predictive manner. This project also aims to compare studies on

resource provisioning methods implemented in the cloud industry. This project tries

to answer the following questions:

• Can machine learning technique be used to predict future resource needs?

• What machine learning technique can best solve the problem of when to provi-

sion?

• What are the key features of the cloud metrics that can contribute to a predictive

model?

This paper is organized as follows: Chapter 2 provides background about resource

provisioning in the cloud, related challenges, and the motivation for this project. It

also highlights attempts that have been made to enable resource provisioning. Chapter

3 discusses some of the machine learning techniques used to develop predictive analytic

models for dynamic resource provisioning. Chapter 4 explains the implementation

overview for this research. Chapter 5 covers experimental results on various cloud

metrics and multiple time series. Chapter 6 contains the conclusions and future scope

of the project. The articles selected for this project include thesis projects, published

papers, and articles in the field of cloud resource provisioning.

2



CHAPTER 2

Background and Related Work

2.1 Resource provisioning in cloud computing

Infrastructure as a Service (IaaS) is a trending field in the cloud computing indus-

try. One of the biggest challenges that IaaS has to overcome is resource management.

A survey by Guruprasad et al. [4] describes resource provisioning in cloud computing

as a process of selection, deployment and run-time administration of software(e.g.

databases, loadbalancers and so forth) and hardware resources(e.g. CPU, storage, net-

work, and servers) for guaranteeing ensured performance of the application. Inefficient

resource provisioning can starve the application of resources and lead to degraded

QoS and violation of the defined SLAs [3].

2.2 Challenges in resource provisioning

In a cloud environment, various applications run with varying workload patterns.

Many challenges can be faced when dealing with an application that experiences

fluctuating resource demands. A few of these challenges are highlighted below:

1. Setup-time for resource allocation: Cloud environment scaling leads to

acquiring or releasing resources as the workload for the application changes.

If resource provisioning is done every time the system load changes, it will

cause an overhead to boot or turn-off a acquired resources with every workload

change. This attaches a setup-time for resource allocation, i.e, the time taken

by a resource to be ready. Latency can also be added when the resources are

shut-off. On an average, scaling latency time is between 5 and 10 minutes. Due

to this wasteful latency time, it is necessary that we predict the future workload

and effective provisioning decisions are made as fast as possible to allocate the

resources a priori [5] [6].

3



2. Cost optimization: It is difficult for cloud providers to fulfill SLAs while

minimizing costs. This is mainly due to the fluctuating resource demands.

Cloud providers incur less resource cost when resources are under provisioned

as less resources are allocated. But, this may lead to SLA violations due to poor

performance. On the other hand, if resources are over-provisioned, the cloud

providers and the enterprise users both experience high resource costs. Thus

optimizing cost is challenging in cloud environment. [5]

3. Resource optimization: A cloud application can be used by many users and

for a varying amount of time. The workload on an applications depends on the

number of users requesting the application and the types of calls they make to

the application. Thus, it is essential to understand the incoming load in order

to make effective decisions about the type of resources that can best fulfill the

incoming requests. This is challenging as it requires comprehending the nature

of customer requests.

2.3 Resource provisioning techniques

Resource provisioning can be classified into two categories:

• Reactive resource provisioning

• Pro-active resource provisioning

Details on resource provisioning by the above methods are expanded in subsec-

tion 2.3.1 and 2.3.2.

2.3.1 Reactive resource provisioning

Currently, most of the cloud providers use reactive resource provisioning mecha-

nisms for resource allocation to their users [7]. However, such an approach is useful

only for applications that have unchanging or predictable workload/demands. In

this environment, the cloud user decides the required resource demands/threshold as

4



Figure 1: Customer load on FIFA website during world cup 1998.

per the SLA requirements [8]. For instance, Figure 1 depicts the workload on FIFA

website during the soccer world cup of 1998 [9]. It can be observed that the workload

is fluctuating depending on the number of users requesting the website. This trend

is observed in various commercial websites and is typical in a cloud environment. If

thresholds are selected based on average load as seen in Figure 1, the cost incurred

for the acquired resources would be less(under-provision). But as the load increases,

this will result in bad performance of the application. This can cause degraded QoS

and lead to SLA violations. On the other hand, if thresholds are selected on the basis

of peak load, then the performance is not affected during peak loads but most of the

resources would sit idle and will be underused for few time intervals. This makes it

ineffective, as it leads to excess resource allocation during low demand periods as well.

Both the cloud provider and the enterprise user bear the cost for the excess resources

provisioned. [10] [5]. The cloud providers try to provide the maximum/best-effort

resources, thereby preventing SLA violations.

Several researchers have proposed various methods to achieve reactive resource

provisioning.
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Vecchiola et al. [11] proposed a deadline-driven provisioning system for scientific

applications with large computational requirements. This method was designed to

reduce the application execution time as the static variable and efficiently solved the

resource allocation problem. On the contrary, the scope of this approach did not scale

well and it was not suitable for data-intensive applications [4].

Enhancing the above method, a paper by Li et al. [12] proposed an optimal

solution to resource allocation. This paper introduced a third-party Software as a

Service (SaaS) provider that interacted with SaaS user and cloud provider. Their

solution was targeted to accomplish two goals:

1. Maximize the throughput for the user with a limited budget and strict deadline

and ensure QoS.

2. Maximize the profit for the cloud provider without exceeding the higher power

consumption bounds for provisioning virtual machines (VM).

Both of the above approaches are reactive and did not scrutinize the setup-

time for the newly allocated resources by the cloud provider to integrate with the

existing infrastructure. Thus, the reactive resource provisioning mechanism could not

complement the speed of workload changes in a cloud infrastructure environment.

2.3.2 Pro-active resource provisioning

Due to the dynamic nature of cloud applications, the resources must be dynami-

cally allocated in correspondence to the rapid change in the workload. The pro-active

resource provisioning method is useful where the workload of the application is less

predictable. This method overcomes the limitations of reactive resource provisioning

by allocating resources when needed and de-allocating them when they are not needed.

According to the prediction results of this method, cloud providers can allocate suffi-

6



cient resources to the application at the appropriate time with guaranteed QoS and

no SLA violations.

Figure 2: Twitter workload on Obama’s inaugural day.

This approach is more challenging as there is a need to determine the future

demand/load forecasting for an application. For instance, Figure 2 shows workload

on Twitter’s web-servers on Obama’s Inaugural Day [13]. The dramatic variations in

the workloads leads to complicated resource usage patterns that are harder to predict.

In the cloud, applications can also be co-hosted. In this situation, they will complete

for shared resources and are likely to encounter load fluctuation. Also, sometimes due

to the security benchmarks set by the enterprise customer, cloud providers cannot

leverage internal characteristics of applications like recurring resource usage to be

prepared for periodic load demands [14]. It is essential that resource utilization

predictions are accurate.

Balaji et al. [15] performed a comparative study on predictive models for cloud

infrastructure management. In their comparison, various dynamic resource provision-

7



ing methods were compared and some of the limitations were exposed. Most of the

recent research in dynamic resource provisioning is done with load balancing and

scheduling mechanism. Hu et al. [7] found that these solutions are not very adaptive

and heterogeneous towards the workload.

2.3.2.1 Dynamic provisioning using load balancing & scheduling tech-
niques

Fernandez et al. [2] proposed a system that consists of a scheduler, profiler, and

predictor module. The profiler acts like an analyzer of the application workload and

the scheduler helps in allocating resources to high priority tasks. The scope for the

predictor was limited in this paper. This approach proved to efficiently answers the

question ‘‘when to provision?’’ but assumed similar behavior for all resources in the

cloud infrastructure.

In contrast to the above approach, Bunch et al. [16] proposed a system that

allocates VMs to the user based on the characteristics of the job to be executed. This

approach helped to balance the load on the resources and improve system performance.

The decision to allocate a VM is made on the fly according to the incoming job and

the requires QoS. This approach is not practical for medium to large applications.

On a broader scope, these methods outperform reactive methods but are limited by

the type of resource that is being allocated. These approaches fail to take advantage of

the information that can be attained by taking a closer look at the historical behavior

of the application. Thus, investigating machine learning techniques for pro-active

provisioning can lead to a more adaptive and generic solution to resource provisioning.

2.3.2.2 Dynamic resource provisioning with machine learning techniques

The previous research done in this area is limited and has not been explored

completely. Early contributions to the research support the key goal of developing

8



an adaptive resource provisioning system that regards the diversity of the cloud

application. In order to form accurate predictions about the application workload, it

is useful to consider machine learning techniques as they can help in discovering the

hidden pattern in the resource demands for a given application [17].

Keung et al. [10] apply machine learning techniques like artificial neural network

(ANN) and linear regression for prediction of required resources by the applications.

Their proposed technique was able to react to future demand variations prior to their

occurrence. The combination of the machine learning techniques was focused on

identifying the connection between application QoS target and current cloud resources.

It was able to adapt to the changes in workload pattern to alter resource provision

dynamically.
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CHAPTER 3

Technical Approach

For an AWS cloud hosted application to run reliably, it needs to be monitored

constantly to check various metrics like CPU utilization, memory utilization, traffic

and other key application program interface (API) metrics. CloudWatch is an AWS

supported tool that monitors such metrics for an AWS hosted service on an hourly

basis and retains these logs up-to 15 days . With the help of such metrics, a pro-active

resource provisioning system can be developed to predict the upcoming workload on

the application or to predict the upcoming resource demands.

In this project, this prediction task is considered as a time-series prediction problem

and machine learning techniques like Moving Average (MA), Auto-Regression (AR),

and Auto-Regressive Integrated Moving Average (ARIMA) [18], which are forecasting

techniques to predict future values in a time series susceptible to seasonality, are

applied on application metrics to make resource workload predictions. This information

can be used to make provisioning decisions.

3.1 Dataset

In order to develop the predictive model, real-time workload data is required. The

dataset used in this literature was developed by collecting monitored metrics for Au-

todesk Inc., which is a software corporation that develops software used in construction,

media, education and entertainment industries, cloud hosted applications [19].

The following two applications were part of the dataset for this project:

• AutoCAD mechanical (ACM): ACM toolset is an add on for AutoCAD

software, which is mechanical engineering design software. It is used to speedup

the mechanical computer aided design (CAD) process within AutoCAD [20].

For this application, CPU utilization metrics was monitored daily and collected

10



every hour over a period of 60 days. This dataset is the collected for the cluster

and is the average % CPU utilization over 1 hour for the cluster. The type

of requests to the cluster are same over 60 days. The peaks observed in the

dataset is across all the nodes in the cluster and hence was probably caused by

a background dependency for the cluster.

• Object Storage Service (OSS): OSS is cloud storage service useful in storing,

retrieving application data for a construction app. It allows various file formats

like AutoCAD file format, images and media, etc [21]. This application has three

AWS accounts, namely, OSS-web, OSS-upload, and OSS-download. To develop

the dataset, all three accounts were monitored for average % cpu-utilization,

network-in, network-out for the cluster. The latency in milliseconds(sum over

1 hour) and traffic (request per minute, sum value every hour) metrics for the

instance were collected daily for 60 days.

These collected metrics are essentially time-series data. The next section discusses

the machine learning techniques applied on this dataset to find pattern and anomalies

within the series.

3.2 Machine Learning techniques for workload prediction

In order to predict incoming workload, it is essential to analyze historical data and

inspect patterns within. Since the collected metrics is a temporal dataset, time-series

analysis and forecasting can be performed on them.

3.2.1 Time series

A simple time series can be represented as a series of observations over uniform

time intervals, such as 𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡, where 𝑥 is the observation at time interval t.

The problem statement for this research is to predict 𝑥𝑡+1 value for the given resource

metric. The prediction of 𝑥𝑡+1 is based on the measured series 𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡 up-to time
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𝑡. For example, in case of CPU utilization metrics, the aim is to forecast the CPU

utilization in the next time interval.

There are three main characteristics of in a time series:

• Trend: Trend refers to an upward or downward movement in a series over a

period of time. When the time-series analysis 3.2.2 displays an upward movement,

it is called an upward trend. Downward trend is the opposite of upward trend.

When the is no trend in the series, it is said to have a stationary or horizontal

trend. Figure 3 shows that the workload trace on Wikipedia is periodical and

follows a stationary trend after every 24 hours. This trace is picked randomly

from traces available at WikiBench [22], which is a web hosting benchmark [23].

Figure 3: Wikipedia workload during a week

• Seasonality: Seasonality is repeating pattern within a fixed time period. Fig-

ure 1 depicts the a seasonal trend of users on FIFA website, depending on the

time of the day.

• Noise: This contributes to irregular patterns observed in the time series that

last for a short duration. Figure 2 is an example of irregular time series, where
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Twitter web-servers experiences a sudden outburst of requests. Such patterns

are hard to predict as they happen erratically.

3.2.2 Time-series analysis

Time-series analysis (TSA) includes strategies for investigating time series data,

so as to extricate significant statistics and other features of the data. In time-series

forecasting, it is necessary to examine a given data prior to applying any forecasting

techniques on it.

The purpose of this analysis is to identify trends and seasonality in the time series

data. In this section, a few of these techniques are discussed that are critical to the

experiments.

• Stationarity Test: For any time series forecasting technique to work well, it

needs a time series that is stationary over time [6]. A time series is said to be

stationary if its statistical properties like mean and variance remain constant

over time [24]. This can be analyzed by using the techniques listed below:

1. Rolling statistics plot- This is visual analysis on the given time-series.

We plot the rolling variance and rolling average and verify if they vary

over time. A visual sample for this technique is represented in Figure 4.

As seen in the figure, the given series has varying mean and variance over

time, thus it is a non-stationary series.

2. Augmented Dickey-Fuller Test: This is a statistical analysis test to

check for stationarity. A time series can be denoted as

𝑦𝑡 = 𝑎 * 𝑦𝑡−1 + 𝜀𝑡

where 𝑦𝑡 is the observation at time 𝑡 and 𝜀𝑡 is the error term. Similarly

𝑦𝑡−1 can be denoted as 𝑦𝑡−1 = 𝑎 * 𝑦𝑡−2 + 𝜀𝑡−1 and so on. If the series has a
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Figure 4: Rolling statistics plot against original time series.

unit root, i.e 𝑎 = 1, then the series is non-stationary. For example, if we

assume 𝑎 = 1 and 𝑦0 = 0, then

𝑦𝑡 = 𝑦0 +
𝑡∑︁

𝑖=1

𝜀𝑖

𝑦𝑡 is a sum of all the errors up-to 𝑡 and 𝑦0 and the series becomes a

non-stationary, as the variance for 𝑦𝑡 is

𝑉 𝑎𝑟(𝑦𝑡) =
𝑡∑︁

𝑖=1

𝜎2 = 𝑡𝜎2

which varies over time 𝑡. This is the test for Null Hypothesis [25]. In ADF,

we say a series is non-stationary if we fail to reject the null hypothesis. In

Figure 5: Test sample of ADF test

this research, statsmodels.tsa.stattools Python libraries is used to implement
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ADF. A sample result is shown in Figure 5. If the ‘Test statistic’ signed

value is lower than signed ‘Critical values’, then the series is said to be

stationary.

3. KPSS (Kwiatkowski-Phillips-Schmidt-Shin) Test: KPSS is also a

technique to determine stationarity. This test compliments ADF, as pres-

ence of null hypothesis is considered a stationary series. KPSS defines the

null hypothesis as trend stationary, to an alternate hypothesis of a unit

root series [26]. In this research, statsmodels.tsa.stattools Python libraries

is used to implement KPSS. A sample result is shown in Figure 6. If the

‘Test statistic’ signed value is lower than signed ‘Critical values’, then the

series is said to be stationary.

Figure 6: Test sample of KPSS test

4. Decomposing: This method is used to decompose a given time series

to identify trends and seasonality patterns in the data. There are two

decomposing techniques:

(a) Additive model: This considers a time series 𝑦𝑡 as:

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝐸𝑡
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where 𝑆𝑡 is the seasonality component, 𝑇𝑡 is the trend component, and

𝐸𝑡 is the noise component, in a series at time 𝑡

(b) Multiplicative model: This model suggests a non-linear model with

increasing or decreasing changes over time. Therefore, 𝑦𝑡 series is a

multiplication of individual components.

𝑦𝑡 = 𝑆𝑡 * 𝑇𝑡 * 𝐸𝑡

Figure 7: Sample of Time-series decomposition on ACM workload

The statsmodels library in Python, provides implementation of decomposi-

tion. A sample output from this method is shown in Figure 7.
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• Techniques to stationarize time series: The following techniques cans be

used to make a time series stationary:

1. Differencing: Given a non-stationary series, we will ‘‘differentiate’’ the

data until the series becomes stationary. Differencing is done by replacing

each value in time series 𝑦𝑡 as a difference of it’s previous term, i.e,

𝑦𝑑𝑡 = 𝑦𝑡 − 𝑦𝑡−1

The number of times differencing is needed is called the ‘‘order of differ-

encing, 𝑑’’. This technique helps in removing both trend and seasonality

patterns in the series. A sample of differencing effect can be seen in Figure 8.

(a) Non stationary time series (b) 1-order Differenced time series

Figure 8: Example of Differencing.

2. Transform: The simplest way to overcome trend patterns in a series is

to apply transformation techniques like taking log, cube root, square root,

etc [24]. Other transformation techniques involve smoothing by taking

rolling averages in the series. The affect of log transform can be seen in

Figure 9. The log transform is applied on a differenced time-series seen in

Figure 8(b).
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(a) Differenced time series (b) Log transformed time series

Figure 9: Example of log transformation.

3. Decomposition: As discussed above, we can decompose a given time-

series into trend and seasonality components. The residual time series as

shown in Figure 7 is the time series that remains after removing the trend

and seasonality component from the observed time series. This can be done

for both additive and multiplicative model.

If a series is non-stationary according to ADF test and stationary as per KPSS

test, then the series is trend stationary and removing trend component can make

it stationary. For the vice-versa condition, series has to be differenced. After

applying any of the above techniques, the resulting series must be tested for

stationarity again, until a stationary series is obtained.

3.2.3 Time-series forecasting techniques

Time series forecasting implies the use of statistical machine learning models to

make predictions about future occurrence based on historic/observed data. In this

research following machine learning models were implemented to predict the future

workload for a given service:

1. Auto-Regressive time series model (AR(p)): In any regression model, the

output value is dependant on some combination of the input value. For example,
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in a liner regression model, output 𝑦 can be written as equation (1), where 𝑦

is the forecasted result, 𝑐0 and 𝑐1 are optimized coefficients and x is the input

value.
𝑦 = 𝑐0 + 𝑐1 * 𝑥1 (1)

AR is a regression technique, in which, the predicted output value is based on

the input values at the previous time interval [18]. The input variables in AR

are called lag variables. The order, 𝑝, for AR model is the number of lags used

to model.

An AR model can be denoted as:

𝑋𝑡 = 𝑐+

𝑝∑︁
𝑖=1

𝜙𝑖 *𝑋𝑡−𝑖 + 𝜀𝑡

Where 𝜙1, .., 𝜙𝑝 are model parameters, 𝜀𝑡 is noise and 𝑐 is a constant. Partial

Auto-Correlation Function (PACF) is a method to infer the lag parameter, 𝑝,

for AR model.

2. Moving Average time series model(MA(q)): The MA method is based

on white noise in the series [18]. It uses a weighted average of white noise values

over 𝑞 previous time intervals. A MA model can be denoted as:

𝑋𝑡 = 𝜇+ 𝜖𝑡 +

𝑞∑︁
𝑖=1

𝜃𝑖 * 𝜖𝑡−𝑖

where 𝜇 is the mean of the time series, 𝜃1, .., 𝜃𝑞 are model parameters, and

𝜖𝑡, 𝜖𝑡−1, .., 𝜖𝑡−𝑞 are noise error terms. Order 𝑞 denotes how many time intervals

are to be included to calculate the weighted average. Auto-Correlation Function

(ACF) is a method to infer the model order, 𝑞, for MA model.
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3. Auto-Regressive Integrated Moving Average model (ARIMA(p,d,q):

The ARIMA model predicts the next interval value in the series as a linear

function of differenced input observations and the noise errors at previous time

intervals [18].

This method is a combination of AR and MA models along with the differencing

time series analysis step to stationarize the time series, defined as Intergration

(I). Thus, the three parameters of the model can be inferred as

𝑝 : is associated with the order for AR model.

𝑑 : is associated with the order of differencing to be applied to the time series.

It forms the integrated part of the model.

𝑞 : is associated with the order for MA model.

ARIMA is considered a generic model as it can be applied on non-stationary series

as well. This is due to the 𝐼 parameter of the model that does the differencing

on the series. Both MA and AR model can not be used for non-stationary series.

4. Hyper-parameter settings for forecasting techniques: The hyper-

parameters p for AR and q for MA model can be inferred by plotting the

ACF and PACF plots.

(a) Auto-Correlation Function(ACF): ACF is a correlation function which

provides correlations values of observations in a series with its lagged values.

It highlights how are the present observation of a series correlated to its

past observations. ACF function considers all the components of a series

as described in section 3.2.1 while finding correlations. Hence, it is referred

as ‘complete auto-correlation’ function [27].
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An ACF plot for a series can be visualized to identify the order for MA

model. For an MA model, ACF will have positive ACF values at lags

involved in the model. Figure 10 shows that ACF value for MA series is

Figure 10: Auto-correlation plot for MA(1) series

non-zero up to lag=1 and shuts off after this. Thus, the order, 𝑞 = 1 and

this represents a MA(1) series.

For an AR(p) model, the ACF plot does not shut-off clearly after p lags.

Thus, it can’t be used to determine the order for the model [28]. A sample

of this is represented in Figure 11.

Figure 11: Auto-correlation plot for an AR series

(b) Partial Auto-Correlation Function (PACF) PACF functions pro-

vides a partial correlation of a time series with its lagged values, after

removing the values from the time series that are at all shorter lags. It

contrasts with ACF function in finding correlation, as it focuses on finding

correlation of the residual values (after removing earlier lag values) with
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the next lag value [27]. The PACF plot is useful in identifying order for

Figure 12: Partial Auto-correlation plot for AR(2) series

AR model. The PACF of an AR(p) model becomes zero at lag p+1 and

greater. This means the PACF for AR shuts off after lag p. This can be

seen in Figure 12.

The PACF for a MA series will not shut off, rather decays to zero(0) slowly.

Therefore, it can not be used to determine the order of MA model. This

can be seen in Figure 13.

Figure 13: Partial Auto-correlation plot for MA(1) series
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3.3 Evaluation metrics:

1. Mean Absolute Error(MAE): MAE measures the average value of errors

in the prediction set. The absolute values is considered for the prediction

errors. Prediction error is the difference between the observed value and the

predicted value [14]. It is evaluated as the equation (2), where 𝑛 is the number

of observations in the prediction set, 𝑦𝑜𝑏𝑠 and 𝑦𝑝𝑟𝑒𝑑 are the real and predicted

values respectively.

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑗=1

|𝑦𝑝𝑟𝑒𝑑𝑗 − 𝑦𝑜𝑏𝑠𝑗 | (2)

2. Root Mean Squared Error(RMSE): RMSE is a quadratic metric that mea-

sures the average error in prediction results. It is the square root of mean of

squared difference between original and predicted value. observation [29]. It

is evaluated as the equation (3), where 𝑛 is the number of observations in the

prediction set, 𝑦𝑜𝑏𝑠 and 𝑦𝑝𝑟𝑒𝑑 are the real and predicted values respectively.

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑗=1

(𝑦𝑝𝑟𝑒𝑑𝑗 − 𝑦𝑜𝑏𝑠𝑗)
2 (3)

If RMSE is zero, then there are no errors in the predictions.

In this research, Python libraries under sklearn.metrics were used to examine error

metrics for the experiments.

In the next chapter, details of implementation methodology is discussed with an

overview of the workflow diagram.
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CHAPTER 4

Overview of the Implementation Design

This chapter provides an overview of the developed experimentation design. The

objective of this research is to perform predictive analysis on cloud infrastructure

metrics, in order to forecast the upcoming application workload or resource demands.

The result of this analysis, can be used by resource provisioning systems to make

in-time provisioning decisions. An overall system level design can be seen in Figure 14.

Figure 14: System level design

4.1 Implementation Methodology

In this section, a detailed overview is presented for implementing the prediction

model for resource provisioning system.

The general steps to implement a forecasting model are:

1. Loading the data : Load the collected dataset into the system. In this research,

real-world workload time-series data for Autodesk’s ACM and OSS service is

used.

2. Data Pre-processing: Data cleaning and pre-processing of the time series

must be done. Some of the pre-processing to be done are: making a uni-variate
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series, getting the timestamps, and converting them to to correct datatype

needed by the model, etc.

3. Time series analysis: In this step, we analyze the given time series to identify

and rectify trends, seasonality, and noise from the series and form a stationary

time series.

(a) Stationarity test: It is easier to making accurate predictions for a stationary

time-series. Therefore, it is essential to perform stationarity test on the

given time series. If the series fails the stationarity test, then we proceed

to stationarize.

(b) Stationarize the series: In this step we stationarize the series using the

techniques discussed in Chapter 3. The added benefit of this step is that

we can determine the 𝑑 value (Intergration order), if differencing is used to

stationarize the series.

4. Generate ACF and PACF plots: Plotting ACF and PACF graphs can help

in determining orders for the forecasting model. This step also provides insights

about the time-series.

5. Identify the values for model order, 𝑝 and 𝑞 : Using the ACF and PACF

graph, identify if the series is AR or MA and determine the 𝑝 and 𝑞 values for

modelling the forecast model.

6. Build the forecast model: Build a time-series forecasting model based on the

parameters calculated in the previous step. This step also involves splitting the

processed data into training and validation set. The model is fitted onto the

training set.
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7. Forecast using validation set: In this step,we test the forecast model on the

validation set and predict the future values for the time series.

8. Evaluate the results: To verify the model performance, evaluated the predic-

tion results using MAE and RMSE metrics. If the results are bad, then repeat

the process from step 4-8 by hyper-parameter tuning.

The discussed methodology is depicted by a work-flow diagram in Figure 15.

In this research, the forecasting model are implemented using Python

𝑠𝑡𝑎𝑡𝑠𝑚𝑜𝑑𝑒𝑙𝑠.𝑡𝑠𝑎 library, which provides a rich set of modules for performing time-series

analysis.
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Figure 15: Implementation workflow
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CHAPTER 5

Experiments and Results

This chapter covers the experimental setup, details of the experiments performed,

and their results. The purpose of this research was to perform analysis of cloud

infrastructure metrics to understand the following:

• Can we accurately predict future workload/resource demands for a cloud hosted

service?

• Can predictive analysis on infrastructure metrics help in preventing SLA viola-

tions?

These questions are answered by the experimental results. The techniques used to

perform predictive analysis on the cloud metrics are - ARIMA, MA, and AR.

5.1 Experimental Design

Each cloud infrastructure metric time-series is analyzed and forecasted using the

above mentioned techniques. We limit the analysis to two sets of experiments per

series and display the results. In the first set of experiments, we analyze the time

series for stationarity and forecast the series using forecasting models. In the next set

of experiments, we apply stationarity techniques to the given time series and get the

forecasting results. In each set of experiments, we use RMSE and MAE metrics to

evaluate the prediction results.

Finally, we compare the results of each forecasting technique to understand which

time series model best applies to the given time series.

5.2 Experimental requirements

The requirements to implement the dynamic resource provisioning model are as

follows:

• An AWS cloud hosted application.
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• A virtual machine, deployed using Unix operating system.

• Load balancing test scripts, to run load test on application’s cloud infrastructure.

• Cloudwatch to gather metrics data.

• Installed Python version 2.7

• statsmodels.tsa and sklearn.metrics libraries to implement time-series forecasting

techniques on the collected data.

5.3 Experiments

In this section, we will discuss the predictive analysis performed on the following

infrastructure metrics for ACM and OSS service.

5.3.1 Analysis on ACM CPU-utilization metrics:

The ACM CPU utilization dataset is an hourly time series. Figure 16 is a

visualization of this time series. The ACM series was tested for stationarity using

Figure 16: ACM CPU utilization workload

Rolling statistics plot, ADF and, KPSS techniques. Results for these test are given in
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Figure 17, Figure 18, and Figure 19.

Figure 17: ACM CPU utilization Rolling statistics plot

Figure 18: ACM CPU utilization ADF test

Both ADF (Fig. 18) and KPSS (Fig. 19) show that the series is stationary as

the test statistic value is smaller than 1 % critical value. Thus, we can say with

99 % confidence that the time series is stationary. As per the Rolling mean test in

Figure 17, it can be seen that there is some trend in the series as the variance is

changing over time. Following experiments were performed to stationarize the series

and forecast the future values.
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Figure 19: ACM CPU utilization KPSS test

Details of the experiments are given below.

1. Without applying any transformation: Since the series is stationary, it

can be used for forecasting directly. This experiment serves as the baseline for

the predictive analysis.

• Analyzing ACF and PACF Plots: The ACF and PACF plot seen in

Figure 20 shows that this series is a pure AR series as it has a slow decaying

Figure 20: ACF and PACF for ACM CPU utilization

ACF and the PACF shuts-off after lag = 2. The shaded part of the ACF
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and PACF denotes the upper and lower bounds of 95% confidence interval.

Thus, 𝑝 = 2 and 𝑞 = 0. Using these model parameters, the forecasting

models were built. The series is split into training and test sets in a 70:30

ratio. Table 1 shows the training and testing data split.

Table 1: Data Split

Data Number of intervals used
Training Set 672
Testing Set 269

• Forecasting results:

(a) AR model: The AR model was developed using

𝑠𝑡𝑎𝑡𝑠𝑚𝑜𝑑𝑒𝑙𝑠.𝑡𝑠𝑎.𝑎𝑟𝑚𝑜𝑑𝑒𝑙 Python 2.7 library. The model fitted

on training data is validated by making predictions on test data.

Lag window, or p = 2. Figure 21 shows the results from this model.

Table 2. highlights the model performance against the evaluation

Figure 21: AR model predictions results

metrics.
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Table 2: Prediction results for AR

Evaluation Metric Value
RMSE 5.838
MAE 1.458

(b) MA model: The MA model was developed using 𝑠𝑡𝑎𝑡𝑠𝑚𝑜𝑑𝑒𝑙𝑠.𝑡𝑠𝑎

Python 2.7 library. The model fitted on training data is validated by

making predictions on test data. Lag window, or q = 3 was chosen for

the experiment. Figure 22 shows the results from this model.

Figure 22: MA model predictions results

Table 3 highlights the model performance against the evaluation metrics.

Table 3: Prediction results for MA

Evaluation Metric Value
RMSE 3.425
MAE 0.866
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(c) ARIMA model: The ARIMA model was developed using

𝑠𝑡𝑎𝑡𝑠𝑚𝑜𝑑𝑒𝑙𝑠.𝑡𝑠𝑎.𝑎𝑟𝑖𝑚𝑎 − 𝑚𝑜𝑑𝑒𝑙 Python 2.7 library. The model fit-

ted on training data is validated by making predictions on test data.

Model parameters used were, p = 2, d = 1, q = 0. Figure 23 shows

the results from this model. Table 4 highlights the model performance

Figure 23: ARIMA model predictions results

against the evaluation metrics.

Table 4: Prediction results for ARIMA

Evaluation Metric Value
RMSE 6.822
MAE 1.473

All the models were able to forecast the future workload and show satisfactory

results as RMSE, MAE values closer to 0 are considered good prediction results.

De-trending and removing seasonality from that data will help to improve the

results.
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2. Using Log transform: To reduce the affect of trend and seasonality, log

transform is applied to the time series. The startioanrity test for the resulting

time series are shown in Figure 24 and Figure 25. The data split remains the

same as the previous experiment.

Figure 24: ADF test on log transformed CPU metrics

Figure 25: KPSS test on log transformed CPU metrics

• Analyzing ACF and PACF Plots: The ACF and PACF plot seen in

Figure 26. show that this series is a pure AR series as it has a slow decaying

ACF and the PACF shuts-off after lag = 2. Thus, 𝑝 = 2 and 𝑞 = 0. Using

these model parameters, the forecasting models were built. The series is

split into training and test sets in a 70:30 ratio. Table 5 shows the training

and testing data split.
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Figure 26: ACF and PACF for log transformed CPU utilization

Table 5: Data Split

Data Number of intervals used
Training Set 672
Testing Set 269

• Forecasting results:

(a) AR model: The AR model was developed using

𝑠𝑡𝑎𝑡𝑠𝑚𝑜𝑑𝑒𝑙𝑠.𝑡𝑠𝑎.𝑎𝑟𝑚𝑜𝑑𝑒𝑙 Python 2.7 library. The model fitted

on training data is validated by making predictions on test data.

Lag window, or p = 2. Figure 27 shows the results from this model.

Table 6 highlights the model performance against the evaluation

metrics.
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Figure 27: AR model predictions results

Table 6: Prediction results for AR

Evaluation Metric Value
RMSE 0.418
MAE 0.211

(b) MA model: The MA model was developed using 𝑠𝑡𝑎𝑡𝑠𝑚𝑜𝑑𝑒𝑙𝑠.𝑡𝑠𝑎

Python 2.7 library. The model fitted on training data is validated by

making predictions on test data. Lag window, or q = 5 was chosen for

the experiment. Figure 28 shows the results from this model.

Table 7 highlights the model performance against the evaluation metrics.

Table 7: Prediction results for MA

Evaluation Metric Value
RMSE 0.425
MAE 0.235
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Figure 28: MA model predictions results

(c) ARIMA model: The ARIMA model was developed using

𝑠𝑡𝑎𝑡𝑠𝑚𝑜𝑑𝑒𝑙𝑠.𝑡𝑠𝑎.𝑎𝑟𝑖𝑚𝑎 − 𝑚𝑜𝑑𝑒𝑙 Python 2.7 library. The model fit-

ted on training data is validated by making predictions on test data.

Model parameters used were, p=2, d=1, q=0. Figure 23 shows the

results from this model. Table 8 highlights the model performance

against the evaluation metrics.

Table 8: Prediction results for ARIMA

Evaluation Metric Value
RMSE 0.415
MAE 0.197

The evaluation results for all the models show a tremendous improvement. This

is because log transform stabilizes the time series. This helps the forecasting

models to make more accurate predictions.
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Figure 29: ARIMA model predictions results

The results from this experiment successfully answer the project goals. It can be

seen from the prediction plots that we can forecast the future resource workload for

any given infrastructure metrics by performing predictive analysis on them by using

the above machine learning techniques.

5.4 Comparison of Forecast models

The results from the model can be compared to see overall, which model performs

the best. Figure 30 shows the RMSE results of ARIMA vs. MA vs. AR for both

the experiments. It can be seen that AR and ARIMA have slight differences but

overall have accurate prediction results. Each of the model performed better after

log transformation. MA model performed better in the baseline experiment as well

compared to the other models. Figure 31 compares the MAE results of these models.

Results remain the same. Overall, ARIMA had the least errors in experiment 2 and

can be used as the machine learning technique to perform predictive analysis on cloud

infrastructure metrics.
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Figure 30: Comparison of model RMSE results

Figure 31: MAE model predictions results

Since, these models were able to accurately predict the future workload forecast,

this prediction value can be provided to a resource provisioning system to make timely

decision about when to trigger the resource provisioning task. Hence, this can lead to

reduced SLA violations.

Additional experiments are available in Appendix A.
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CHAPTER 6

Conclusion

The dynamic nature of the cloud poses the biggest challenge in resource man-

agement in cloud computing. Historically, both static and dynamic approaches have

been successful in the cloud industry. Though reactive approaches tend to be used

commonly throughout the industry, they fail to capture the heterogeneity of the

cloud infrastructure [10]. The literature agrees that pro-active resource provisioning

overcomes the problem of over-utilization and guarantees QoS with minimal SLA

violations as they are dynamic. The experiments in this literature extract real world

resource utilization traces, tests for stationarity, stationarize the series, and apply

forecasting techniques to predict resource utilization. These experiments showcase

that machine learning techniques, like time-series forecasting can be leveraged to

develop a pro-active resource provisioning system as they allow us to accurately make

resource demand predictions. Finally, machine learning techniques for time-series

prediction needs to be explored further and adopted industry-wide. Their impact can

be meaningful in this research area as they help to understand the inter-connections

between applications past workload balance and current QoS requirements. Such

a solution will help in balancing SLA violations by the cloud provider and QoS

requirements of a cloud user.

Future work on this research can be to use Supervised learning and Deep-learning

techniques to predict future workload. The Long Short-Term Memory neural network

is designed to interpolate hidden patterns in a long sequence of observations [30].

LSTMs can be used to model time-series data and help in uncovering hidden patterns

in the series. Time-series forecasting methods are unsupervised learning techniques.

In future, supervised learning techniques like SVMs can also be leveraged to model

temporal data and make meaningful predictions.
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APPENDIX

Additional Results

A.1 Analysis on OSS Web Latency workload

The OSS service had three accounts: Web, Upload, and Download. In this

section, results for predictive analysis on OSS web latency metrics are presented. The

OSS Web latency dataset is an hourly time series. Figure A.32 is a visualization of

this time series. The ACM series was tested for stationarity using Rolling statistics

plot, ADF and KPSS techniques. Results for these test can be given in Figure A.33,

Figure A.34, and Figure A.35.

Figure A.32: OSS web latency workload

It’s interesting to see that the series is stationary as per ADF test but KPSS

show that the series is non-stationary as the test statistic value is greater than critical

values. This means that the series has to be differenced to add stationarity to it.

As per the Rolling mean test, it can be seen that there is downward trend in the
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Figure A.33: OSS latency Rolling statistics plot

Figure A.34: OSS latency series ADF test

series as the variance is changing over time. Following experiments were performed

to stationarize the series and forecast the future values.

Details of the experiments are given below.

Figure A.35: OSS latency KPSS test
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1. Applying log transformation and 1-degree differencing: Since the series

is non-stationary, it cannot be used for forecasting directly. In this experiment

we transformed the original series by applying log transformation to reduce noise

in the data. Next to stationarize it further, the series is differenced by the order

of 1. The startioanrity test for the resulting time series are shown in Figure

A.36 and Figure A.37.

Figure A.36: ADF test on log-diff transformed latency metrics

Figure A.37: KPSS test on log-diff transformed latency metrics

We can see the series is now stationary.

• Analyzing ACF and PACF Plots: The ACF and PACF plot seen in

Figure A.38 shows that this series is a combination of AR and MA series as

it has a slow decaying PACF and the ACF shuts-off after lag=2, 8. Using

these model parameters, the forecasting models were built. The series is

split into training and test sets in a 70:30 ratio. Table A.9 shows the

training and testing data split.
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Table A.9: Data Split

Data Number of intervals used
Training Set 641
Testing Set 143

Figure A.38: ACF and PACF for OSS latency log-diff series

• Forecasting results:

(a) AR model: The model fitted on training data is validated by making

predictions on test data. Lag window, or p = 2. Figure A.39 shows the

results from this model. Table A.10. highlights the model performance

against the evaluation metrics.

Table A.10: Prediction results for AR

Evaluation Metric Value
RMSE 0.301
MAE 0.232

48



Figure A.39: AR model predictions results

(b) MA model: The model fitted on training data is validated by making

predictions on test data. Lag window, or q = 2 was chosen for the

experiment. Figure A.40 shows the results from this model.

Figure A.40: MA model predictions results

Table A.11 highlights the model performance against the evaluation

metrics.
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Table A.11: Prediction results for MA

Evaluation Metric Value
RMSE 0.380
MAE 0.241

(c) ARIMA model: The model fitted on training data is validated by

making predictions on test data. Model parameters used were, p=2,

d=1, q=0. Figure A.41 shows the results from this model. Table A.12

Figure A.41: ARIMA model predictions results

highlights the model performance against the evaluation metrics.

Table A.12: Prediction results for ARIMA

Evaluation Metric Value
RMSE 0.362
MAE 0.272

All the models were able to forecast the future workload and show highly accurate

prediction results as RMSE, MAE values are closer to 0.
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2. Using Log transform and mean differencing: This is an add on to ex-

periment 1. The process is same, hence only the results are provided. The

startioanrity test for the resulting time series are shown in Figure A.42 and

Figure A.43. The data split remains the same as the previous experiment.

Figure A.42: ADF test on log transformed mean differenced latency metrics

Figure A.43: KPSS test on log transformed mean differenced latency metrics

• Analyzing ACF and PACF Plots: The ACF and PACF plot seen in

Figure A.44.

• Forecasting results:

(a) AR model: Lag window, or p = 8. Figure A.45 shows the results

from this model. Table A.13. highlights the model performance against

the evaluation metrics.
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Figure A.44: ACF and PACF for log transformed mean differenced latency metrics

Figure A.45: AR model predictions results

(b) MA model: Lag window, or q = 1 was chosen for the experiment.

Figure A.46 shows the results from this model.

Table A.14 highlights the model performance against the evaluation
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Table A.13: Prediction results for AR

Evaluation Metric Value
RMSE 0.27
MAE 0.207

Figure A.46: MA model predictions results

metrics.

Table A.14: Prediction results for MA

Evaluation Metric Value
RMSE 0.358
MAE 0.252
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(c) ARIMA model: Model parameters used were, p=8, d=0, q=1. Fig-

ure A.47 shows the results from this model. Table A.15 highlights the

Figure A.47: ARIMA model predictions results

model performance against the evaluation metrics.

Table A.15: Prediction results for ARIMA

Evaluation Metric Value
RMSE 0.273
MAE 0.207

A.2 Comparison of Forecast models

The results from the model can be compared to see overall, which model performs

the best. Figure A.48 shows the RMSE results of ARIMA vs. MA vs. AR for both the

experiments. It can be seen that AR and ARIMA have slight differences but overall

have acurate prediction results. Each of the models performed better after log mean

differencing transformation. Figure A.49 compares the MAE results of these models.

Results remain the same. Overall, AR had the least errors in experiment 2 and
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Figure A.48: Comparison of model RMSE results

can be used as the machine learning technique to perform predictive analysis on cloud

infrastructure metrics.

Figure A.49: MAE model predictions results
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