795 research outputs found

    Transmission radius control in wireless Ad Hoc networks with smart antennas

    Get PDF
    In this paper, we present a model to analyze the performance of three transmission strategies with smart antennas, i.e. directional antennas with adjustable transmission power. Generally, a larger transmission radius contributes a greater progress if a transmission is successful. However, it has a higher probability of collision with other concurrent transmissions. Smart antennas mitigate collisions with sectorized transmission ranges. They also extend the transmission radii. By modelling three transmission strategies, namely, Nearest with Forward Progress (NFP), Most Forward with Fixed Radius (MFR), and Most Forward with Variable Radius (MVR), our analysis illustrates that the use of smart antennas can greatly reduce the possibility of conflicts. The model considers the interference range and computes the interference probability for each transmission strategy. We have analyzed two Medium Access Control (MAC) protocols using our interference model, namely, the slotted ALOHA protocol and the slotted CSMA/CA-like protocol. The result shows that, for slotted ALOHA, NFP yields the best one-hop throughput, whereas MVR provides the best average forward progress. The overall performance is substantially improved with the slotted CSMA/CA-like protocol, and the network becomes more resilient. © 2010 IEEE.published_or_final_versio

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Channel-Access and Routing Protocols for Wireless Ad Hoc Networks with Directional Antennas

    Get PDF
    Medium-access control (MAC) and multiple-hop routing protocols are presented that exploit the presence of directional antennas at nodes in a wireless ad hoc network. The protocols are designed for heterogeneous networks in which an arbitrary subset use directional antennas. It is shown that the new protocols improvement the network`s performance substantially in a wide range of scenarios. A new MAC protocol is presented that employs the RTS/CTS mechanism. It accounts for the constraints imposed by a directional antenna system, and it is designed to exploit the capabilities of a directional antenna. It is shown that the receiver blocking problem is especially detrimental to the performance if the network includes nodes with directional antennas, and a simple solution is presented. A further improvement to the MAC protocol is presented which results in more efficient spatial reuse of traffic channels in the heterogeneous network. The protocol includes a mechanism by which a negotiating node pair dynamically determines if a traffic channel that is in use in the local area can be used concurrently to support additional traffic. It is shown that the new protocol yields significantly better performance than two existing approaches to the reuse of traffic channels. It is also shown that the improvements are achieved over a wide range of network conditions, including different network densities and different spread-spectrum processing gains. A new distributed routing protocol is also presented for use in heterogeneous wireless ad hoc networks. Two components of the routing protocol are jointly designed: a congestion-based link metric that identifies multiple routes with low levels of congestion, and a forwarding protocol that dynamically splits traffic among the multiple routes based on the relative capabilities of the routes. It is shown that the new routing protocol is able to exploit the decoupling of paths in the network resulting from the presence of nodes with directional antennas. Furthermore, it is shown that the protocol adapts effectively to the presence of advantaged nodes in the network. This approach to joint routing and forwarding is shown to result in a much better and more robust network performance than minimum-hop routing

    On Connectivity of Wireless Sensor Networks with Directional Antennas.

    Full text link
    In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Improving the resource utilization in Wireless Mesh Networks based on Spatial -TDMA

    Get PDF
    Projecte final de carrera realitzat en col.laboració amb King's College LondonWireless Mesh Networks are expected to gain signi cant importance in the telecom- munication market in the near future. Nevertheless, some critical factors menace them not to achieve their expected features. In this thesis we focus our research on the improvement of their performance. To face the multiple access issue we consider the utilization of Spatial Time Division Multiple Access (STDMA). STDMA bene ts from the spatial distribution of nodes allowing the reuse of timeslots by users su - ciently far apart. This feature permits a better utilization of the spectrum, but arises an NP-complete optimization problem consisting in distributing e ciently links into timeslots. In the rst part of the thesis, we will address the link scheduling problem and we will propose two heuristics to try to improve the overall performance of the system. In the second part of the thesis, we will deal with directional antennas, and in particular, with switched beam antennas. Several works have demonstrated the signi cant bene ts of switched beam antennas applied to WMNs. This kind of antennas are formed by several xed beam patterns that are switched according to the communications requirements. Switching among patterns cause, though, a con- sumption of energy and a lose of time to stabilize the patterns. A set of algorithms to reduce the switchings without deteriorating the frame length achieved with the scheduling algorithms will be presente

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Design and evaluation of wireless dense networks : application to in-flight entertainment systems

    Get PDF
    Le réseau sans fil est l'un des domaines de réseautage les plus prometteurs avec des caractéristiques uniques qui peuvent fournir la connectivité dans les situations où il est difficile d'utiliser un réseau filaire, ou lorsque la mobilité des nœuds est nécessaire. Cependant, le milieu de travail impose généralement diverses contraintes, où les appareils sans fil font face à différents défis lors du partage des moyens de communication. De plus, le problème s'aggrave avec l'augmentation du nombre de nœuds. Différentes solutions ont été introduites pour faire face aux réseaux très denses. D'autre part, un nœud avec une densité très faible peut créer un problème de connectivité et peut conduire à l'optension de nœuds isolés et non connectes au réseau. La densité d'un réseau est définit en fonction du nombre de nœuds voisins directs au sein de la portée de transmission du nœud. Cependant, nous croyons que ces métriques ne sont pas suffisants et nous proposons une nouvelle mesure qui considère le nombre de voisins directs et la performance du réseau. Ainsi, la réponse du réseau, respectant l'augmentation du nombre de nœuds, est considérée lors du choix du niveau de la densité. Nous avons défini deux termes: l'auto-organisation et l'auto-configuration, qui sont généralement utilisés de façon interchangeable dans la littérature en mettant en relief la différence entre eux. Nous estimons qu'une définition claire de la terminologie peut éliminer beaucoup d'ambiguïté et aider à présenter les concepts de recherche plus clairement. Certaines applications, telles que Ies systèmes "In-Flight Entertainment (IFE)" qui se trouvent à l'intérieur des cabines d'avions, peuveut être considérées comme des systèmes sans fil de haute densité, même si peu de nœuds sont relativement présents. Pour résoudre ce problème, nous proposons une architecture hétérogène de différentes technologies à fin de surmonter les contraintes spécifiques de l'intérieur de la cabine. Chaque technologie vise à résoudre une partie du problème. Nous avons réalisé diverses expérimentations et simulations pour montrer la faisabilité de l'architecture proposée. Nous avons introduit un nouveau protocole d'auto-organisation qui utilise des antennes intelligentes pour aider certains composants du système IFE; à savoir les unités d'affichage et leurs systèmes de commande, à s'identifier les uns les autres sans aucune configuration préliminaire. Le protocole a été conçu et vérifié en utilisant le langage UML, puis, un module de NS2 a été créé pour tester les différents scénarios.Wireless networking is one of the most challenging networking domains with unique features that can provide connectivity in situations where it is difficult to use wired networking, or when ! node mobility is required. However, the working environment us! ually im poses various constrains, where wireless devices face various challenges when sharing the communication media. Furthermore, the problem becomes worse when the number of nodes increase. Different solutions were introduced to cope with highly dense networks. On the other hand, a very low density can create a poor connectivity problem and may lead to have isolated nodes with no connection to the network. It is common to define network density according to the number of direct neighboring nodes within the node transmission range. However, we believe that such metric is not enough. Thus, we propose a new metric that encompasses the number of direct neighbors and the network performance. In this way, the network response, due to the increasing number of nodes, is considered when deciding the density level. Moreover, we defined two terms, self-organization and self-configuration, which are usually used interchangeably in the literature through highlighting the difference ! between them. We believe that having a clear definition for terminology can eliminate a lot of ambiguity and help to present the research concepts more clearly. Some applications, such as In-Flight Entertainment (IFE) systems inside the aircraft cabin, can be considered as wirelessly high dense even if relatively few nodes are present. To solve this problem, we propose a heterogeneous architecture of different technologies to overcome the inherited constrains inside the cabin. Each technology aims at solving a part of the problem. We held various experimentation and simulations to show the feasibility of the proposed architecture
    corecore